Publications
27 found
Show per page
Kuwayama, Naohiro, Powers, Emily Nicole, Siketanc, Matej, Sousa, Camila Ines, Reynaud, Kendra, Jovanovic, Marko, , Ingolia, Nicholas Thomas, & Brar, Gloria Ann. (2024). Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation. Cell Reports, 43(12). https://doi.org/10.1016/j.celrep.2024.115059
Kuwayama, Naohiro, Powers, Emily Nicole, Siketanc, Matej, Sousa, Camila Ines, Reynaud, Kendra, Jovanovic, Marko, , Ingolia, Nicholas Thomas, & Brar, Gloria Ann. (2024). Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation. Cell Reports, 43(12). https://doi.org/10.1016/j.celrep.2024.115059
Szentgyörgyi, Viktória, Lueck, Leon, Overwijn, Daan, Ritz, Danilo, Zoeller, Nadja, Schmidt, Alexander, , Anne Spang, Anne, & Bakhtiar, Shahrzad. (2024). Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis. Journal of Cell Biology, 223(11). https://doi.org/10.1083/jcb.202401167
Szentgyörgyi, Viktória, Lueck, Leon, Overwijn, Daan, Ritz, Danilo, Zoeller, Nadja, Schmidt, Alexander, , Anne Spang, Anne, & Bakhtiar, Shahrzad. (2024). Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis. Journal of Cell Biology, 223(11). https://doi.org/10.1083/jcb.202401167
Dörner, Kerstin, Gut, Michelle, Overwijn, Daan, Cao, Fan, Siketanc, Matej, Heinrich, Stephanie, Beuret, Nicole, Sharpe, Timothy, Lindorff-Larsen, Kresten, & . (2024). Tag with Caution - How protein tagging influences the formation of condensates [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.10.04.616694
Dörner, Kerstin, Gut, Michelle, Overwijn, Daan, Cao, Fan, Siketanc, Matej, Heinrich, Stephanie, Beuret, Nicole, Sharpe, Timothy, Lindorff-Larsen, Kresten, & . (2024). Tag with Caution - How protein tagging influences the formation of condensates [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.10.04.616694
Szentgyörgyi, Viktória, Lueck, Leon Maximilian, Overwijn, Daan, Zoeller, Nadia, , Spang, Anne, & Bakhtiar, Shahrzad. (2024). Endosomal LRBA regulates the endo-lysosomal pathway [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.07.579084
Szentgyörgyi, Viktória, Lueck, Leon Maximilian, Overwijn, Daan, Zoeller, Nadia, , Spang, Anne, & Bakhtiar, Shahrzad. (2024). Endosomal LRBA regulates the endo-lysosomal pathway [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.07.579084
Heinrich, Stephanie, , Marchand, Désirée, Derrer, Carina Patrizia, Zedan, Mostafa, Oswald, Alexandra, Malinovska, Liliana, Uliana, Federico, Khawaja, Sarah, Mancini, Roberta, Grunwald, David, & Weis, Karsten. (2024). Glucose stress causes mRNA retention in nuclear Nab2 condensates. Cell Reports, 43(1). https://doi.org/10.1016/j.celrep.2023.113593
Heinrich, Stephanie, , Marchand, Désirée, Derrer, Carina Patrizia, Zedan, Mostafa, Oswald, Alexandra, Malinovska, Liliana, Uliana, Federico, Khawaja, Sarah, Mancini, Roberta, Grunwald, David, & Weis, Karsten. (2024). Glucose stress causes mRNA retention in nuclear Nab2 condensates. Cell Reports, 43(1). https://doi.org/10.1016/j.celrep.2023.113593
Dörner, Kerstin, & . (2024). The Story of RNA Unfolded: The Molecular Function of DEAD- and DExH-Box ATPases and Their Complex Relationship with Membraneless Organelles. Annual Review of Biochemistry, 93(1), 79–108. https://doi.org/10.1146/annurev-biochem-052521-121259
Dörner, Kerstin, & . (2024). The Story of RNA Unfolded: The Molecular Function of DEAD- and DExH-Box ATPases and Their Complex Relationship with Membraneless Organelles. Annual Review of Biochemistry, 93(1), 79–108. https://doi.org/10.1146/annurev-biochem-052521-121259
Heinrich, Stephanie, & . (2022). Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo. In Scheiffele, Peter; Mauger, Oriane (Ed.), Alternative Splicing: Methods and Protocols (pp. 307–333). Springer. https://doi.org/10.1007/978-1-0716-2521-7_18
Heinrich, Stephanie, & . (2022). Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo. In Scheiffele, Peter; Mauger, Oriane (Ed.), Alternative Splicing: Methods and Protocols (pp. 307–333). Springer. https://doi.org/10.1007/978-1-0716-2521-7_18
Linsenmeier, Miriam, , Grigolato, Fulvio, Secchi, Eleonora, Weis, Karsten, & Arosio, Paolo. (2022). Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity. Nature Communications, 13(1), 3030. https://doi.org/10.1038/s41467-022-30521-2
Linsenmeier, Miriam, , Grigolato, Fulvio, Secchi, Eleonora, Weis, Karsten, & Arosio, Paolo. (2022). Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity. Nature Communications, 13(1), 3030. https://doi.org/10.1038/s41467-022-30521-2
Overwijn, Daan, & . (2022). DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends in Biochemical Sciences, 48(3), 244–258. https://doi.org/10.1016/j.tibs.2022.10.001
Overwijn, Daan, & . (2022). DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends in Biochemical Sciences, 48(3), 244–258. https://doi.org/10.1016/j.tibs.2022.10.001
Weis, Karsten, & . (2022). The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annual Review of Biochemistry, 91, 197–219. https://doi.org/10.1146/annurev-biochem-032620-105429
Weis, Karsten, & . (2022). The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annual Review of Biochemistry, 91, 197–219. https://doi.org/10.1146/annurev-biochem-032620-105429
Wollny, Damian, Vernot, Benjamin, Wang, Jie, , Safrastyan, Aram, Aron, Franziska, Micheel, Julia, He, Zhisong, Hyman, Anthony, Weis, Karsten, Camp, J. Gray, Tang, T.-Y Dora, & Treutlein, Barbara. (2022). Characterization of RNA content in individual phase-separated coacervate microdroplets. Nature Communications, 13(1), 2626. https://doi.org/10.1038/s41467-022-30158-1
Wollny, Damian, Vernot, Benjamin, Wang, Jie, , Safrastyan, Aram, Aron, Franziska, Micheel, Julia, He, Zhisong, Hyman, Anthony, Weis, Karsten, Camp, J. Gray, Tang, T.-Y Dora, & Treutlein, Barbara. (2022). Characterization of RNA content in individual phase-separated coacervate microdroplets. Nature Communications, 13(1), 2626. https://doi.org/10.1038/s41467-022-30158-1
Linsenmeier, Miriam, , Grigolato, Fulvio, Secchi, Eleonora, Weis, Karsten, & Arosio, Paolo. (2021). Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity. bioRxiv. https://doi.org/10.1101/2021.02.26.433003
Linsenmeier, Miriam, , Grigolato, Fulvio, Secchi, Eleonora, Weis, Karsten, & Arosio, Paolo. (2021). Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity. bioRxiv. https://doi.org/10.1101/2021.02.26.433003
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Leuchtmann, Aurel B., Henríquez-Olguín, Carlos, Adak, Volkan, Maier, Geraldine, Delezie, Julien, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, , Jensen, Thomas E., Hiller, Sebastian, & Handschin, Christoph. (2021). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2105951118. https://doi.org/10.1073/pnas.2105951118
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Leuchtmann, Aurel B., Henríquez-Olguín, Carlos, Adak, Volkan, Maier, Geraldine, Delezie, Julien, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, , Jensen, Thomas E., Hiller, Sebastian, & Handschin, Christoph. (2021). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2105951118. https://doi.org/10.1073/pnas.2105951118
Wollny, Damian, Vernot, Benjamin, Wang, Jie, , Hyman, Anthony, Weis, Karsten, Camp, J. Gray, Dora Tang, T. -Y., & Treutlein, Barbara. (2021). Characterization of RNA content in individual phase-separated coacervate microdroplets. bioRxiv. https://doi.org/10.1101/2021.03.08.434405
Wollny, Damian, Vernot, Benjamin, Wang, Jie, , Hyman, Anthony, Weis, Karsten, Camp, J. Gray, Dora Tang, T. -Y., & Treutlein, Barbara. (2021). Characterization of RNA content in individual phase-separated coacervate microdroplets. bioRxiv. https://doi.org/10.1101/2021.03.08.434405
, Heinrich, Stephanie, De Los Rios, Paolo, & Weis, Karsten. (2020). Membraneless organelles: phasing out of equilibrium. Emerging topics in life sciences, 4(3), 331–342. https://doi.org/10.1042/etls20190190
, Heinrich, Stephanie, De Los Rios, Paolo, & Weis, Karsten. (2020). Membraneless organelles: phasing out of equilibrium. Emerging topics in life sciences, 4(3), 331–342. https://doi.org/10.1042/etls20190190
, Sachdev, Ruchika, Heinrich, Stephanie, Wang, Juan, Vallotton, Pascal, Fontoura, Beatriz M. A., & Weis, Karsten. (2019). DEAD-box ATPases are global regulators of phase-separated organelles. Nature, 573(7772), 144–148. https://doi.org/10.1038/s41586-019-1502-y
, Sachdev, Ruchika, Heinrich, Stephanie, Wang, Juan, Vallotton, Pascal, Fontoura, Beatriz M. A., & Weis, Karsten. (2019). DEAD-box ATPases are global regulators of phase-separated organelles. Nature, 573(7772), 144–148. https://doi.org/10.1038/s41586-019-1502-y
Linsenmeier, Miriam, Kopp, Marie R. G., Grigolato, Fulvio, Emmanouilidis, Leonidas, Liu, Dany, Zürcher, Dominik, , Weis, Karsten, Capasso Palmiero, Umberto, & Arosio, Paolo. (2019). Corrigendum: Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Angewandte Chemie International Edition, 58(50), 17902. https://doi.org/10.1002/anie.201913379
Linsenmeier, Miriam, Kopp, Marie R. G., Grigolato, Fulvio, Emmanouilidis, Leonidas, Liu, Dany, Zürcher, Dominik, , Weis, Karsten, Capasso Palmiero, Umberto, & Arosio, Paolo. (2019). Corrigendum: Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Angewandte Chemie International Edition, 58(50), 17902. https://doi.org/10.1002/anie.201913379
Linsenmeier, Miriam, Kopp, Marie R. G., Grigolato, Fulvio, Emmanoulidis, Leonidas, Liu, Dany, Zürcher, Dominik, , Weis, Karsten, Capasso Palmiero, Umberto, & Arosio, Paolo. (2019). Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Angewandte Chemie International Edition, 58(41), 14489–14494. https://doi.org/10.1002/anie.201907278
Linsenmeier, Miriam, Kopp, Marie R. G., Grigolato, Fulvio, Emmanoulidis, Leonidas, Liu, Dany, Zürcher, Dominik, , Weis, Karsten, Capasso Palmiero, Umberto, & Arosio, Paolo. (2019). Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Angewandte Chemie International Edition, 58(41), 14489–14494. https://doi.org/10.1002/anie.201907278
Sachdev, Ruchika, , Linsenmeier, Miriam, Vallotton, Pascal, Mugler, Christopher F., Arosio, Paolo, & Weis, Karsten. (2019). Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. eLife, 8, e41415. https://doi.org/10.7554/elife.41415
Sachdev, Ruchika, , Linsenmeier, Miriam, Vallotton, Pascal, Mugler, Christopher F., Arosio, Paolo, & Weis, Karsten. (2019). Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. eLife, 8, e41415. https://doi.org/10.7554/elife.41415
Faltova, Lenka, Küffner, Andreas M., , Weis, Karsten, & Arosio, Paolo. (2018). Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives. ACS nano, 12(10), 9991–9999. https://doi.org/10.1021/acsnano.8b04304
Faltova, Lenka, Küffner, Andreas M., , Weis, Karsten, & Arosio, Paolo. (2018). Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives. ACS nano, 12(10), 9991–9999. https://doi.org/10.1021/acsnano.8b04304
Mugler, Christopher Frederick, , Heinrich, Stephanie, Sachdev, Ruchika, Vallotton, Pascal, Koek, Adriana Y., Chan, Leon Y., & Weis, Karsten. (2016). ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife, 5, e18746. https://doi.org/10.7554/elife.18746
Mugler, Christopher Frederick, , Heinrich, Stephanie, Sachdev, Ruchika, Vallotton, Pascal, Koek, Adriana Y., Chan, Leon Y., & Weis, Karsten. (2016). ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife, 5, e18746. https://doi.org/10.7554/elife.18746
, & Ladurner, Andreas G. (2013). Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus, 4(6), 9–443. https://doi.org/10.4161/nucl.27235
, & Ladurner, Andreas G. (2013). Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus, 4(6), 9–443. https://doi.org/10.4161/nucl.27235
, Stuwe, Tobias, Hassler, Markus, Halbach, Felix, Bowman, Andrew, Zhang, Elisa T., Nijmeijer, Bianca, Kotthoff, Christiane, Rybin, Vladimir, Amlacher, Stefan, Hurt, Ed, & Ladurner, Andreas G. (2013). Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature, 499(7456), 111–114. https://doi.org/10.1038/nature12242
, Stuwe, Tobias, Hassler, Markus, Halbach, Felix, Bowman, Andrew, Zhang, Elisa T., Nijmeijer, Bianca, Kotthoff, Christiane, Rybin, Vladimir, Amlacher, Stefan, Hurt, Ed, & Ladurner, Andreas G. (2013). Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature, 499(7456), 111–114. https://doi.org/10.1038/nature12242
, & Ladurner, Andreas G. (2011). The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Current Opinion in Structural Biology, 21(6), 698–708. https://doi.org/10.1016/j.sbi.2011.10.003
, & Ladurner, Andreas G. (2011). The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Current Opinion in Structural Biology, 21(6), 698–708. https://doi.org/10.1016/j.sbi.2011.10.003
Goetze, Hannah, Wittner, Manuel, Hamperl, Stephan, , Merz, Katharina, Stoeckl, Ulrike, & Griesenbeck, Joachim. (2010). Alternative chromatin structures of the 35S rRNA Genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Molecular and cellular biology, 30(8), 45–2028. https://doi.org/10.1128/mcb.01512-09
Goetze, Hannah, Wittner, Manuel, Hamperl, Stephan, , Merz, Katharina, Stoeckl, Ulrike, & Griesenbeck, Joachim. (2010). Alternative chromatin structures of the 35S rRNA Genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Molecular and cellular biology, 30(8), 45–2028. https://doi.org/10.1128/mcb.01512-09
, & Ladurner, Andreas. (2010). A mitotic beacon reveals its nucleosome anchor. Molecular cell, 39(6), 829–830. https://doi.org/10.1016/j.molcel.2010.09.001
, & Ladurner, Andreas. (2010). A mitotic beacon reveals its nucleosome anchor. Molecular cell, 39(6), 829–830. https://doi.org/10.1016/j.molcel.2010.09.001
Merz, Katharina, , Goetze, Hannah, Gmelch, Katharina, Stoeckl, Ulrike, & Griesenbeck, Joachim. (2008). Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes & development, 22(9), 204–1190. https://doi.org/10.1101/gad.466908
Merz, Katharina, , Goetze, Hannah, Gmelch, Katharina, Stoeckl, Ulrike, & Griesenbeck, Joachim. (2008). Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes & development, 22(9), 204–1190. https://doi.org/10.1101/gad.466908