Publications
25 found
Show per page
Hemmrich, Eva, & Journal of Controlled Release, 369, 617–621. https://doi.org/10.1016/j.jconrel.2024.04.003
. (2024). Strategic aspects for the commercialization of nanomedicines [Journal-article].
Hemmrich, Eva, & Journal of Controlled Release, 369, 617–621. https://doi.org/10.1016/j.jconrel.2024.04.003
. (2024). Strategic aspects for the commercialization of nanomedicines [Journal-article].
Hemmrich, Eva, & Nature Nanotechnology, 18, 692–695. https://doi.org/10.1038/s41565-023-01371-w
. (2023). Active ingredient vs excipient debate for nanomedicines.
Hemmrich, Eva, & Nature Nanotechnology, 18, 692–695. https://doi.org/10.1038/s41565-023-01371-w
. (2023). Active ingredient vs excipient debate for nanomedicines.
Klein, Kevin, Borchard, Gerrit, Shah, Vinod P., Flühmann, Beat, Annals of the New York Academy of Sciences, 1502, 5–13. https://doi.org/10.1111/nyas.14662
, & de Vlieger, Jon S. B. (2021). A pragmatic regulatory approach for complex generics through the U.S. FDA 505(j) or 505(b)(2) approval pathways.
Klein, Kevin, Borchard, Gerrit, Shah, Vinod P., Flühmann, Beat, Annals of the New York Academy of Sciences, 1502, 5–13. https://doi.org/10.1111/nyas.14662
, & de Vlieger, Jon S. B. (2021). A pragmatic regulatory approach for complex generics through the U.S. FDA 505(j) or 505(b)(2) approval pathways.
de Vlieger, Jon S. B., Crommelin, Daan J. A., Tyner, Katherine, Drummond, Daryl C., Jiang, Wenlei, AAPS Journal, 21. https://doi.org/10.1208/s12248-019-0329-7
, Neervannan, Sesha, Crist, Rachael M., & Shah, Vinod P. (2019). Report of the AAPS Guidance Forum on the FDA Draft Guidance for Industry: “Drug Products, Including Biological Products, that Contain Nanomaterials”.
de Vlieger, Jon S. B., Crommelin, Daan J. A., Tyner, Katherine, Drummond, Daryl C., Jiang, Wenlei, AAPS Journal, 21. https://doi.org/10.1208/s12248-019-0329-7
, Neervannan, Sesha, Crist, Rachael M., & Shah, Vinod P. (2019). Report of the AAPS Guidance Forum on the FDA Draft Guidance for Industry: “Drug Products, Including Biological Products, that Contain Nanomaterials”.
Wu, Jiewei, Crist, Rachael M., Journal of Pharmaceutical and Biomedical Analysis, 165, 41–46. https://doi.org/10.1016/j.jpba.2018.11.048
, & Clogston, Jeffrey D. (2019). Ion quantification in liposomal drug products using high performance liquid chromatography.
Wu, Jiewei, Crist, Rachael M., Journal of Pharmaceutical and Biomedical Analysis, 165, 41–46. https://doi.org/10.1016/j.jpba.2018.11.048
, & Clogston, Jeffrey D. (2019). Ion quantification in liposomal drug products using high performance liquid chromatography.
Cedrone, Edward, Neun, Barry W., Rodriguez, Jamie, Vermilya, Alison, Clogston, Jeffrey D., Molecules, 23. https://doi.org/10.3390/molecules23010012
, Barenholz, Yechezkel, Szebeni, Janos, & Dobrovolskaia, Marina A. (2018). Anticoagulants influence the performance of in vitro assays intended for characterization of nanotechnology-based formulations.
Cedrone, Edward, Neun, Barry W., Rodriguez, Jamie, Vermilya, Alison, Clogston, Jeffrey D., Molecules, 23. https://doi.org/10.3390/molecules23010012
, Barenholz, Yechezkel, Szebeni, Janos, & Dobrovolskaia, Marina A. (2018). Anticoagulants influence the performance of in vitro assays intended for characterization of nanotechnology-based formulations.
Swierczewska, Magdalena, Crist, Rachael M., & Evaluating nanomedicines: Obstacles and advancements (Vol. 1682, pp. 3–16). https://doi.org/10.1007/978-1-4939-7352-1_1
(2018).
Swierczewska, Magdalena, Crist, Rachael M., & Evaluating nanomedicines: Obstacles and advancements (Vol. 1682, pp. 3–16). https://doi.org/10.1007/978-1-4939-7352-1_1
(2018).
Hussaarts, Leonie, Mühlebach, Stefan, Shah, Vinod P., Annals of the New York Academy of Sciences, 1407(1), 39–49. https://doi.org/10.1111/nyas.13347
, Borchard, Gerrit, Flühmann, Beat, Weinstein, Vera, Neervannan, Sesha, Griffiths, Elwyn, Jiang, Wenlei, Wolff-Holz, Elena, Crommelin, Daan J. A., & de Vlieger, Jon S. B. (2017). Equivalence of complex drug products: advances in and challenges for current regulatory frameworks.
Hussaarts, Leonie, Mühlebach, Stefan, Shah, Vinod P., Annals of the New York Academy of Sciences, 1407(1), 39–49. https://doi.org/10.1111/nyas.13347
, Borchard, Gerrit, Flühmann, Beat, Weinstein, Vera, Neervannan, Sesha, Griffiths, Elwyn, Jiang, Wenlei, Wolff-Holz, Elena, Crommelin, Daan J. A., & de Vlieger, Jon S. B. (2017). Equivalence of complex drug products: advances in and challenges for current regulatory frameworks.
Smith, Mackensie C, Crist, Rachael M, Clogston, Jeffrey D, & Analytical and Bioanalytical Chemistry, 409(24), 5779–5787. https://doi.org/10.1007/s00216-017-0527-z
. (2017). Zeta potential: a case study of cationic, anionic, and neutral liposomes.
Smith, Mackensie C, Crist, Rachael M, Clogston, Jeffrey D, & Analytical and Bioanalytical Chemistry, 409(24), 5779–5787. https://doi.org/10.1007/s00216-017-0527-z
. (2017). Zeta potential: a case study of cationic, anionic, and neutral liposomes.
Adiseshaiah, Pavan P., Crist, Rachael M., Hook, Sara S., & Nature Reviews Clinical Oncology, 13, 750–765. https://doi.org/10.1038/nrclinonc.2016.119
(2016). Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer.
Adiseshaiah, Pavan P., Crist, Rachael M., Hook, Sara S., & Nature Reviews Clinical Oncology, 13, 750–765. https://doi.org/10.1038/nrclinonc.2016.119
(2016). Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer.
Coelho, Sergio G., Patri, Anil K., Wokovich, Anna M., JAMA Dermatology, 152, 470–472. https://doi.org/10.1001/jamadermatol.2015.5944
, Howard, Paul C., & Miller, Sharon A. (2016). Repetitive application of sunscreen containing titanium dioxide nanoparticles on human skin.
Coelho, Sergio G., Patri, Anil K., Wokovich, Anna M., JAMA Dermatology, 152, 470–472. https://doi.org/10.1001/jamadermatol.2015.5944
, Howard, Paul C., & Miller, Sharon A. (2016). Repetitive application of sunscreen containing titanium dioxide nanoparticles on human skin.
Dobrovolskaia, Marina A., & Handbook of immunological properties of engineered nanomaterials: Second edition (Vol. 1-3). https://doi.org/10.1142/9677
(2016).
Dobrovolskaia, Marina A., & Handbook of immunological properties of engineered nanomaterials: Second edition (Vol. 1-3). https://doi.org/10.1142/9677
(2016).
Nature Reviews Materials, 1. https://doi.org/10.1038/natrevmats.2016.73
(2016). Evaluation of nanomedicines: Stick to the basics.
Nature Reviews Materials, 1. https://doi.org/10.1038/natrevmats.2016.73
(2016). Evaluation of nanomedicines: Stick to the basics.
Tinkle, Sally, Annals of the New York Academy of Sciences, 1313, 35–56. https://doi.org/10.1111/nyas.12403
, Mühlebach, Stefan, Bawa, Raj, Borchard, Gerrit, Barenholz, Yechezkel Chezy, Tamarkin, Lawrence, & Desai, Neil. (2014). Nanomedicines: addressing the scientific and regulatory gap.
Tinkle, Sally, Annals of the New York Academy of Sciences, 1313, 35–56. https://doi.org/10.1111/nyas.12403
, Mühlebach, Stefan, Bawa, Raj, Borchard, Gerrit, Barenholz, Yechezkel Chezy, Tamarkin, Lawrence, & Desai, Neil. (2014). Nanomedicines: addressing the scientific and regulatory gap.
Wang, Q.Q., Zhu, J.Y., Gleisner, R., Kuster, T.A., Baxa, U., & Cellulose, 19, 1631–1643. https://doi.org/10.1007/s10570-012-9745-x
(2012). Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation.
Wang, Q.Q., Zhu, J.Y., Gleisner, R., Kuster, T.A., Baxa, U., & Cellulose, 19, 1631–1643. https://doi.org/10.1007/s10570-012-9745-x
(2012). Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation.
Sadrieh, Nakissa, Wokovich, Anna M., Gopee, Neera V., Zheng, Jiwen, Haines, Diana, Parmiter, David, Siitonen, Paul H., Cozart, Christy R., Patri, Anil K., Toxicological Sciences, 115, 156–166. https://doi.org/10.1093/toxsci/kfq041
, Howard, Paul C., Doub, William H., & Buhse, Lucinda F. (2010). Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO 2 particles.
Sadrieh, Nakissa, Wokovich, Anna M., Gopee, Neera V., Zheng, Jiwen, Haines, Diana, Parmiter, David, Siitonen, Paul H., Cozart, Christy R., Patri, Anil K., Toxicological Sciences, 115, 156–166. https://doi.org/10.1093/toxsci/kfq041
, Howard, Paul C., Doub, William H., & Buhse, Lucinda F. (2010). Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO 2 particles.
Aggarwal, Parag, Hall, Jennifer B., McLeland, Christopher B., Dobrovolskaia, Marina A., & Advanced Drug Delivery Reviews, 61, 428–437. https://doi.org/10.1016/j.addr.2009.03.009
(2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.
Aggarwal, Parag, Hall, Jennifer B., McLeland, Christopher B., Dobrovolskaia, Marina A., & Advanced Drug Delivery Reviews, 61, 428–437. https://doi.org/10.1016/j.addr.2009.03.009
(2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.
Dobrovolskaia, Marina A., & Immunological properties of engineered nanomaterials (pp. 278–287). https://doi.org/10.1142/9789814287005_0029
(2009).
Dobrovolskaia, Marina A., & Immunological properties of engineered nanomaterials (pp. 278–287). https://doi.org/10.1142/9789814287005_0029
(2009).
Dobrovolskaia, Marina A., Patri, Anil K., Zheng, Jiwen, Clogston, Jeffrey D., Ayub, Nader, Aggarwal, Parag, Neun, Barry W., Hall, Jennifer B., & Nanomedicine: Nanotechnology, Biology, and Medicine, 5, 106–117. https://doi.org/10.1016/j.nano.2008.08.001
(2009). Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles.
Dobrovolskaia, Marina A., Patri, Anil K., Zheng, Jiwen, Clogston, Jeffrey D., Ayub, Nader, Aggarwal, Parag, Neun, Barry W., Hall, Jennifer B., & Nanomedicine: Nanotechnology, Biology, and Medicine, 5, 106–117. https://doi.org/10.1016/j.nano.2008.08.001
(2009). Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles.
Dobrovolskaia, Marina A., Aggarwal, Parag, Hall, Jennifer B., & Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. 5, 487–495. https://doi.org/10.1021/mp800032f
(2008).
Dobrovolskaia, Marina A., Aggarwal, Parag, Hall, Jennifer B., & Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. 5, 487–495. https://doi.org/10.1021/mp800032f
(2008).
Dobrovolskaia, Marina A., Clogston, Jeffrey D., Neun, Barry W., Hall, Jennifer B., Patri, Anil K., & Nano Letters, 8, 2180–2187. https://doi.org/10.1021/nl0805615
(2008). Method for analysis of nanoparticle hemolytic properties in vitro.
Dobrovolskaia, Marina A., Clogston, Jeffrey D., Neun, Barry W., Hall, Jennifer B., Patri, Anil K., & Nano Letters, 8, 2180–2187. https://doi.org/10.1021/nl0805615
(2008). Method for analysis of nanoparticle hemolytic properties in vitro.
Dobrovolskaia, Marina A., & Nature Nanotechnology, 2, 469–478. https://doi.org/10.1038/nnano.2007.223
(2007). Immunological properties of engineered nanomaterials.
Dobrovolskaia, Marina A., & Nature Nanotechnology, 2, 469–478. https://doi.org/10.1038/nnano.2007.223
(2007). Immunological properties of engineered nanomaterials.
Hall, Jennifer B., Dobrovolskaia, Marina A., Patri, Anil K., & Nanomedicine, 2, 789–803. https://doi.org/10.2217/17435889.2.6.789
(2007). Characterization of nanoparticles for therapeutics.
Hall, Jennifer B., Dobrovolskaia, Marina A., Patri, Anil K., & Nanomedicine, 2, 789–803. https://doi.org/10.2217/17435889.2.6.789
(2007). Characterization of nanoparticles for therapeutics.
Patri, Anil K., Dobrovoiskaia, Marina A., Stern, Stephan T., & Preclinical characterization of engineered nanoparticles intended for cancer therapeutics (pp. 105–137).
(2006).
Patri, Anil K., Dobrovoiskaia, Marina A., Stern, Stephan T., & Preclinical characterization of engineered nanoparticles intended for cancer therapeutics (pp. 105–137).
(2006).
Journal of Leukocyte Biology, 78, 585–594. https://doi.org/10.1189/jlb.0205074
(2005). Nanotechnology for the biologist.
Journal of Leukocyte Biology, 78, 585–594. https://doi.org/10.1189/jlb.0205074
(2005). Nanotechnology for the biologist.