Publications
100 found
Show per page
Aldeghi, M., Allenspach, R., Vervelaki, A., Jetter, D., Bagani, K., Braakman, F., Poggio, M., & Salis, G. (2025). Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays [Journal-article]. Nano Letters. https://doi.org/10.1021/acs.nanolett.4c05037
Aldeghi, M., Allenspach, R., Vervelaki, A., Jetter, D., Bagani, K., Braakman, F., Poggio, M., & Salis, G. (2025). Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays [Journal-article]. Nano Letters. https://doi.org/10.1021/acs.nanolett.4c05037
Tschudin, M. A., Broadway, D. A., Siegwolf, P., Schrader, C., Telford, E. J., Gross, B., Cox, J., Dubois, A. E. E., Chica, D. G., Rama-Eiroa, R., J. G. Santos, E., Poggio, M., Ziebel, M. E., Dean, C. R., Roy, X., & Maletinsky, P. (2024). Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49717-9
Tschudin, M. A., Broadway, D. A., Siegwolf, P., Schrader, C., Telford, E. J., Gross, B., Cox, J., Dubois, A. E. E., Chica, D. G., Rama-Eiroa, R., J. G. Santos, E., Poggio, M., Ziebel, M. E., Dean, C. R., Roy, X., & Maletinsky, P. (2024). Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49717-9
Weegen, Moritz, Physical Review Letters, 133(22). https://doi.org/10.1103/physrevlett.133.223201
, & Willitsch, Stefan. (2024). Coupling Trapped Ions to a Nanomechanical Oscillator [Journal-article].
Weegen, Moritz, Physical Review Letters, 133(22). https://doi.org/10.1103/physrevlett.133.223201
, & Willitsch, Stefan. (2024). Coupling Trapped Ions to a Nanomechanical Oscillator [Journal-article].
Budakian, Raffi, Finkler, Amit, Eichler, Alexander, Nanotechnology, 35. https://doi.org/10.1088/1361-6528/ad4b23
, Degen, Christian L, Tabatabaei, Sahand, Lee, Inhee, Hammel, P Chris, Eugene, S Polzik, Taminiau, Tim H, Walsworth, Ronald L, London, Paz, Bleszynski Jayich, Ania, Ajoy, Ashok, Pillai, Arjun, Wrachtrup, Jörg, Jelezko, Fedor, Bae, Yujeong, Heinrich, Andreas J, et al. (2024). Roadmap on nanoscale magnetic resonance imaging [Journal-article].
Budakian, Raffi, Finkler, Amit, Eichler, Alexander, Nanotechnology, 35. https://doi.org/10.1088/1361-6528/ad4b23
, Degen, Christian L, Tabatabaei, Sahand, Lee, Inhee, Hammel, P Chris, Eugene, S Polzik, Taminiau, Tim H, Walsworth, Ronald L, London, Paz, Bleszynski Jayich, Ania, Ajoy, Ashok, Pillai, Arjun, Wrachtrup, Jörg, Jelezko, Fedor, Bae, Yujeong, Heinrich, Andreas J, et al. (2024). Roadmap on nanoscale magnetic resonance imaging [Journal-article].
Bagani, Kousik, Vervelaki, Andriani, Jetter, Daniel, Devarakonda, Aravind, Tschudin, Märta A., Gross, Boris, Chica, Daniel G., Broadway, David A., Dean, Cory R., Roy, Xavier, Maletinsky, Patrick, & Nano Letters, 24(41), 13068–13074. https://doi.org/10.1021/acs.nanolett.4c03919
. (2024). Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr [Journal-article].
Bagani, Kousik, Vervelaki, Andriani, Jetter, Daniel, Devarakonda, Aravind, Tschudin, Märta A., Gross, Boris, Chica, Daniel G., Broadway, David A., Dean, Cory R., Roy, Xavier, Maletinsky, Patrick, & Nano Letters, 24(41), 13068–13074. https://doi.org/10.1021/acs.nanolett.4c03919
. (2024). Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr [Journal-article].
Marchiori, Estefani, Romagnoli, Giulio, Schneider, Lukas, Gross, Boris, Sahafi, Pardis, Jordan, Andrew, Budakian, Raffi, Baral, Priya R., Magrez, Arnaud, White, Jonathan S., & Communications Materials, 5. https://doi.org/10.1038/s43246-024-00647-5
. (2024). Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3 [Journal-article].
Marchiori, Estefani, Romagnoli, Giulio, Schneider, Lukas, Gross, Boris, Sahafi, Pardis, Jordan, Andrew, Budakian, Raffi, Baral, Priya R., Magrez, Arnaud, White, Jonathan S., & Communications Materials, 5. https://doi.org/10.1038/s43246-024-00647-5
. (2024). Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3 [Journal-article].
Leisgang, Nadine, Miserev, Dmitry, Mattiat, Hinrich, Schneider, Lukas, Sponfeldner, Lukas, Watanabe, Kenji, Taniguchi, Takashi, Physical Review Letters, 133(2). https://doi.org/10.1103/physrevlett.133.026501
, & Warburton, Richard J. (2024). Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor [Journal-article].
Leisgang, Nadine, Miserev, Dmitry, Mattiat, Hinrich, Schneider, Lukas, Sponfeldner, Lukas, Watanabe, Kenji, Taniguchi, Takashi, Physical Review Letters, 133(2). https://doi.org/10.1103/physrevlett.133.026501
, & Warburton, Richard J. (2024). Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor [Journal-article].
Andersen, Ulrik L, Staub, Urs, Christensen, Dennis Valbjørn, Buttner, Felix, Khajetoorians, Alexander Ako, Kfir, Ofer, Pryds, Nini, Neu, Volker, Schumacher, Hans Werner, Vogel, Michael, Fischer, Peter, Maletinsky, Patrick, Mandru, Andrada Oana, Finizio, Simone, McMorran, Benjamin J, Degen, Christian, McCord, Jeffrey, Journal of Physics: Materials, 7(3). https://doi.org/10.1088/2515-7639/ad31b5
, Hu, Wen, et al. (2024). 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science [Journal-article].
Andersen, Ulrik L, Staub, Urs, Christensen, Dennis Valbjørn, Buttner, Felix, Khajetoorians, Alexander Ako, Kfir, Ofer, Pryds, Nini, Neu, Volker, Schumacher, Hans Werner, Vogel, Michael, Fischer, Peter, Maletinsky, Patrick, Mandru, Andrada Oana, Finizio, Simone, McMorran, Benjamin J, Degen, Christian, McCord, Jeffrey, Journal of Physics: Materials, 7(3). https://doi.org/10.1088/2515-7639/ad31b5
, Hu, Wen, et al. (2024). 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science [Journal-article].
Mattiat, H., Schneider, L., Reiser, P., Poggio, M., Sahafi, P., Jordan, A., Budakian, R., Averyanov, D., Sokolov, I., Taldenkov, A., Parfenov, O., Kondratev, O., Tokmachev, A., & Storchak, V. (2024). Mapping the phase-separated state in a 2D magnet [Journal-article]. Nanoscale, 16(10), 5302–5312 . https://doi.org/10.1039/d3nr06550b
Mattiat, H., Schneider, L., Reiser, P., Poggio, M., Sahafi, P., Jordan, A., Budakian, R., Averyanov, D., Sokolov, I., Taldenkov, A., Parfenov, O., Kondratev, O., Tokmachev, A., & Storchak, V. (2024). Mapping the phase-separated state in a 2D magnet [Journal-article]. Nanoscale, 16(10), 5302–5312 . https://doi.org/10.1039/d3nr06550b
Liza Žaper, Peter Rickhaus, Marcus Wyss, Boris Gross, Kai Wagner, ACS Applied Nano Materials, 7(4), 3854–3860. https://doi.org/10.1021/acsanm.3c05470
, & Floris Braakman. (2024). Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets.
Liza Žaper, Peter Rickhaus, Marcus Wyss, Boris Gross, Kai Wagner, ACS Applied Nano Materials, 7(4), 3854–3860. https://doi.org/10.1021/acsanm.3c05470
, & Floris Braakman. (2024). Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets.
Vervelaki, Andriani, Bagani, Kousik, Jetter, Daniel, Doan, Manh-Ha, Chau, Tuan K., Gross, Boris, Christensen, Dennis V., Bøggild. Peter, & Communications Materials, 5. https://doi.org/10.1038/s43246-024-00477-5
. (2024). Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6.
Vervelaki, Andriani, Bagani, Kousik, Jetter, Daniel, Doan, Manh-Ha, Chau, Tuan K., Gross, Boris, Christensen, Dennis V., Bøggild. Peter, & Communications Materials, 5. https://doi.org/10.1038/s43246-024-00477-5
. (2024). Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6.
Ollier, Alexina, Kisiel, Marcin, Lu, Xiaobo, Gysin, Urs, Communications Physics, 6(1). https://doi.org/10.1038/s42005-023-01441-4
, Efetov, Dmitri K., & Meyer, Ernst. (2023). Energy dissipation on magic angle twisted bilayer graphene [Journal-article].
Ollier, Alexina, Kisiel, Marcin, Lu, Xiaobo, Gysin, Urs, Communications Physics, 6(1). https://doi.org/10.1038/s42005-023-01441-4
, Efetov, Dmitri K., & Meyer, Ernst. (2023). Energy dissipation on magic angle twisted bilayer graphene [Journal-article].
Bersano, Fabio, Aldeghi, Michele, Collette, Eloi, Ghini, Michele, Palma, Franco De, Oppliger, Fabian, Scarlino, Pasquale, Braakman, Floris, IEEE Symposium on VLSI Technology and Circuits. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278
, Riel, Heike, Salis, Gian, Allenspach, Rolf, & Ionescu, Adrian M. (2023, June 11). Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control.
Bersano, Fabio, Aldeghi, Michele, Collette, Eloi, Ghini, Michele, Palma, Franco De, Oppliger, Fabian, Scarlino, Pasquale, Braakman, Floris, IEEE Symposium on VLSI Technology and Circuits. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278
, Riel, Heike, Salis, Gian, Allenspach, Rolf, & Ionescu, Adrian M. (2023, June 11). Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control.
Romagnoli, G., Marchiori, E., Bagani, K., & Applied Physics Letters, 122(19). https://doi.org/10.1063/5.0150222
(2023). Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering.
Romagnoli, G., Marchiori, E., Bagani, K., & Applied Physics Letters, 122(19). https://doi.org/10.1063/5.0150222
(2023). Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering.
Forrer, L., Kamber, A., Knoll, A., AIP Advances, 13(3), 35208. https://doi.org/10.1063/5.0127665
, & Braakman, F. R. (2023). Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers.
Forrer, L., Kamber, A., Knoll, A., AIP Advances, 13(3), 35208. https://doi.org/10.1063/5.0127665
, & Braakman, F. R. (2023). Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers.
Jaeger, David, Fogliano, Francesco, Ruelle, Thibaud, Lafranca, Aris, Braakman, Floris, & Nano Letters, 23(5), 2016–2022. https://doi.org/10.1021/acs.nanolett.3c00233
. (2023). Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator.
Jaeger, David, Fogliano, Francesco, Ruelle, Thibaud, Lafranca, Aris, Braakman, Floris, & Nano Letters, 23(5), 2016–2022. https://doi.org/10.1021/acs.nanolett.3c00233
. (2023). Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator.
Weegen, Moritz, Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2312.00576
, & Willitsch,Stefan. (2023). Coupling trapped ions to a nanomechanical oscillator. In
Weegen, Moritz, Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2312.00576
, & Willitsch,Stefan. (2023). Coupling trapped ions to a nanomechanical oscillator. In
Bersano, Fabio, De Palma, Franco, Oppliger, Fabian, Braakman, Floris, Radu, Ionut, Scarlino, Pasquale, Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing. https://doi.org/10.1109/esscirc55480.2022.9911479
, & Ionescu, Adrian Mihai. (2022, January 1).
Bersano, Fabio, De Palma, Franco, Oppliger, Fabian, Braakman, Floris, Radu, Ionut, Scarlino, Pasquale, Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing. https://doi.org/10.1109/esscirc55480.2022.9911479
, & Ionescu, Adrian Mihai. (2022, January 1).
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Lorenzelli, Luca, Degen, Christian L., & Nature Reviews Physics, 4(1), 49–60. https://doi.org/10.1038/s42254-021-00380-9
. (2022). Nanoscale magnetic field imaging for 2D materials.
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Lorenzelli, Luca, Degen, Christian L., & Nature Reviews Physics, 4(1), 49–60. https://doi.org/10.1038/s42254-021-00380-9
. (2022). Nanoscale magnetic field imaging for 2D materials.
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Romagnoli, Giulio, Herrmann, Johannes, Besse, Jean-Claude, Krinner, Sebastian, Wallraff, Andreas, & Applied physics letters, 121(5), 52601. https://doi.org/10.1063/5.0103597
. (2022). Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip.
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Romagnoli, Giulio, Herrmann, Johannes, Besse, Jean-Claude, Krinner, Sebastian, Wallraff, Andreas, & Applied physics letters, 121(5), 52601. https://doi.org/10.1063/5.0103597
. (2022). Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip.
Ruelle, Thibaud, Jaeger, David, Fogliano, Francesco, Braakman, Floris, & Review of Scientific Instruments, 93(9), 95003. https://doi.org/10.1063/5.0098140
. (2022). A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K.
Ruelle, Thibaud, Jaeger, David, Fogliano, Francesco, Braakman, Floris, & Review of Scientific Instruments, 93(9), 95003. https://doi.org/10.1063/5.0098140
. (2022). A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K.
Wyss, M., Bagani, K., Jetter, D., Marchiori, E., Vervelaki, A., Gross, B., Ridderbos, J., Gliga, S., Schonenberger, C., & Physical review applied, 17(3), 34002. https://doi.org/10.1103/physrevapplied.17.034002
(2022). Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe.
Wyss, M., Bagani, K., Jetter, D., Marchiori, E., Vervelaki, A., Gross, B., Ridderbos, J., Gliga, S., Schonenberger, C., & Physical review applied, 17(3), 34002. https://doi.org/10.1103/physrevapplied.17.034002
(2022). Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe.
Züger, Fabian, Marsano, Anna, Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
, & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue.
Züger, Fabian, Marsano, Anna, Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
, & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue.
Claudon, J., Kotal, S., Artioli, A., Finazzer, M., Fons, R., Genuist, Y., Bleuse, J., Gerard, J.-M., Wang, Y., Osterkryger, A. D., Gregersen, N., Munsch, M., Kuhlmann, A., Cadeddu, D., International Conference on Numerical Simulation of Optoelectronic Devices. https://doi.org/10.1109/nusod52207.2021.9541487
, Warburton, R. W., & Verlot, P. (2021, January 1). Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons.
Claudon, J., Kotal, S., Artioli, A., Finazzer, M., Fons, R., Genuist, Y., Bleuse, J., Gerard, J.-M., Wang, Y., Osterkryger, A. D., Gregersen, N., Munsch, M., Kuhlmann, A., Cadeddu, D., International Conference on Numerical Simulation of Optoelectronic Devices. https://doi.org/10.1109/nusod52207.2021.9541487
, Warburton, R. W., & Verlot, P. (2021, January 1). Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons.
Gross, B., Philipp, S., Josten, E., Leliaert, J., Wetterskog, E., Bergstrom, L., & Physical Review B, 103(1), 14402. https://doi.org/10.1103/physrevb.103.014402
(2021). Magnetic anisotropy of individual maghemite mesocrystals.
Gross, B., Philipp, S., Josten, E., Leliaert, J., Wetterskog, E., Bergstrom, L., & Physical Review B, 103(1), 14402. https://doi.org/10.1103/physrevb.103.014402
(2021). Magnetic anisotropy of individual maghemite mesocrystals.
Lu, Xiaobo, Lian, Biao, Chaudhary, Gaurav, Piot, Benjamin A., Romagnoli, Giulio, Watanabe, Kenji, Taniguchi, Takashi, Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2100006118. https://doi.org/10.1073/pnas.2100006118
, MacDonald, Allan H., Bernevig, B. Andrei, & Efetov, Dmitri K. (2021). Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle.
Lu, Xiaobo, Lian, Biao, Chaudhary, Gaurav, Piot, Benjamin A., Romagnoli, Giulio, Watanabe, Kenji, Taniguchi, Takashi, Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2100006118. https://doi.org/10.1073/pnas.2100006118
, MacDonald, Allan H., Bernevig, B. Andrei, & Efetov, Dmitri K. (2021). Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle.
Philipp, S., Gross, B., Reginka, M., Merkel, M., Claus, M. M., Sulliger, M., Ehresmann, A., & Applied Physics Letters, 119(22), 222406. https://doi.org/10.1063/5.0076116
(2021). Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps.
Philipp, S., Gross, B., Reginka, M., Merkel, M., Claus, M. M., Sulliger, M., Ehresmann, A., & Applied Physics Letters, 119(22), 222406. https://doi.org/10.1063/5.0076116
(2021). Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps.
Geirhos, Korbinian, Gross, Boris, Szigeti, Bertalan G., Mehlin, Andrea, Philipp, Simon, White, Jonathan S., Cubitt, Robert, Widmann, Sebastian, Ghara, Somnath, Lunkenheimer, Peter, Tsurkan, Vladimir, Neuber, Erik, Ivaneyko, Dmytro, Milde, Peter, Eng, Lukas M., Leonov, Andrey O., Bordacs, Sandor, npj Quantum Materials, 5(1), 44. https://doi.org/10.1038/s41535-020-0247-z
, & Kezsmarki, Istvan. (2020). Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host.
Geirhos, Korbinian, Gross, Boris, Szigeti, Bertalan G., Mehlin, Andrea, Philipp, Simon, White, Jonathan S., Cubitt, Robert, Widmann, Sebastian, Ghara, Somnath, Lunkenheimer, Peter, Tsurkan, Vladimir, Neuber, Erik, Ivaneyko, Dmytro, Milde, Peter, Eng, Lukas M., Leonov, Andrey O., Bordacs, Sandor, npj Quantum Materials, 5(1), 44. https://doi.org/10.1038/s41535-020-0247-z
, & Kezsmarki, Istvan. (2020). Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host.
Gross, B., Philipp, S., Geirhos, K., Mehlin, A., Bordacs, S., Tsurkan, V., Leonov, A., Kezsmarki, I., & Physical Review B, 102(10), 104407. https://doi.org/10.1103/physrevb.102.104407
(2020). Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8.
Gross, B., Philipp, S., Geirhos, K., Mehlin, A., Bordacs, S., Tsurkan, V., Leonov, A., Kezsmarki, I., & Physical Review B, 102(10), 104407. https://doi.org/10.1103/physrevb.102.104407
(2020). Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8.
Mattiat, H., Rossi, N., Gross, B., Pablo-Navarro, J., Magen, C., Badea, R., Berezovsky, J., De Teresa, J. M., & Physical review applied, 13(4), 44043. https://doi.org/10.1103/physrevapplied.13.044043
(2020). Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition.
Mattiat, H., Rossi, N., Gross, B., Pablo-Navarro, J., Magen, C., Badea, R., Berezovsky, J., De Teresa, J. M., & Physical review applied, 13(4), 44043. https://doi.org/10.1103/physrevapplied.13.044043
(2020). Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition.
Nature Physics, 10–11. https://doi.org/10.1038/s41567-019-0723-1
, & Rossi, Nicola. (2020, January 1). Currents cool and drive.
Nature Physics, 10–11. https://doi.org/10.1038/s41567-019-0723-1
, & Rossi, Nicola. (2020, January 1). Currents cool and drive.
Roesner, Benedikt, Finizio, Simone, Koch, Frieder, Doring, Florian, Guzenko, Vitaliy A., Langer, Manuel, Kirk, Eugenie, Watts, Benjamin, Meyer, Markus, Ornelas, Joshua Lorona, Spaeth, Andreas, Stanescu, Stefan, Swaraj, Sufal, Belkhou, Rachid, Ishikawa, Takashi, Keller, Thomas F., Gross, Boris, Optica, 7(11), 1602–1608. https://doi.org/10.1364/optica.399885
, Fink, Rainer H., et al. (2020). Soft x-ray microscopy with 7 nm resolution.
Roesner, Benedikt, Finizio, Simone, Koch, Frieder, Doring, Florian, Guzenko, Vitaliy A., Langer, Manuel, Kirk, Eugenie, Watts, Benjamin, Meyer, Markus, Ornelas, Joshua Lorona, Spaeth, Andreas, Stanescu, Stefan, Swaraj, Sufal, Belkhou, Rachid, Ishikawa, Takashi, Keller, Thomas F., Gross, Boris, Optica, 7(11), 1602–1608. https://doi.org/10.1364/optica.399885
, Fink, Rainer H., et al. (2020). Soft x-ray microscopy with 7 nm resolution.
Magnetic Nano- and Microwires (pp. 491–517). Elsivier. https://doi.org/10.1016/b978-0-08-102832-2.00017-7
. (2020). Determining magnetization configurations and reversal of individual magnetic nanotubes. In Vázquez, Mauel (Ed.),
Magnetic Nano- and Microwires (pp. 491–517). Elsivier. https://doi.org/10.1016/b978-0-08-102832-2.00017-7
. (2020). Determining magnetization configurations and reversal of individual magnetic nanotubes. In Vázquez, Mauel (Ed.),
Braakman, F. R., & Nanotechnology, 30(33), 332001. https://doi.org/10.1088/1361-6528/ab19cf
(2019). Force sensing with nanowire cantilevers.
Braakman, F. R., & Nanotechnology, 30(33), 332001. https://doi.org/10.1088/1361-6528/ab19cf
(2019). Force sensing with nanowire cantilevers.
Ceccarelli, L., Vasyukov, D., Wyss, M., Romagnoli, G., Rossi, N., Moser, L., & Physical Review B, 100(10), 104504. https://doi.org/10.1103/physrevb.100.104504
(2019). Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films.
Ceccarelli, L., Vasyukov, D., Wyss, M., Romagnoli, G., Rossi, N., Moser, L., & Physical Review B, 100(10), 104504. https://doi.org/10.1103/physrevb.100.104504
(2019). Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films.
Fountas, P. N., New Journal of Physics, 21, 13030. https://doi.org/10.1088/1367-2630/aaf8f5
, & Willitsch, S. (2019). Classical and quantum dynamics of a trapped ion coupled to a charged nanowire.
Fountas, P. N., New Journal of Physics, 21, 13030. https://doi.org/10.1088/1367-2630/aaf8f5
, & Willitsch, S. (2019). Classical and quantum dynamics of a trapped ion coupled to a charged nanowire.
Rossi, Nicola, Gross, Boris, Dirnberger, Florian, Bougeard, Dominique, & Nano Letters, 19(2), 930–936. https://doi.org/10.1021/acs.nanolett.8b04174
. (2019). Magnetic force sensing using a self-assembled nanowire.
Rossi, Nicola, Gross, Boris, Dirnberger, Florian, Bougeard, Dominique, & Nano Letters, 19(2), 930–936. https://doi.org/10.1021/acs.nanolett.8b04174
. (2019). Magnetic force sensing using a self-assembled nanowire.
Ruelle, Thibaud, Applied optics, 58(14), 3784–3789. https://doi.org/10.1364/ao.58.003784
, & Braakman, Floris. (2019). Optimized single-shot laser ablation of concave mirror templates on optical fibers.
Ruelle, Thibaud, Applied optics, 58(14), 3784–3789. https://doi.org/10.1364/ao.58.003784
, & Braakman, Floris. (2019). Optimized single-shot laser ablation of concave mirror templates on optical fibers.
Wyss, Marcus, Gliga, Sebastian, Vasyukov, Denis, Ceccarelli, Lorenzo, Romagnoli, Giulio, Cui, Jizhai, Kleibert, Armin, Stamps, Robert L., & ACS Nano, 13(12), 13910–13916. https://doi.org/10.1021/acsnano.9b05428
. (2019). Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal.
Wyss, Marcus, Gliga, Sebastian, Vasyukov, Denis, Ceccarelli, Lorenzo, Romagnoli, Giulio, Cui, Jizhai, Kleibert, Armin, Stamps, Robert L., & ACS Nano, 13(12), 13910–13916. https://doi.org/10.1021/acsnano.9b05428
. (2019). Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal.
Braakman, F., Rossi, N., Cadeddu, D., Vasyukov, D., Tutuncuoglu, G., Morral, A. F. I., & Poggio, M. (2018, October 19). Coherent Dynamics of Nanowire Force Sensors. https://doi.org/10.1109/CPEM.2018.8501011
Braakman, F., Rossi, N., Cadeddu, D., Vasyukov, D., Tutuncuoglu, G., Morral, A. F. I., & Poggio, M. (2018, October 19). Coherent Dynamics of Nanowire Force Sensors. https://doi.org/10.1109/CPEM.2018.8501011
Braakman, Floris R., Rossi, Nicola, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & Physical Review Applied, 9(5), 54045. https://doi.org/10.1103/physrevapplied.9.054045
. (2018). Coherent two-mode dynamics of a nanowire force sensor.
Braakman, Floris R., Rossi, Nicola, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & Physical Review Applied, 9(5), 54045. https://doi.org/10.1103/physrevapplied.9.054045
. (2018). Coherent two-mode dynamics of a nanowire force sensor.
Mehlin, A., Gross, B., Wyss, M., Schefer, T., Tütüncüoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 97(13), 134422. https://doi.org/10.1103/physrevb.97.134422
(2018). Observation of end-vortex nucleation in individual ferromagnetic nanotubes.
Mehlin, A., Gross, B., Wyss, M., Schefer, T., Tütüncüoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 97(13), 134422. https://doi.org/10.1103/physrevb.97.134422
(2018). Observation of end-vortex nucleation in individual ferromagnetic nanotubes.
Vasyukov, Denis, Ceccarelli, Lorenzo, Wyss, Marcus, Gross, Boris, Schwarb, Alexander, Mehlin, Andrea, Rossi, Nicola, Tütüncüoglu, Gözde, Heimbach, Florian, Zamani, Reza, Kovács, Andras, Fontcuberta i Morral, Anna, Grundler, Dirk, & Nano Letters, 18(2), 964–970. https://doi.org/10.1021/acs.nanolett.7b04386
. (2018). Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes.
Vasyukov, Denis, Ceccarelli, Lorenzo, Wyss, Marcus, Gross, Boris, Schwarb, Alexander, Mehlin, Andrea, Rossi, Nicola, Tütüncüoglu, Gözde, Heimbach, Florian, Zamani, Reza, Kovács, Andras, Fontcuberta i Morral, Anna, Grundler, Dirk, & Nano Letters, 18(2), 964–970. https://doi.org/10.1021/acs.nanolett.7b04386
. (2018). Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes.
Micro and Nano Scale NMR: Technologies and Systems (pp. 381–420). Wiley. https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569
, & Herzog, Benedikt E. (2018). Force-detected nuclear magnetic resonance. In Anders, Jens; Korvink, Jan (Ed.),
Micro and Nano Scale NMR: Technologies and Systems (pp. 381–420). Wiley. https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569
, & Herzog, Benedikt E. (2018). Force-detected nuclear magnetic resonance. In Anders, Jens; Korvink, Jan (Ed.),
Micro and Nano Scale NMR: Technologies and Systems (1 ed., pp. 381–420). Wiley‐VCH Verlag. https://doi.org/10.1002/9783527697281.ch13
, & Herzog, Benedikt E. (2018). Force‐Detected Nuclear Magnetic Resonance. In Anders, Jens;Korvink, Jan G. (Ed.),
Micro and Nano Scale NMR: Technologies and Systems (1 ed., pp. 381–420). Wiley‐VCH Verlag. https://doi.org/10.1002/9783527697281.ch13
, & Herzog, Benedikt E. (2018). Force‐Detected Nuclear Magnetic Resonance. In Anders, Jens;Korvink, Jan G. (Ed.),
Cadeddu, Davide, Munsch, Mathieu, Rossi, Nicola, Gerard, Jean-Michel, Claudon, Julien, Warburton, Richard J., & Physical Review Applied, 8(3), 31002. https://doi.org/10.1103/physrevapplied.8.031002
. (2017). Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot.
Cadeddu, Davide, Munsch, Mathieu, Rossi, Nicola, Gerard, Jean-Michel, Claudon, Julien, Warburton, Richard J., & Physical Review Applied, 8(3), 31002. https://doi.org/10.1103/physrevapplied.8.031002
. (2017). Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot.
Munsch, Mathieu, Kuhlmann, Andreas V., Cadeddu, Davide, Gerard, Jean-Michel, Claudon, Julien, Nature Communications, 8, 76. https://doi.org/10.1038/s41467-017-00097-3
, & Warburton, Richard J. (2017). Resonant driving of a single photon emitter embedded in a mechanical oscillator.
Munsch, Mathieu, Kuhlmann, Andreas V., Cadeddu, Davide, Gerard, Jean-Michel, Claudon, Julien, Nature Communications, 8, 76. https://doi.org/10.1038/s41467-017-00097-3
, & Warburton, Richard J. (2017). Resonant driving of a single photon emitter embedded in a mechanical oscillator.
Wyss, M., Mehlin, A., Gross, B., Buchter, A., Farhan, A., Buzzi, M., Kleibert, A., Tutuncuoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 96(2), 24423. https://doi.org/10.1103/physrevb.96.024423
(2017). Imaging magnetic vortex configurations in ferromagnetic nanotubes.
Wyss, M., Mehlin, A., Gross, B., Buchter, A., Farhan, A., Buzzi, M., Kleibert, A., Tutuncuoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 96(2), 24423. https://doi.org/10.1103/physrevb.96.024423
(2017). Imaging magnetic vortex configurations in ferromagnetic nanotubes.
Cadeddu, D., Braakman, F. R., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & Nano Letters, 16(2), 926–931. https://doi.org/10.1021/acs.nanolett.5b03822
(2016). Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire.
Cadeddu, D., Braakman, F. R., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & Nano Letters, 16(2), 926–931. https://doi.org/10.1021/acs.nanolett.5b03822
(2016). Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire.
Cadeddu, D., Teissier, J., Braakman, F. R., Gregersen, N., Stepanov, P., Gérard, J.-M., Claudon, J., Warburton, R. J., Applied physics letters, 108(1), 11112. https://doi.org/10.1063/1.4939264
, & Munsch, M. (2016). A fiber-coupled quantum-dot on a photonic tip.
Cadeddu, D., Teissier, J., Braakman, F. R., Gregersen, N., Stepanov, P., Gérard, J.-M., Claudon, J., Warburton, R. J., Applied physics letters, 108(1), 11112. https://doi.org/10.1063/1.4939264
, & Munsch, M. (2016). A fiber-coupled quantum-dot on a photonic tip.
Gross, B., Weber, D. P., Rueffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 93(6). https://doi.org/10.1103/PhysRevB.93.064409
(2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes.
Gross, B., Weber, D. P., Rueffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 93(6). https://doi.org/10.1103/PhysRevB.93.064409
(2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes.
Gross, B., Weber, D. P., Rüffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 93(6), 64409. https://doi.org/10.1103/physrevb.93.064409
(2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes.
Gross, B., Weber, D. P., Rüffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & Physical Review B, 93(6), 64409. https://doi.org/10.1103/physrevb.93.064409
(2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes.
Rossi, Nicola, Braakman, Floris, Cadeddu, Davide, Vasyukov, Denis, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & Nature Nanotechnology, 12(2), 150–155. https://doi.org/10.1038/nnano.2016.189
. (2016). Vectorial scanning force microscopy using a nanowire sensor.
Rossi, Nicola, Braakman, Floris, Cadeddu, Davide, Vasyukov, Denis, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & Nature Nanotechnology, 12(2), 150–155. https://doi.org/10.1038/nnano.2016.189
. (2016). Vectorial scanning force microscopy using a nanowire sensor.
Wüst, G., Munsch, M., Maier, F., Kuhlmann, A. V., Ludwig, A., Wieck, A. D., Loss, D., Nature Nanotechnology, 11(10), 885–889. https://doi.org/10.1038/nnano.2016.114
, & Warburton, R. J. (2016). Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot.
Wüst, G., Munsch, M., Maier, F., Kuhlmann, A. V., Ludwig, A., Wieck, A. D., Loss, D., Nature Nanotechnology, 11(10), 885–889. https://doi.org/10.1038/nnano.2016.114
, & Warburton, R. J. (2016). Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot.
Buchter, A., Woelbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rueffer, D., Matteini, F., Tuetuencueoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & Physical Review B, 92(21). https://doi.org/10.1103/PhysRevB.92.214432
(2015). Magnetization reversal of an individual exchange-biased permalloy nanotube.
Buchter, A., Woelbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rueffer, D., Matteini, F., Tuetuencueoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & Physical Review B, 92(21). https://doi.org/10.1103/PhysRevB.92.214432
(2015). Magnetization reversal of an individual exchange-biased permalloy nanotube.
Buchter, A., Wölbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Matteini, F., Tütüncüoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & Physical Review B, 92(21), 214432. https://doi.org/10.1103/physrevb.92.214432
(2015). Magnetization reversal of an individual exchange-biased permalloy nanotube.
Buchter, A., Wölbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Matteini, F., Tütüncüoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & Physical Review B, 92(21), 214432. https://doi.org/10.1103/physrevb.92.214432
(2015). Magnetization reversal of an individual exchange-biased permalloy nanotube.
Mehlin, A., Xue, F., Liang, D., Du, H. F., Stolt, M. J., Jin, S., Tian, M. L., & Nano Letters, 15(7), 4839–4844. https://doi.org/10.1021/acs.nanolett.5b02232
(2015). Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry.
Mehlin, A., Xue, F., Liang, D., Du, H. F., Stolt, M. J., Jin, S., Tian, M. L., & Nano Letters, 15(7), 4839–4844. https://doi.org/10.1021/acs.nanolett.5b02232
(2015). Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry.
Tao, Ye, Navaretti, Paolo, Hauert, R., Grob, Urs, Nanotechnology, 26(46), 465501. https://doi.org/10.1088/0957-4484/26/46/465501
, & Degen, Christian. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection.
Tao, Ye, Navaretti, Paolo, Hauert, R., Grob, Urs, Nanotechnology, 26(46), 465501. https://doi.org/10.1088/0957-4484/26/46/465501
, & Degen, Christian. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection.
Bossoni, Lucia, Carretta, Pietro, & Applied Physics Letters, 104(18), 182601. https://doi.org/10.1063/1.4874979
. (2014). Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry.
Bossoni, Lucia, Carretta, Pietro, & Applied Physics Letters, 104(18), 182601. https://doi.org/10.1063/1.4874979
. (2014). Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry.
Braakman, F. R., Cadeddu, D., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & Applied Physics Letters, 105(17), 173111. https://doi.org/10.1063/1.4900928
(2014). Nonlinear motion and mechanical mixing in as-grown GaAs nanowires.
Braakman, F. R., Cadeddu, D., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & Applied Physics Letters, 105(17), 173111. https://doi.org/10.1063/1.4900928
(2014). Nonlinear motion and mechanical mixing in as-grown GaAs nanowires.
Herzog, B. E., Cadeddu, D., Xue, F., Peddibhotla, P., & Applied Physics Letters, 105(4), 43112. https://doi.org/10.1063/1.4892361
(2014). Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble.
Herzog, B. E., Cadeddu, D., Xue, F., Peddibhotla, P., & Applied Physics Letters, 105(4), 43112. https://doi.org/10.1063/1.4892361
(2014). Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble.
Montinaro, Michele, Wüst, Gunter, Munsch, Mathieu, Fontana, Yannik, Russo-Averchi, Eleonora, Heiss, Martin, Fontcuberta I. Morral, Anna, Warburton, Richard J., & Nano Letters, 14(8), 4454–4460. https://doi.org/10.1021/nl501413t
. (2014). Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire.
Montinaro, Michele, Wüst, Gunter, Munsch, Mathieu, Fontana, Yannik, Russo-Averchi, Eleonora, Heiss, Martin, Fontcuberta I. Morral, Anna, Warburton, Richard J., & Nano Letters, 14(8), 4454–4460. https://doi.org/10.1021/nl501413t
. (2014). Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire.
Munsch, Mathieu, Wüst, Gunter, Kuhlmann, Andreas V., Xue, Fei, Ludwig, Arne, Reuter, Dirk, Wieck, Andreas D., Nature Nanotechnology, 9(9), 671–675. https://doi.org/10.1038/nnano.2014.175
, & Warburton, Richard J. (2014). Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses.
Munsch, Mathieu, Wüst, Gunter, Kuhlmann, Andreas V., Xue, Fei, Ludwig, Arne, Reuter, Dirk, Wieck, Andreas D., Nature Nanotechnology, 9(9), 671–675. https://doi.org/10.1038/nnano.2014.175
, & Warburton, Richard J. (2014). Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses.
Munsch, M., Wüst, G., Kuhlmann, A. V., Xue, F., Ludwig, A., Reuter, D., Wieck, A. D., Poggio, M., & Warburton, R. J. (2014). Erratum: Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses (Nature Nanotechnology (2014) 9 (671-675)). Nature Nanotechnology, 9(10). https://doi.org/10.1038/nnano.2014.212
Munsch, M., Wüst, G., Kuhlmann, A. V., Xue, F., Ludwig, A., Reuter, D., Wieck, A. D., Poggio, M., & Warburton, R. J. (2014). Erratum: Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses (Nature Nanotechnology (2014) 9 (671-675)). Nature Nanotechnology, 9(10). https://doi.org/10.1038/nnano.2014.212
Treutlein, Philipp, Genes, Claudiu, Hammerer, Klemens, Cavity optomechanics : nano- and micromechanical resonators interacting with light (pp. 327–351). Springer. https://doi.org/10.1007/978-3-642-55312-7_14
, & Rabl, Peter. (2014). Hybrid mechanical systems. In
Treutlein, Philipp, Genes, Claudiu, Hammerer, Klemens, Cavity optomechanics : nano- and micromechanical resonators interacting with light (pp. 327–351). Springer. https://doi.org/10.1007/978-3-642-55312-7_14
, & Rabl, Peter. (2014). Hybrid mechanical systems. In
Buchter, A., Rüffer, D., Weber, D. P., Weimann, T., Zorin, A. B., Huber, R., Fontcuberta i Morral, A., Kleiner, R., Grundler, D., Physical Review Letters, 111(6), 67202. https://doi.org/10.1103/physrevlett.111.067202
, Nagel, J., Xue, F., Kieler, O. F., Kohlmann, J., Russo-Averchi, E., Berberich, P., Kemmler, M., & Koelle, D. (2013). Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry.
Buchter, A., Rüffer, D., Weber, D. P., Weimann, T., Zorin, A. B., Huber, R., Fontcuberta i Morral, A., Kleiner, R., Grundler, D., Physical Review Letters, 111(6), 67202. https://doi.org/10.1103/physrevlett.111.067202
, Nagel, J., Xue, F., Kieler, O. F., Kohlmann, J., Russo-Averchi, E., Berberich, P., Kemmler, M., & Koelle, D. (2013). Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry.
Kuhlmann, Andreas V., Houel, Julien, Ludwig, Arne, Greuter, Lukas, Reuter, Dirk, Wieck, Andreas D., Nature Physics, 9(9), 570–575. https://doi.org/10.1038/nphys2688
, & Warburton, Richard J. (2013). Charge noise and spin noise in a semiconductor quantum device.
Kuhlmann, Andreas V., Houel, Julien, Ludwig, Arne, Greuter, Lukas, Reuter, Dirk, Wieck, Andreas D., Nature Physics, 9(9), 570–575. https://doi.org/10.1038/nphys2688
, & Warburton, Richard J. (2013). Charge noise and spin noise in a semiconductor quantum device.
Nagel, J., Buchter, A., Xue, F., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Russo-Averchi, E., Huber, R., Berberich, P., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., Physical Review B, 88(6), 64425. https://doi.org/10.1103/physrevb.88.064425
, & Kemmler, M. (2013). Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID.
Nagel, J., Buchter, A., Xue, F., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Russo-Averchi, E., Huber, R., Berberich, P., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., Physical Review B, 88(6), 64425. https://doi.org/10.1103/physrevb.88.064425
, & Kemmler, M. (2013). Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID.
Peddbhotla, P., Xue, F., Hauge, H. I. T., Assali, S., Bakkers, E. P. A. M., & Nature Physics, 9(10), 630–634. https://doi.org/10.1038/nphys2731
(2013). Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire.
Peddbhotla, P., Xue, F., Hauge, H. I. T., Assali, S., Bakkers, E. P. A. M., & Nature Physics, 9(10), 630–634. https://doi.org/10.1038/nphys2731
(2013). Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire.
Nature Nanotechnology, 8(7), 482–483. https://doi.org/10.1038/nnano.2013.124
. (2013). Sensing from the bottom up.
Nature Nanotechnology, 8(7), 482–483. https://doi.org/10.1038/nnano.2013.124
. (2013). Sensing from the bottom up.
Houel, J., Kuhlmann, A.V., Greuter, L., Xue, F., Physical Review Letters, 108(11). https://doi.org/10.1103/PhysRevLett.108.119902
, Gerardot, B.D., Dalgarno, P.A., Badolato, A., Petroff, P.M., Ludwig, A., Reuter, D., Wieck, A.D., & Warburton, R.J. (2012). Erratum: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot (Physical Review Letters (2012) 108 (107401)).
Houel, J., Kuhlmann, A.V., Greuter, L., Xue, F., Physical Review Letters, 108(11). https://doi.org/10.1103/PhysRevLett.108.119902
, Gerardot, B.D., Dalgarno, P.A., Badolato, A., Petroff, P.M., Ludwig, A., Reuter, D., Wieck, A.D., & Warburton, R.J. (2012). Erratum: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot (Physical Review Letters (2012) 108 (107401)).
Houel, J., Kuhlmann, A. V., Greuter, L., Xue, F., Physical Review Letters, 108(10), 107401. https://doi.org/10.1103/physrevlett.108.107401
, Gerardot, B. D., Dalgarno, P. A., Badolato, A., Petroff, P. M., Ludwig, A., Reuter, D., Wieck, A. D., & Warburton, R. J. (2012). Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot.
Houel, J., Kuhlmann, A. V., Greuter, L., Xue, F., Physical Review Letters, 108(10), 107401. https://doi.org/10.1103/physrevlett.108.107401
, Gerardot, B. D., Dalgarno, P. A., Badolato, A., Petroff, P. M., Ludwig, A., Reuter, D., Wieck, A. D., & Warburton, R. J. (2012). Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot.
Montinaro, M., Mehlin, A., Solanki, H. S., Peddibhotla, P., Mack, S., Awschalom, D. D., & Applied Physics Letters, 101(13), 133104. https://doi.org/10.1063/1.4754606
(2012). Feedback cooling of cantilever motion using a quantum point contact transducer.
Montinaro, M., Mehlin, A., Solanki, H. S., Peddibhotla, P., Mack, S., Awschalom, D. D., & Applied Physics Letters, 101(13), 133104. https://doi.org/10.1063/1.4754606
(2012). Feedback cooling of cantilever motion using a quantum point contact transducer.
Weber, D. P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Fontcuberta i Morral, A., Grundler, D., & Nano Letters, 12(12), 6139–6144. https://doi.org/10.1021/nl302950u
(2012). Cantilever magnetometry of individual Ni nanotubes.
Weber, D. P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Fontcuberta i Morral, A., Grundler, D., & Nano Letters, 12(12), 6139–6144. https://doi.org/10.1021/nl302950u
(2012). Cantilever magnetometry of individual Ni nanotubes.
Encyclopedia of Nanotechnology (pp. 1256–1264). Springer. https://doi.org/10.1007/978-90-481-9751-4_40
, & Degen, Christian L. (2012). Magnetic resonance force microscopy. In
Encyclopedia of Nanotechnology (pp. 1256–1264). Springer. https://doi.org/10.1007/978-90-481-9751-4_40
, & Degen, Christian L. (2012). Magnetic resonance force microscopy. In
Xue, F., Peddibhotla, P., Montinaro, M., Weber, D. P., & Applied Physics Letters, 98(16), 163103. https://doi.org/10.1063/1.3579521
(2011). A geometry for optimizing nanoscale magnetic resonance force microscopy.
Xue, F., Peddibhotla, P., Montinaro, M., Weber, D. P., & Applied Physics Letters, 98(16), 163103. https://doi.org/10.1063/1.3579521
(2011). A geometry for optimizing nanoscale magnetic resonance force microscopy.
Xue, F., Weber, D. P., Peddibhotla, P., & Physical Review B (Condensed Matter), 84(20), 205328. https://doi.org/10.1103/physrevb.84.205328
(2011). Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample.
Xue, F., Weber, D. P., Peddibhotla, P., & Physical Review B (Condensed Matter), 84(20), 205328. https://doi.org/10.1103/physrevb.84.205328
(2011). Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample.
Oosterkamp, T. H., Applied Physics Letters, 96(8), 83107. https://doi.org/10.1063/1.3304788
, Degen, C. L., Mamin, H. J., & Rugar, D. (2010). Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy.
Oosterkamp, T. H., Applied Physics Letters, 96(8), 83107. https://doi.org/10.1063/1.3304788
, Degen, C. L., Mamin, H. J., & Rugar, D. (2010). Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy.
nanotechweb.org, 1. http://nanotechweb.org/cws/article/lab/43632
(2010, January 1). Taking MRI to the nanoscale by force.
nanotechweb.org, 1. http://nanotechweb.org/cws/article/lab/43632
(2010, January 1). Taking MRI to the nanoscale by force.
Nanotechnology, 21(34), 342001. https://doi.org/10.1088/0957-4484/21/34/342001
, & Degen, C. L. (2010). Force-detected nuclear magnetic resonance : recent advances and future challenges.
Nanotechnology, 21(34), 342001. https://doi.org/10.1088/0957-4484/21/34/342001
, & Degen, C. L. (2010). Force-detected nuclear magnetic resonance : recent advances and future challenges.
Degen, C L, Proceedings of the National Academy of Sciences, 106(5), 1313–1317. https://doi.org/10.1073/pnas.0812068106
, Mamin, H J, Rettner, C T, & Rugar, D. (2009). Nanoscale magnetic resonance imaging.
Degen, C L, Proceedings of the National Academy of Sciences, 106(5), 1313–1317. https://doi.org/10.1073/pnas.0812068106
, Mamin, H J, Rettner, C T, & Rugar, D. (2009). Nanoscale magnetic resonance imaging.
Mamin, H J, Oosterkamp, T H, Nano Letters, 9(8), 3020–3024. https://doi.org/10.1021/nl901466p
, Degen, C L, Rettner, C T, & Rugar, D. (2009). Isotope-Selective Detection and Imaging of Organic Nanolayers.
Mamin, H J, Oosterkamp, T H, Nano Letters, 9(8), 3020–3024. https://doi.org/10.1021/nl901466p
, Degen, C L, Rettner, C T, & Rugar, D. (2009). Isotope-Selective Detection and Imaging of Organic Nanolayers.
Physical Review Letters, 102(8), 87604. https://doi.org/10.1103/physrevlett.102.087604
, Mamin, H J, Degen, C L, Sherwood, M H, & Rugar, D. (2009). Nuclear Double Resonance between Statistical Spin Polarizations.
Physical Review Letters, 102(8), 87604. https://doi.org/10.1103/physrevlett.102.087604
, Mamin, H J, Degen, C L, Sherwood, M H, & Rugar, D. (2009). Nuclear Double Resonance between Statistical Spin Polarizations.
Degen, C.L., Physical Review Letters, 100(13). https://doi.org/10.1103/PhysRevLett.100.137601
, Mamin, H.J., & Rugar, D. (2008). Nuclear spin relaxation induced by a mechanical resonator.
Degen, C.L., Physical Review Letters, 100(13). https://doi.org/10.1103/PhysRevLett.100.137601
, Mamin, H.J., & Rugar, D. (2008). Nuclear spin relaxation induced by a mechanical resonator.
Nature Physics, 4(8), 635–638. https://doi.org/10.1038/nphys992
, Jura, M.P., Degen, C.L., Topinka, M.A., Mamin, H.J., Goldhaber-Gordon, D., & Rugar, D. (2008). An off-board quantum point contact as a sensitive detector of cantilever motion.
Nature Physics, 4(8), 635–638. https://doi.org/10.1038/nphys992
, Jura, M.P., Degen, C.L., Topinka, M.A., Mamin, H.J., Goldhaber-Gordon, D., & Rugar, D. (2008). An off-board quantum point contact as a sensitive detector of cantilever motion.
Degen, C.L., Physical Review Letters, 99(25). https://doi.org/10.1103/PhysRevLett.99.250601
, Mamin, H.J., & Rugar, D. (2007). Role of spin noise in the detection of nanoscale ensembles of nuclear spins.
Degen, C.L., Physical Review Letters, 99(25). https://doi.org/10.1103/PhysRevLett.99.250601
, Mamin, H.J., & Rugar, D. (2007). Role of spin noise in the detection of nanoscale ensembles of nuclear spins.
Applied Physics Letters, 90(26). https://doi.org/10.1063/1.2752536
, Degen, C.L., Rettner, C.T., Mamin, H.J., & Rugar, D. (2007). Nuclear magnetic resonance force microscopy with a microwire rf source.
Applied Physics Letters, 90(26). https://doi.org/10.1063/1.2752536
, Degen, C.L., Rettner, C.T., Mamin, H.J., & Rugar, D. (2007). Nuclear magnetic resonance force microscopy with a microwire rf source.
Physical Review Letters, 99(1). https://doi.org/10.1103/PhysRevLett.99.017201
, Degen, C.L., Mamin, H.J., & Rugar, D. (2007). Feedback cooling of a cantilever’s fundamental mode below 5 mK.
Physical Review Letters, 99(1). https://doi.org/10.1103/PhysRevLett.99.017201
, Degen, C.L., Mamin, H.J., & Rugar, D. (2007). Feedback cooling of a cantilever’s fundamental mode below 5 mK.
Stern, N.P., Myers, R.C., Physical Review B - Condensed Matter and Materials Physics, 75(4). https://doi.org/10.1103/PhysRevB.75.045329
, Gossard, A.C., & Awschalom, D.D. (2007). Confinement engineering of s-d exchange interactions in Ga1-x Mnx As/Aly Ga1-y As quantum wells.
Stern, N.P., Myers, R.C., Physical Review B - Condensed Matter and Materials Physics, 75(4). https://doi.org/10.1103/PhysRevB.75.045329
, Gossard, A.C., & Awschalom, D.D. (2007). Confinement engineering of s-d exchange interactions in Ga1-x Mnx As/Aly Ga1-y As quantum wells.
Mamin, H.J., Nature Nanotechnology, 2(5), 301–306. https://doi.org/10.1038/nnano.2007.105
, Degen, C.L., & Rugar, D. (2007). Nuclear magnetic resonance imaging with 90-nm resolution.
Mamin, H.J., Nature Nanotechnology, 2(5), 301–306. https://doi.org/10.1038/nnano.2007.105
, Degen, C.L., & Rugar, D. (2007). Nuclear magnetic resonance imaging with 90-nm resolution.
Physica E: Low-Dimensional Systems and Nanostructures, 35(2), 264–271. https://doi.org/10.1016/j.physe.2006.08.032
, Myers, R.C., Steeves, G.M., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2006). Nuclear and ion spins in semiconductor nanostructures.
Physica E: Low-Dimensional Systems and Nanostructures, 35(2), 264–271. https://doi.org/10.1016/j.physe.2006.08.032
, Myers, R.C., Steeves, G.M., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2006). Nuclear and ion spins in semiconductor nanostructures.
Physical Review B - Condensed Matter and Materials Physics, 72(23). https://doi.org/10.1103/PhysRevB.72.235313
, Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Structural, electrical, and magneto-optical characterization of paramagnetic GaMnAs quantum wells.
Physical Review B - Condensed Matter and Materials Physics, 72(23). https://doi.org/10.1103/PhysRevB.72.235313
, Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Structural, electrical, and magneto-optical characterization of paramagnetic GaMnAs quantum wells.
Myers, R.C., Physical Review Letters, 95(22). https://doi.org/10.1103/PhysRevLett.95.229902
, Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Erratum: Antiferromagnetic s-d exchange coupling in GaMnAs (Physics Review Letter (2005) 95 (017204)).
Myers, R.C., Physical Review Letters, 95(22). https://doi.org/10.1103/PhysRevLett.95.229902
, Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Erratum: Antiferromagnetic s-d exchange coupling in GaMnAs (Physics Review Letter (2005) 95 (017204)).
Stern, N.P., Physical Review B - Condensed Matter and Materials Physics, 72(16). https://doi.org/10.1103/PhysRevB.72.161303
, Bartl, M.H., Hu, E.L., Stucky, G.D., & Awschalom, D.D. (2005). Spin dynamics in electrochemically charged CdSe quantum dots.
Stern, N.P., Physical Review B - Condensed Matter and Materials Physics, 72(16). https://doi.org/10.1103/PhysRevB.72.161303
, Bartl, M.H., Hu, E.L., Stucky, G.D., & Awschalom, D.D. (2005). Spin dynamics in electrochemically charged CdSe quantum dots.
Myers, R.C., Physical Review Letters, 95(1). https://doi.org/10.1103/PhysRevLett.95.017204
, Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Antiferromagnetic s-d exchange coupling in GaMnAs.
Myers, R.C., Physical Review Letters, 95(1). https://doi.org/10.1103/PhysRevLett.95.017204
, Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Antiferromagnetic s-d exchange coupling in GaMnAs.
Applied Physics Letters, 86(18), 1–3. https://doi.org/10.1063/1.1923191
, & Awschalom, D.D. (2005). High-field optically detected nuclear magnetic resonance in GaAs.
Applied Physics Letters, 86(18), 1–3. https://doi.org/10.1063/1.1923191
, & Awschalom, D.D. (2005). High-field optically detected nuclear magnetic resonance in GaAs.
Physical Review B - Condensed Matter and Materials Physics, 70(12). https://doi.org/10.1103/PhysRevB.70.121305
, Steeves, G.M., Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2004). Spin transfer and coherence in coupled quantum wells.
Physical Review B - Condensed Matter and Materials Physics, 70(12). https://doi.org/10.1103/PhysRevB.70.121305
, Steeves, G.M., Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2004). Spin transfer and coherence in coupled quantum wells.
Physical Review Letters, 91(20). https://doi.org/10.1103/PhysRevLett.91.207602
, Steeves, G.M., Myers, R.C., Kato, Y., Gossard, A.C., & Awschalom, D.D. (2003). Local manipulation of nuclear spin in a semiconductor quantum well.
Physical Review Letters, 91(20). https://doi.org/10.1103/PhysRevLett.91.207602
, Steeves, G.M., Myers, R.C., Kato, Y., Gossard, A.C., & Awschalom, D.D. (2003). Local manipulation of nuclear spin in a semiconductor quantum well.
Leuenberger, Michael N, Loss, Daniel, Physical Review Letters, 89(20), 207601. https://doi.org/10.1103/physrevlett.89.207601
, & Awschalom, D D. (2002). Quantum information processing with large nuclear spins in GaAs semiconductors.
Leuenberger, Michael N, Loss, Daniel, Physical Review Letters, 89(20), 207601. https://doi.org/10.1103/physrevlett.89.207601
, & Awschalom, D D. (2002). Quantum information processing with large nuclear spins in GaAs semiconductors.
Beschoten, B., Johnston-Halperin, E., Young, D.K., Physical Review B - Condensed Matter and Materials Physics, 63(12). https://doi.org/10.1103/PhysRevB.63.121202
, Grimaldi, J.E., Keller, S., DenBaars, S.P., Mishra, U.K., Hu, E.L., & Awschalom, D.D. (2001). Spin coherence and dephasing in GaN.
Beschoten, B., Johnston-Halperin, E., Young, D.K., Physical Review B - Condensed Matter and Materials Physics, 63(12). https://doi.org/10.1103/PhysRevB.63.121202
, Grimaldi, J.E., Keller, S., DenBaars, S.P., Mishra, U.K., Hu, E.L., & Awschalom, D.D. (2001). Spin coherence and dephasing in GaN.