Publications
103 found
Show per page
Wilcox, J. A., Schneider, L., Marchiori, E., Plastovets, V., Buzdin, A., Sahafi, P., Jordan, A., Budakian, R., Ren, T., Veshchunov, I., Tamegai, T., Friedemann, S., Poggio, M., & Bending, S. J. (2025). Magnetically controlled vortex dynamics in a ferromagnetic superconductor. Communications Materials, 6(1). https://doi.org/10.1038/s43246-025-00833-z
Wilcox, J. A., Schneider, L., Marchiori, E., Plastovets, V., Buzdin, A., Sahafi, P., Jordan, A., Budakian, R., Ren, T., Veshchunov, I., Tamegai, T., Friedemann, S., Poggio, M., & Bending, S. J. (2025). Magnetically controlled vortex dynamics in a ferromagnetic superconductor. Communications Materials, 6(1). https://doi.org/10.1038/s43246-025-00833-z
Weegen, M., Fountas, P. N., , & Willitsch, S. (2025). Experimental implementation of an ion-nanowire hybrid system [Journal-article]. Review of Scientific Instruments, 96(6). https://doi.org/10.1063/5.0260410
Weegen, M., Fountas, P. N., , & Willitsch, S. (2025). Experimental implementation of an ion-nanowire hybrid system [Journal-article]. Review of Scientific Instruments, 96(6). https://doi.org/10.1063/5.0260410
Aldeghi, Michele, Allenspach, Rolf, Vervelaki, Andriani, Jetter, Daniel, Bagani, Kousik, Braakman, Floris, , & Salis, Gian. (2025). Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays [Journal-article]. Nano Letters, 25(5), 1838–1844. https://doi.org/10.1021/acs.nanolett.4c05037
Aldeghi, Michele, Allenspach, Rolf, Vervelaki, Andriani, Jetter, Daniel, Bagani, Kousik, Braakman, Floris, , & Salis, Gian. (2025). Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays [Journal-article]. Nano Letters, 25(5), 1838–1844. https://doi.org/10.1021/acs.nanolett.4c05037
Bersano, Fabio, Martinolli, Niccolò, Bouquet, Ilan, Ghini, Michele, Collette, Eloi, Žaper, Liza, Braakman, Floris, , Luisier, Mathieu, & Ionescu, Adrian Mihai. (2025). Nanomole Process: Enabling Localized Metallic Back-Gates for Enhanced Cryogenic Front-to-Back Coupling in FDSOI Quantum Dots [Journal-article]. IEEE Journal of the Electron Devices Society. https://doi.org/10.1109/jeds.2025.3545661
Bersano, Fabio, Martinolli, Niccolò, Bouquet, Ilan, Ghini, Michele, Collette, Eloi, Žaper, Liza, Braakman, Floris, , Luisier, Mathieu, & Ionescu, Adrian Mihai. (2025). Nanomole Process: Enabling Localized Metallic Back-Gates for Enhanced Cryogenic Front-to-Back Coupling in FDSOI Quantum Dots [Journal-article]. IEEE Journal of the Electron Devices Society. https://doi.org/10.1109/jeds.2025.3545661
Tschudin, M. A., Broadway, D. A., Siegwolf, P., Schrader, C., Telford, E. J., Gross, B., Cox, J., Dubois, A. E. E., Chica, D. G., Rama-Eiroa, R., J. G. Santos, E., Poggio, M., Ziebel, M. E., Dean, C. R., Roy, X., & Maletinsky, P. (2024). Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49717-9
Tschudin, M. A., Broadway, D. A., Siegwolf, P., Schrader, C., Telford, E. J., Gross, B., Cox, J., Dubois, A. E. E., Chica, D. G., Rama-Eiroa, R., J. G. Santos, E., Poggio, M., Ziebel, M. E., Dean, C. R., Roy, X., & Maletinsky, P. (2024). Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49717-9
Vervelaki, Andriani, Bagani, Kousik, Jetter, Daniel, Doan, Manh-Ha, Chau, Tuan K., Gross, Boris, Christensen, Dennis V., Bøggild. Peter, & . (2024). Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6. Communications Materials, 5(1). https://doi.org/10.1038/s43246-024-00477-5
Vervelaki, Andriani, Bagani, Kousik, Jetter, Daniel, Doan, Manh-Ha, Chau, Tuan K., Gross, Boris, Christensen, Dennis V., Bøggild. Peter, & . (2024). Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6. Communications Materials, 5(1). https://doi.org/10.1038/s43246-024-00477-5
Weegen, Moritz, , & Willitsch, Stefan. (2024). Coupling Trapped Ions to a Nanomechanical Oscillator [Journal-article]. Physical Review Letters, 133(22). https://doi.org/10.1103/physrevlett.133.223201
Weegen, Moritz, , & Willitsch, Stefan. (2024). Coupling Trapped Ions to a Nanomechanical Oscillator [Journal-article]. Physical Review Letters, 133(22). https://doi.org/10.1103/physrevlett.133.223201
Budakian, Raffi, Finkler, Amit, Eichler, Alexander, , Degen, Christian L, Tabatabaei, Sahand, Lee, Inhee, Hammel, P Chris, Eugene, S Polzik, Taminiau, Tim H, Walsworth, Ronald L, London, Paz, Bleszynski Jayich, Ania, Ajoy, Ashok, Pillai, Arjun, Wrachtrup, Jörg, Jelezko, Fedor, Bae, Yujeong, Heinrich, Andreas J, et al. (2024). Roadmap on nanoscale magnetic resonance imaging [Journal-article]. Nanotechnology, 35. https://doi.org/10.1088/1361-6528/ad4b23
Budakian, Raffi, Finkler, Amit, Eichler, Alexander, , Degen, Christian L, Tabatabaei, Sahand, Lee, Inhee, Hammel, P Chris, Eugene, S Polzik, Taminiau, Tim H, Walsworth, Ronald L, London, Paz, Bleszynski Jayich, Ania, Ajoy, Ashok, Pillai, Arjun, Wrachtrup, Jörg, Jelezko, Fedor, Bae, Yujeong, Heinrich, Andreas J, et al. (2024). Roadmap on nanoscale magnetic resonance imaging [Journal-article]. Nanotechnology, 35. https://doi.org/10.1088/1361-6528/ad4b23
Bagani, Kousik, Vervelaki, Andriani, Jetter, Daniel, Devarakonda, Aravind, Tschudin, Märta A., Gross, Boris, Chica, Daniel G., Broadway, David A., Dean, Cory R., Roy, Xavier, Maletinsky, Patrick, & . (2024). Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr [Journal-article]. Nano Letters, 24(41), 13068–13074. https://doi.org/10.1021/acs.nanolett.4c03919
Bagani, Kousik, Vervelaki, Andriani, Jetter, Daniel, Devarakonda, Aravind, Tschudin, Märta A., Gross, Boris, Chica, Daniel G., Broadway, David A., Dean, Cory R., Roy, Xavier, Maletinsky, Patrick, & . (2024). Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr [Journal-article]. Nano Letters, 24(41), 13068–13074. https://doi.org/10.1021/acs.nanolett.4c03919
Marchiori, Estefani, Romagnoli, Giulio, Schneider, Lukas, Gross, Boris, Sahafi, Pardis, Jordan, Andrew, Budakian, Raffi, Baral, Priya R., Magrez, Arnaud, White, Jonathan S., & . (2024). Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3 [Journal-article]. Communications Materials, 5. https://doi.org/10.1038/s43246-024-00647-5
Marchiori, Estefani, Romagnoli, Giulio, Schneider, Lukas, Gross, Boris, Sahafi, Pardis, Jordan, Andrew, Budakian, Raffi, Baral, Priya R., Magrez, Arnaud, White, Jonathan S., & . (2024). Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3 [Journal-article]. Communications Materials, 5. https://doi.org/10.1038/s43246-024-00647-5
Leisgang, Nadine, Miserev, Dmitry, Mattiat, Hinrich, Schneider, Lukas, Sponfeldner, Lukas, Watanabe, Kenji, Taniguchi, Takashi, , & Warburton, Richard J. (2024). Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor [Journal-article]. Physical Review Letters, 133(2). https://doi.org/10.1103/physrevlett.133.026501
Leisgang, Nadine, Miserev, Dmitry, Mattiat, Hinrich, Schneider, Lukas, Sponfeldner, Lukas, Watanabe, Kenji, Taniguchi, Takashi, , & Warburton, Richard J. (2024). Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor [Journal-article]. Physical Review Letters, 133(2). https://doi.org/10.1103/physrevlett.133.026501
Andersen, Ulrik L, Staub, Urs, Christensen, Dennis Valbjørn, Buttner, Felix, Khajetoorians, Alexander Ako, Kfir, Ofer, Pryds, Nini, Neu, Volker, Schumacher, Hans Werner, Vogel, Michael, Fischer, Peter, Maletinsky, Patrick, Mandru, Andrada Oana, Finizio, Simone, McMorran, Benjamin J, Degen, Christian, McCord, Jeffrey, , Hu, Wen, et al. (2024). 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science [Journal-article]. Journal of Physics: Materials, 7(3). https://doi.org/10.1088/2515-7639/ad31b5
Andersen, Ulrik L, Staub, Urs, Christensen, Dennis Valbjørn, Buttner, Felix, Khajetoorians, Alexander Ako, Kfir, Ofer, Pryds, Nini, Neu, Volker, Schumacher, Hans Werner, Vogel, Michael, Fischer, Peter, Maletinsky, Patrick, Mandru, Andrada Oana, Finizio, Simone, McMorran, Benjamin J, Degen, Christian, McCord, Jeffrey, , Hu, Wen, et al. (2024). 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science [Journal-article]. Journal of Physics: Materials, 7(3). https://doi.org/10.1088/2515-7639/ad31b5
Liza Žaper, Peter Rickhaus, Marcus Wyss, Boris Gross, Kai Wagner, , & Floris Braakman. (2024). Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets. ACS Applied Nano Materials, 7(4), 3854–3860. https://doi.org/10.1021/acsanm.3c05470
Liza Žaper, Peter Rickhaus, Marcus Wyss, Boris Gross, Kai Wagner, , & Floris Braakman. (2024). Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets. ACS Applied Nano Materials, 7(4), 3854–3860. https://doi.org/10.1021/acsanm.3c05470
Mattiat, H., Schneider, L., Reiser, P., Poggio, M., Sahafi, P., Jordan, A., Budakian, R., Averyanov, D., Sokolov, I., Taldenkov, A., Parfenov, O., Kondratev, O., Tokmachev, A., & Storchak, V. (2024). Mapping the phase-separated state in a 2D magnet [Journal-article]. Nanoscale, 16(10), 5302–5312. https://doi.org/10.1039/d3nr06550b
Mattiat, H., Schneider, L., Reiser, P., Poggio, M., Sahafi, P., Jordan, A., Budakian, R., Averyanov, D., Sokolov, I., Taldenkov, A., Parfenov, O., Kondratev, O., Tokmachev, A., & Storchak, V. (2024). Mapping the phase-separated state in a 2D magnet [Journal-article]. Nanoscale, 16(10), 5302–5312. https://doi.org/10.1039/d3nr06550b
Ollier, Alexina, Kisiel, Marcin, Lu, Xiaobo, Gysin, Urs, , Efetov, Dmitri K., & Meyer, Ernst. (2023). Energy dissipation on magic angle twisted bilayer graphene [Journal-article]. Communications Physics, 6(1). https://doi.org/10.1038/s42005-023-01441-4
Ollier, Alexina, Kisiel, Marcin, Lu, Xiaobo, Gysin, Urs, , Efetov, Dmitri K., & Meyer, Ernst. (2023). Energy dissipation on magic angle twisted bilayer graphene [Journal-article]. Communications Physics, 6(1). https://doi.org/10.1038/s42005-023-01441-4
Bersano, Fabio, Aldeghi, Michele, Collette, Eloi, Ghini, Michele, Palma, Franco De, Oppliger, Fabian, Scarlino, Pasquale, Braakman, Floris, , Riel, Heike, Salis, Gian, Allenspach, Rolf, & Ionescu, Adrian M. (2023, June 11). Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control. IEEE Symposium on VLSI Technology and Circuits. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278
Bersano, Fabio, Aldeghi, Michele, Collette, Eloi, Ghini, Michele, Palma, Franco De, Oppliger, Fabian, Scarlino, Pasquale, Braakman, Floris, , Riel, Heike, Salis, Gian, Allenspach, Rolf, & Ionescu, Adrian M. (2023, June 11). Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control. IEEE Symposium on VLSI Technology and Circuits. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278
Romagnoli, G., Marchiori, E., Bagani, K., & (2023). Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering. Applied Physics Letters, 122(19). https://doi.org/10.1063/5.0150222
Romagnoli, G., Marchiori, E., Bagani, K., & (2023). Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering. Applied Physics Letters, 122(19). https://doi.org/10.1063/5.0150222
Forrer, L., Kamber, A., Knoll, A., , & Braakman, F. R. (2023). Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers. AIP Advances, 13(3), 35208. https://doi.org/10.1063/5.0127665
Forrer, L., Kamber, A., Knoll, A., , & Braakman, F. R. (2023). Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers. AIP Advances, 13(3), 35208. https://doi.org/10.1063/5.0127665
Jaeger, David, Fogliano, Francesco, Ruelle, Thibaud, Lafranca, Aris, Braakman, Floris, & . (2023). Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator. Nano Letters, 23(5), 2016–2022. https://doi.org/10.1021/acs.nanolett.3c00233
Jaeger, David, Fogliano, Francesco, Ruelle, Thibaud, Lafranca, Aris, Braakman, Floris, & . (2023). Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator. Nano Letters, 23(5), 2016–2022. https://doi.org/10.1021/acs.nanolett.3c00233
Weegen, Moritz, , & Willitsch,Stefan. (2023). Coupling trapped ions to a nanomechanical oscillator. In Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2312.00576
Weegen, Moritz, , & Willitsch,Stefan. (2023). Coupling trapped ions to a nanomechanical oscillator. In Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2312.00576
Bersano, Fabio, De Palma, Franco, Oppliger, Fabian, Braakman, Floris, Radu, Ionut, Scarlino, Pasquale, , & Ionescu, Adrian Mihai. (2022, January 1). Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing. https://doi.org/10.1109/esscirc55480.2022.9911479
Bersano, Fabio, De Palma, Franco, Oppliger, Fabian, Braakman, Floris, Radu, Ionut, Scarlino, Pasquale, , & Ionescu, Adrian Mihai. (2022, January 1). Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing. https://doi.org/10.1109/esscirc55480.2022.9911479
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Lorenzelli, Luca, Degen, Christian L., & . (2022). Nanoscale magnetic field imaging for 2D materials. Nature Reviews Physics, 4(1), 49–60. https://doi.org/10.1038/s42254-021-00380-9
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Lorenzelli, Luca, Degen, Christian L., & . (2022). Nanoscale magnetic field imaging for 2D materials. Nature Reviews Physics, 4(1), 49–60. https://doi.org/10.1038/s42254-021-00380-9
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Romagnoli, Giulio, Herrmann, Johannes, Besse, Jean-Claude, Krinner, Sebastian, Wallraff, Andreas, & . (2022). Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip. Applied physics letters, 121(5), 52601. https://doi.org/10.1063/5.0103597
Marchiori, Estefani, Ceccarelli, Lorenzo, Rossi, Nicola, Romagnoli, Giulio, Herrmann, Johannes, Besse, Jean-Claude, Krinner, Sebastian, Wallraff, Andreas, & . (2022). Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip. Applied physics letters, 121(5), 52601. https://doi.org/10.1063/5.0103597
Ruelle, Thibaud, Jaeger, David, Fogliano, Francesco, Braakman, Floris, & . (2022). A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K. Review of Scientific Instruments, 93(9), 95003. https://doi.org/10.1063/5.0098140
Ruelle, Thibaud, Jaeger, David, Fogliano, Francesco, Braakman, Floris, & . (2022). A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K. Review of Scientific Instruments, 93(9), 95003. https://doi.org/10.1063/5.0098140
Wyss, M., Bagani, K., Jetter, D., Marchiori, E., Vervelaki, A., Gross, B., Ridderbos, J., Gliga, S., Schonenberger, C., & (2022). Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe. Physical review applied, 17(3), 34002. https://doi.org/10.1103/physrevapplied.17.034002
Wyss, M., Bagani, K., Jetter, D., Marchiori, E., Vervelaki, A., Gross, B., Ridderbos, J., Gliga, S., Schonenberger, C., & (2022). Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe. Physical review applied, 17(3), 34002. https://doi.org/10.1103/physrevapplied.17.034002
Züger, Fabian, Marsano, Anna, , & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
Züger, Fabian, Marsano, Anna, , & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
Claudon, J., Kotal, S., Artioli, A., Finazzer, M., Fons, R., Genuist, Y., Bleuse, J., Gerard, J.-M., Wang, Y., Osterkryger, A. D., Gregersen, N., Munsch, M., Kuhlmann, A., Cadeddu, D., , Warburton, R. W., & Verlot, P. (2021, January 1). Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons. International Conference on Numerical Simulation of Optoelectronic Devices. https://doi.org/10.1109/nusod52207.2021.9541487
Claudon, J., Kotal, S., Artioli, A., Finazzer, M., Fons, R., Genuist, Y., Bleuse, J., Gerard, J.-M., Wang, Y., Osterkryger, A. D., Gregersen, N., Munsch, M., Kuhlmann, A., Cadeddu, D., , Warburton, R. W., & Verlot, P. (2021, January 1). Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons. International Conference on Numerical Simulation of Optoelectronic Devices. https://doi.org/10.1109/nusod52207.2021.9541487
Gross, B., Philipp, S., Josten, E., Leliaert, J., Wetterskog, E., Bergstrom, L., & (2021). Magnetic anisotropy of individual maghemite mesocrystals. Physical Review B, 103(1), 14402. https://doi.org/10.1103/physrevb.103.014402
Gross, B., Philipp, S., Josten, E., Leliaert, J., Wetterskog, E., Bergstrom, L., & (2021). Magnetic anisotropy of individual maghemite mesocrystals. Physical Review B, 103(1), 14402. https://doi.org/10.1103/physrevb.103.014402
Lu, Xiaobo, Lian, Biao, Chaudhary, Gaurav, Piot, Benjamin A., Romagnoli, Giulio, Watanabe, Kenji, Taniguchi, Takashi, , MacDonald, Allan H., Bernevig, B. Andrei, & Efetov, Dmitri K. (2021). Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2100006118. https://doi.org/10.1073/pnas.2100006118
Lu, Xiaobo, Lian, Biao, Chaudhary, Gaurav, Piot, Benjamin A., Romagnoli, Giulio, Watanabe, Kenji, Taniguchi, Takashi, , MacDonald, Allan H., Bernevig, B. Andrei, & Efetov, Dmitri K. (2021). Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2100006118. https://doi.org/10.1073/pnas.2100006118
Philipp, S., Gross, B., Reginka, M., Merkel, M., Claus, M. M., Sulliger, M., Ehresmann, A., & (2021). Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps. Applied Physics Letters, 119(22), 222406. https://doi.org/10.1063/5.0076116
Philipp, S., Gross, B., Reginka, M., Merkel, M., Claus, M. M., Sulliger, M., Ehresmann, A., & (2021). Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps. Applied Physics Letters, 119(22), 222406. https://doi.org/10.1063/5.0076116
. (2020). Determining magnetization configurations and reversal of individual magnetic nanotubes. In Vázquez, Mauel (Ed.), Magnetic Nano- and Microwires (pp. 491–517). Elsivier. https://doi.org/10.1016/b978-0-08-102832-2.00017-7
. (2020). Determining magnetization configurations and reversal of individual magnetic nanotubes. In Vázquez, Mauel (Ed.), Magnetic Nano- and Microwires (pp. 491–517). Elsivier. https://doi.org/10.1016/b978-0-08-102832-2.00017-7
Geirhos, Korbinian, Gross, Boris, Szigeti, Bertalan G., Mehlin, Andrea, Philipp, Simon, White, Jonathan S., Cubitt, Robert, Widmann, Sebastian, Ghara, Somnath, Lunkenheimer, Peter, Tsurkan, Vladimir, Neuber, Erik, Ivaneyko, Dmytro, Milde, Peter, Eng, Lukas M., Leonov, Andrey O., Bordacs, Sandor, , & Kezsmarki, Istvan. (2020). Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host. npj Quantum Materials, 5(1), 44. https://doi.org/10.1038/s41535-020-0247-z
Geirhos, Korbinian, Gross, Boris, Szigeti, Bertalan G., Mehlin, Andrea, Philipp, Simon, White, Jonathan S., Cubitt, Robert, Widmann, Sebastian, Ghara, Somnath, Lunkenheimer, Peter, Tsurkan, Vladimir, Neuber, Erik, Ivaneyko, Dmytro, Milde, Peter, Eng, Lukas M., Leonov, Andrey O., Bordacs, Sandor, , & Kezsmarki, Istvan. (2020). Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host. npj Quantum Materials, 5(1), 44. https://doi.org/10.1038/s41535-020-0247-z
Gross, B., Philipp, S., Geirhos, K., Mehlin, A., Bordacs, S., Tsurkan, V., Leonov, A., Kezsmarki, I., & (2020). Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8. Physical Review B, 102(10), 104407. https://doi.org/10.1103/physrevb.102.104407
Gross, B., Philipp, S., Geirhos, K., Mehlin, A., Bordacs, S., Tsurkan, V., Leonov, A., Kezsmarki, I., & (2020). Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8. Physical Review B, 102(10), 104407. https://doi.org/10.1103/physrevb.102.104407
Mattiat, H., Rossi, N., Gross, B., Pablo-Navarro, J., Magen, C., Badea, R., Berezovsky, J., De Teresa, J. M., & (2020). Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition. Physical review applied, 13(4), 44043. https://doi.org/10.1103/physrevapplied.13.044043
Mattiat, H., Rossi, N., Gross, B., Pablo-Navarro, J., Magen, C., Badea, R., Berezovsky, J., De Teresa, J. M., & (2020). Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition. Physical review applied, 13(4), 44043. https://doi.org/10.1103/physrevapplied.13.044043
, & Rossi, Nicola. (2020, January 1). Currents cool and drive. Nature Physics, 10–11. https://doi.org/10.1038/s41567-019-0723-1
, & Rossi, Nicola. (2020, January 1). Currents cool and drive. Nature Physics, 10–11. https://doi.org/10.1038/s41567-019-0723-1
Roesner, Benedikt, Finizio, Simone, Koch, Frieder, Doring, Florian, Guzenko, Vitaliy A., Langer, Manuel, Kirk, Eugenie, Watts, Benjamin, Meyer, Markus, Ornelas, Joshua Lorona, Spaeth, Andreas, Stanescu, Stefan, Swaraj, Sufal, Belkhou, Rachid, Ishikawa, Takashi, Keller, Thomas F., Gross, Boris, , Fink, Rainer H., et al. (2020). Soft x-ray microscopy with 7 nm resolution. Optica, 7(11), 1602–1608. https://doi.org/10.1364/optica.399885
Roesner, Benedikt, Finizio, Simone, Koch, Frieder, Doring, Florian, Guzenko, Vitaliy A., Langer, Manuel, Kirk, Eugenie, Watts, Benjamin, Meyer, Markus, Ornelas, Joshua Lorona, Spaeth, Andreas, Stanescu, Stefan, Swaraj, Sufal, Belkhou, Rachid, Ishikawa, Takashi, Keller, Thomas F., Gross, Boris, , Fink, Rainer H., et al. (2020). Soft x-ray microscopy with 7 nm resolution. Optica, 7(11), 1602–1608. https://doi.org/10.1364/optica.399885
Braakman, F. R., & (2019). Force sensing with nanowire cantilevers. Nanotechnology, 30(33), 332001. https://doi.org/10.1088/1361-6528/ab19cf
Braakman, F. R., & (2019). Force sensing with nanowire cantilevers. Nanotechnology, 30(33), 332001. https://doi.org/10.1088/1361-6528/ab19cf
Ceccarelli, L., Vasyukov, D., Wyss, M., Romagnoli, G., Rossi, N., Moser, L., & (2019). Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films. Physical Review B, 100(10), 104504. https://doi.org/10.1103/physrevb.100.104504
Ceccarelli, L., Vasyukov, D., Wyss, M., Romagnoli, G., Rossi, N., Moser, L., & (2019). Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films. Physical Review B, 100(10), 104504. https://doi.org/10.1103/physrevb.100.104504
Fountas, P. N., , & Willitsch, S. (2019). Classical and quantum dynamics of a trapped ion coupled to a charged nanowire. New Journal of Physics, 21, 13030. https://doi.org/10.1088/1367-2630/aaf8f5
Fountas, P. N., , & Willitsch, S. (2019). Classical and quantum dynamics of a trapped ion coupled to a charged nanowire. New Journal of Physics, 21, 13030. https://doi.org/10.1088/1367-2630/aaf8f5
Rossi, Nicola, Gross, Boris, Dirnberger, Florian, Bougeard, Dominique, & . (2019). Magnetic force sensing using a self-assembled nanowire. Nano Letters, 19(2), 930–936. https://doi.org/10.1021/acs.nanolett.8b04174
Rossi, Nicola, Gross, Boris, Dirnberger, Florian, Bougeard, Dominique, & . (2019). Magnetic force sensing using a self-assembled nanowire. Nano Letters, 19(2), 930–936. https://doi.org/10.1021/acs.nanolett.8b04174
Ruelle, Thibaud, , & Braakman, Floris. (2019). Optimized single-shot laser ablation of concave mirror templates on optical fibers. Applied optics, 58(14), 3784–3789. https://doi.org/10.1364/ao.58.003784
Ruelle, Thibaud, , & Braakman, Floris. (2019). Optimized single-shot laser ablation of concave mirror templates on optical fibers. Applied optics, 58(14), 3784–3789. https://doi.org/10.1364/ao.58.003784
Wyss, Marcus, Gliga, Sebastian, Vasyukov, Denis, Ceccarelli, Lorenzo, Romagnoli, Giulio, Cui, Jizhai, Kleibert, Armin, Stamps, Robert L., & . (2019). Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal. ACS Nano, 13(12), 13910–13916. https://doi.org/10.1021/acsnano.9b05428
Wyss, Marcus, Gliga, Sebastian, Vasyukov, Denis, Ceccarelli, Lorenzo, Romagnoli, Giulio, Cui, Jizhai, Kleibert, Armin, Stamps, Robert L., & . (2019). Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal. ACS Nano, 13(12), 13910–13916. https://doi.org/10.1021/acsnano.9b05428
, & Herzog, Benedikt E. (2018). Force-detected nuclear magnetic resonance. In Anders, Jens; Korvink, Jan (Ed.), Micro and Nano Scale NMR: Technologies and Systems (pp. 381–420). Wiley. https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569
, & Herzog, Benedikt E. (2018). Force-detected nuclear magnetic resonance. In Anders, Jens; Korvink, Jan (Ed.), Micro and Nano Scale NMR: Technologies and Systems (pp. 381–420). Wiley. https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569
, & Herzog, Benedikt E. (2018). Force‐Detected Nuclear Magnetic Resonance. In Anders, Jens;Korvink, Jan G. (Ed.), Micro and Nano Scale NMR: Technologies and Systems (1 ed., pp. 381–420). Wiley‐VCH Verlag. https://doi.org/10.1002/9783527697281.ch13
, & Herzog, Benedikt E. (2018). Force‐Detected Nuclear Magnetic Resonance. In Anders, Jens;Korvink, Jan G. (Ed.), Micro and Nano Scale NMR: Technologies and Systems (1 ed., pp. 381–420). Wiley‐VCH Verlag. https://doi.org/10.1002/9783527697281.ch13
Braakman, F., Rossi, N., Cadeddu, D., Vasyukov, D., Tutuncuoglu, G., Morral, A. F. I., & Poggio, M. (2018, October 19). Coherent Dynamics of Nanowire Force Sensors. CPEM 2018 - Conference on Precision Electromagnetic Measurements. https://doi.org/10.1109/cpem.2018.8501011
Braakman, F., Rossi, N., Cadeddu, D., Vasyukov, D., Tutuncuoglu, G., Morral, A. F. I., & Poggio, M. (2018, October 19). Coherent Dynamics of Nanowire Force Sensors. CPEM 2018 - Conference on Precision Electromagnetic Measurements. https://doi.org/10.1109/cpem.2018.8501011
Braakman, Floris R., Rossi, Nicola, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & . (2018). Coherent two-mode dynamics of a nanowire force sensor. Physical Review Applied, 9(5), 54045. https://doi.org/10.1103/physrevapplied.9.054045
Braakman, Floris R., Rossi, Nicola, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & . (2018). Coherent two-mode dynamics of a nanowire force sensor. Physical Review Applied, 9(5), 54045. https://doi.org/10.1103/physrevapplied.9.054045
Mehlin, A., Gross, B., Wyss, M., Schefer, T., Tütüncüoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2018). Observation of end-vortex nucleation in individual ferromagnetic nanotubes. Physical Review B, 97(13), 134422. https://doi.org/10.1103/physrevb.97.134422
Mehlin, A., Gross, B., Wyss, M., Schefer, T., Tütüncüoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2018). Observation of end-vortex nucleation in individual ferromagnetic nanotubes. Physical Review B, 97(13), 134422. https://doi.org/10.1103/physrevb.97.134422
Vasyukov, Denis, Ceccarelli, Lorenzo, Wyss, Marcus, Gross, Boris, Schwarb, Alexander, Mehlin, Andrea, Rossi, Nicola, Tütüncüoglu, Gözde, Heimbach, Florian, Zamani, Reza, Kovács, Andras, Fontcuberta i Morral, Anna, Grundler, Dirk, & . (2018). Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes. Nano Letters, 18(2), 964–970. https://doi.org/10.1021/acs.nanolett.7b04386
Vasyukov, Denis, Ceccarelli, Lorenzo, Wyss, Marcus, Gross, Boris, Schwarb, Alexander, Mehlin, Andrea, Rossi, Nicola, Tütüncüoglu, Gözde, Heimbach, Florian, Zamani, Reza, Kovács, Andras, Fontcuberta i Morral, Anna, Grundler, Dirk, & . (2018). Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes. Nano Letters, 18(2), 964–970. https://doi.org/10.1021/acs.nanolett.7b04386
Cadeddu, Davide, Munsch, Mathieu, Rossi, Nicola, Gerard, Jean-Michel, Claudon, Julien, Warburton, Richard J., & . (2017). Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot. Physical Review Applied, 8(3), 31002. https://doi.org/10.1103/physrevapplied.8.031002
Cadeddu, Davide, Munsch, Mathieu, Rossi, Nicola, Gerard, Jean-Michel, Claudon, Julien, Warburton, Richard J., & . (2017). Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot. Physical Review Applied, 8(3), 31002. https://doi.org/10.1103/physrevapplied.8.031002
Munsch, Mathieu, Kuhlmann, Andreas V., Cadeddu, Davide, Gerard, Jean-Michel, Claudon, Julien, , & Warburton, Richard J. (2017). Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nature Communications, 8, 76. https://doi.org/10.1038/s41467-017-00097-3
Munsch, Mathieu, Kuhlmann, Andreas V., Cadeddu, Davide, Gerard, Jean-Michel, Claudon, Julien, , & Warburton, Richard J. (2017). Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nature Communications, 8, 76. https://doi.org/10.1038/s41467-017-00097-3
Wyss, M., Mehlin, A., Gross, B., Buchter, A., Farhan, A., Buzzi, M., Kleibert, A., Tutuncuoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2017). Imaging magnetic vortex configurations in ferromagnetic nanotubes. Physical Review B, 96(2), 24423. https://doi.org/10.1103/physrevb.96.024423
Wyss, M., Mehlin, A., Gross, B., Buchter, A., Farhan, A., Buzzi, M., Kleibert, A., Tutuncuoglu, G., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2017). Imaging magnetic vortex configurations in ferromagnetic nanotubes. Physical Review B, 96(2), 24423. https://doi.org/10.1103/physrevb.96.024423
Gross, B., Weber, D. P., Rueffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes. Physical Review B, 93(6). https://doi.org/10.1103/physrevb.93.064409
Gross, B., Weber, D. P., Rueffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes. Physical Review B, 93(6). https://doi.org/10.1103/physrevb.93.064409
Cadeddu, D., Braakman, F. R., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & (2016). Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire. Nano Letters, 16(2), 31–926. https://doi.org/10.1021/acs.nanolett.5b03822
Cadeddu, D., Braakman, F. R., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & (2016). Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire. Nano Letters, 16(2), 31–926. https://doi.org/10.1021/acs.nanolett.5b03822
Cadeddu, D., Teissier, J., Braakman, F. R., Gregersen, N., Stepanov, P., Gérard, J.-M., Claudon, J., Warburton, R. J., , & Munsch, M. (2016). A fiber-coupled quantum-dot on a photonic tip. Applied physics letters, 108(1), 11112. https://doi.org/10.1063/1.4939264
Cadeddu, D., Teissier, J., Braakman, F. R., Gregersen, N., Stepanov, P., Gérard, J.-M., Claudon, J., Warburton, R. J., , & Munsch, M. (2016). A fiber-coupled quantum-dot on a photonic tip. Applied physics letters, 108(1), 11112. https://doi.org/10.1063/1.4939264
Gross, B., Weber, D. P., Rüffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes. Physical Review B, 93(6), 64409. https://doi.org/10.1103/physrevb.93.064409
Gross, B., Weber, D. P., Rüffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., & (2016). Dynamic cantilever magnetometry of individual CoFeB nanotubes. Physical Review B, 93(6), 64409. https://doi.org/10.1103/physrevb.93.064409
Rossi, Nicola, Braakman, Floris, Cadeddu, Davide, Vasyukov, Denis, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & . (2016). Vectorial scanning force microscopy using a nanowire sensor. Nature Nanotechnology, 12(2), 150–155. https://doi.org/10.1038/nnano.2016.189
Rossi, Nicola, Braakman, Floris, Cadeddu, Davide, Vasyukov, Denis, Tütüncüoglu, Gözde, Fontcuberta i Morral, Anna, & . (2016). Vectorial scanning force microscopy using a nanowire sensor. Nature Nanotechnology, 12(2), 150–155. https://doi.org/10.1038/nnano.2016.189
Wüst, G., Munsch, M., Maier, F., Kuhlmann, A. V., Ludwig, A., Wieck, A. D., Loss, D., , & Warburton, R. J. (2016). Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nature Nanotechnology, 11(10), 885–889. https://doi.org/10.1038/nnano.2016.114
Wüst, G., Munsch, M., Maier, F., Kuhlmann, A. V., Ludwig, A., Wieck, A. D., Loss, D., , & Warburton, R. J. (2016). Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nature Nanotechnology, 11(10), 885–889. https://doi.org/10.1038/nnano.2016.114
Buchter, A., Woelbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rueffer, D., Matteini, F., Tuetuencueoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & (2015). Magnetization reversal of an individual exchange-biased permalloy nanotube. Physical Review B - Condensed Matter and Materials Physics, 92(21). https://doi.org/10.1103/physrevb.92.214432
Buchter, A., Woelbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rueffer, D., Matteini, F., Tuetuencueoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & (2015). Magnetization reversal of an individual exchange-biased permalloy nanotube. Physical Review B - Condensed Matter and Materials Physics, 92(21). https://doi.org/10.1103/physrevb.92.214432
Buchter, A., Wölbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Matteini, F., Tütüncüoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & (2015). Magnetization reversal of an individual exchange-biased permalloy nanotube. Physical Review B, 92(21), 214432. https://doi.org/10.1103/physrevb.92.214432
Buchter, A., Wölbing, R., Wyss, M., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Matteini, F., Tütüncüoglu, G., Heimbach, F., Kleibert, A., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., & (2015). Magnetization reversal of an individual exchange-biased permalloy nanotube. Physical Review B, 92(21), 214432. https://doi.org/10.1103/physrevb.92.214432
Mehlin, A., Xue, F., Liang, D., Du, H. F., Stolt, M. J., Jin, S., Tian, M. L., & (2015). Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry. Nano Letters, 15(7), 4839–4844. https://doi.org/10.1021/acs.nanolett.5b02232
Mehlin, A., Xue, F., Liang, D., Du, H. F., Stolt, M. J., Jin, S., Tian, M. L., & (2015). Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry. Nano Letters, 15(7), 4839–4844. https://doi.org/10.1021/acs.nanolett.5b02232
Tao, Ye, Navaretti, Paolo, Hauert, R., Grob, Urs, , & Degen, Christian. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. Nanotechnology, 26(46), 465501. https://doi.org/10.1088/0957-4484/26/46/465501
Tao, Ye, Navaretti, Paolo, Hauert, R., Grob, Urs, , & Degen, Christian. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. Nanotechnology, 26(46), 465501. https://doi.org/10.1088/0957-4484/26/46/465501
Treutlein, Philipp, Genes, Claudiu, Hammerer, Klemens, , & Rabl, Peter. (2014). Hybrid mechanical systems. In Cavity optomechanics : nano- and micromechanical resonators interacting with light (pp. 327–351). Springer. https://doi.org/10.1007/978-3-642-55312-7_14
Treutlein, Philipp, Genes, Claudiu, Hammerer, Klemens, , & Rabl, Peter. (2014). Hybrid mechanical systems. In Cavity optomechanics : nano- and micromechanical resonators interacting with light (pp. 327–351). Springer. https://doi.org/10.1007/978-3-642-55312-7_14
Bossoni, Lucia, Carretta, Pietro, & . (2014). Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry. Applied Physics Letters, 104(18), 182601. https://doi.org/10.1063/1.4874979
Bossoni, Lucia, Carretta, Pietro, & . (2014). Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry. Applied Physics Letters, 104(18), 182601. https://doi.org/10.1063/1.4874979
Braakman, F. R., Cadeddu, D., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & (2014). Nonlinear motion and mechanical mixing in as-grown GaAs nanowires. Applied Physics Letters, 105(17), 173111. https://doi.org/10.1063/1.4900928
Braakman, F. R., Cadeddu, D., Tütüncüoglu, G., Matteini, F., Rüffer, D., Fontcuberta i Morral, A., & (2014). Nonlinear motion and mechanical mixing in as-grown GaAs nanowires. Applied Physics Letters, 105(17), 173111. https://doi.org/10.1063/1.4900928
Herzog, B. E., Cadeddu, D., Xue, F., Peddibhotla, P., & (2014). Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble. Applied Physics Letters, 105(4), 43112. https://doi.org/10.1063/1.4892361
Herzog, B. E., Cadeddu, D., Xue, F., Peddibhotla, P., & (2014). Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble. Applied Physics Letters, 105(4), 43112. https://doi.org/10.1063/1.4892361
Montinaro, Michele, Wüst, Gunter, Munsch, Mathieu, Fontana, Yannik, Russo-Averchi, Eleonora, Heiss, Martin, Fontcuberta I. Morral, Anna, Warburton, Richard J., & . (2014). Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire. Nano Letters, 14(8), 4454–4460. https://doi.org/10.1021/nl501413t
Montinaro, Michele, Wüst, Gunter, Munsch, Mathieu, Fontana, Yannik, Russo-Averchi, Eleonora, Heiss, Martin, Fontcuberta I. Morral, Anna, Warburton, Richard J., & . (2014). Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire. Nano Letters, 14(8), 4454–4460. https://doi.org/10.1021/nl501413t
Munsch, Mathieu, Wüst, Gunter, Kuhlmann, Andreas V., Xue, Fei, Ludwig, Arne, Reuter, Dirk, Wieck, Andreas D., , & Warburton, Richard J. (2014). Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses. Nature Nanotechnology, 9(9), 671–675. https://doi.org/10.1038/nnano.2014.175
Munsch, Mathieu, Wüst, Gunter, Kuhlmann, Andreas V., Xue, Fei, Ludwig, Arne, Reuter, Dirk, Wieck, Andreas D., , & Warburton, Richard J. (2014). Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses. Nature Nanotechnology, 9(9), 671–675. https://doi.org/10.1038/nnano.2014.175
Munsch, M., Wüst, G., Kuhlmann, A. V., Xue, F., Ludwig, A., Reuter, D., Wieck, A. D., Poggio, M., & Warburton, R. J. (2014). Erratum: Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses (Nature Nanotechnology (2014) 9 (671-675)). Nature Nanotechnology, 9(10). https://doi.org/10.1038/nnano.2014.212
Munsch, M., Wüst, G., Kuhlmann, A. V., Xue, F., Ludwig, A., Reuter, D., Wieck, A. D., Poggio, M., & Warburton, R. J. (2014). Erratum: Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses (Nature Nanotechnology (2014) 9 (671-675)). Nature Nanotechnology, 9(10). https://doi.org/10.1038/nnano.2014.212
Buchter, A., Rüffer, D., Weber, D. P., Weimann, T., Zorin, A. B., Huber, R., Fontcuberta i Morral, A., Kleiner, R., Grundler, D., , Nagel, J., Xue, F., Kieler, O. F., Kohlmann, J., Russo-Averchi, E., Berberich, P., Kemmler, M., & Koelle, D. (2013). Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry. Physical Review Letters, 111(6), 67202. https://doi.org/10.1103/physrevlett.111.067202
Buchter, A., Rüffer, D., Weber, D. P., Weimann, T., Zorin, A. B., Huber, R., Fontcuberta i Morral, A., Kleiner, R., Grundler, D., , Nagel, J., Xue, F., Kieler, O. F., Kohlmann, J., Russo-Averchi, E., Berberich, P., Kemmler, M., & Koelle, D. (2013). Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry. Physical Review Letters, 111(6), 67202. https://doi.org/10.1103/physrevlett.111.067202
Kuhlmann, Andreas V., Houel, Julien, Ludwig, Arne, Greuter, Lukas, Reuter, Dirk, Wieck, Andreas D., , & Warburton, Richard J. (2013). Charge noise and spin noise in a semiconductor quantum device. Nature Physics, 9(9), 570–575. https://doi.org/10.1038/nphys2688
Kuhlmann, Andreas V., Houel, Julien, Ludwig, Arne, Greuter, Lukas, Reuter, Dirk, Wieck, Andreas D., , & Warburton, Richard J. (2013). Charge noise and spin noise in a semiconductor quantum device. Nature Physics, 9(9), 570–575. https://doi.org/10.1038/nphys2688
Nagel, J., Buchter, A., Xue, F., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Russo-Averchi, E., Huber, R., Berberich, P., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., , & Kemmler, M. (2013). Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID. Physical Review B, 88(6), 64425. https://doi.org/10.1103/physrevb.88.064425
Nagel, J., Buchter, A., Xue, F., Kieler, O. F., Weimann, T., Kohlmann, J., Zorin, A. B., Rüffer, D., Russo-Averchi, E., Huber, R., Berberich, P., Fontcuberta i Morral, A., Grundler, D., Kleiner, R., Koelle, D., , & Kemmler, M. (2013). Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID. Physical Review B, 88(6), 64425. https://doi.org/10.1103/physrevb.88.064425
Peddbhotla, P., Xue, F., Hauge, H. I. T., Assali, S., Bakkers, E. P. A. M., & (2013). Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nature Physics, 9(10), 630–634. https://doi.org/10.1038/nphys2731
Peddbhotla, P., Xue, F., Hauge, H. I. T., Assali, S., Bakkers, E. P. A. M., & (2013). Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nature Physics, 9(10), 630–634. https://doi.org/10.1038/nphys2731
. (2013). Sensing from the bottom up. Nature Nanotechnology, 8(7), 482–483. https://doi.org/10.1038/nnano.2013.124
. (2013). Sensing from the bottom up. Nature Nanotechnology, 8(7), 482–483. https://doi.org/10.1038/nnano.2013.124
, & Degen, Christian L. (2012). Magnetic resonance force microscopy. In Encyclopedia of Nanotechnology (pp. 1256–1264). Springer. https://doi.org/10.1007/978-90-481-9751-4_40
, & Degen, Christian L. (2012). Magnetic resonance force microscopy. In Encyclopedia of Nanotechnology (pp. 1256–1264). Springer. https://doi.org/10.1007/978-90-481-9751-4_40
Houel, J., Kuhlmann, A.V., Greuter, L., Xue, F., , Gerardot, B.D., Dalgarno, P.A., Badolato, A., Petroff, P.M., Ludwig, A., Reuter, D., Wieck, A.D., & Warburton, R.J. (2012). Erratum: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot (Physical Review Letters (2012) 108 (107401)). Physical Review Letters, 108(11). https://doi.org/10.1103/physrevlett.108.119902
Houel, J., Kuhlmann, A.V., Greuter, L., Xue, F., , Gerardot, B.D., Dalgarno, P.A., Badolato, A., Petroff, P.M., Ludwig, A., Reuter, D., Wieck, A.D., & Warburton, R.J. (2012). Erratum: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot (Physical Review Letters (2012) 108 (107401)). Physical Review Letters, 108(11). https://doi.org/10.1103/physrevlett.108.119902
Houel, J., Kuhlmann, A. V., Greuter, L., Xue, F., , Gerardot, B. D., Dalgarno, P. A., Badolato, A., Petroff, P. M., Ludwig, A., Reuter, D., Wieck, A. D., & Warburton, R. J. (2012). Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Physical Review Letters, 108(10), 107401. https://doi.org/10.1103/physrevlett.108.107401
Houel, J., Kuhlmann, A. V., Greuter, L., Xue, F., , Gerardot, B. D., Dalgarno, P. A., Badolato, A., Petroff, P. M., Ludwig, A., Reuter, D., Wieck, A. D., & Warburton, R. J. (2012). Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Physical Review Letters, 108(10), 107401. https://doi.org/10.1103/physrevlett.108.107401
Montinaro, M., Mehlin, A., Solanki, H. S., Peddibhotla, P., Mack, S., Awschalom, D. D., & (2012). Feedback cooling of cantilever motion using a quantum point contact transducer. Applied Physics Letters, 101(13), 133104. https://doi.org/10.1063/1.4754606
Montinaro, M., Mehlin, A., Solanki, H. S., Peddibhotla, P., Mack, S., Awschalom, D. D., & (2012). Feedback cooling of cantilever motion using a quantum point contact transducer. Applied Physics Letters, 101(13), 133104. https://doi.org/10.1063/1.4754606
Weber, D. P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Fontcuberta i Morral, A., Grundler, D., & (2012). Cantilever magnetometry of individual Ni nanotubes. Nano Letters, 12(12), 6139–6144. https://doi.org/10.1021/nl302950u
Weber, D. P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Fontcuberta i Morral, A., Grundler, D., & (2012). Cantilever magnetometry of individual Ni nanotubes. Nano Letters, 12(12), 6139–6144. https://doi.org/10.1021/nl302950u
Xue, F., Peddibhotla, P., Montinaro, M., Weber, D. P., & (2011). A geometry for optimizing nanoscale magnetic resonance force microscopy. Applied Physics Letters, 98(16), 163103. https://doi.org/10.1063/1.3579521
Xue, F., Peddibhotla, P., Montinaro, M., Weber, D. P., & (2011). A geometry for optimizing nanoscale magnetic resonance force microscopy. Applied Physics Letters, 98(16), 163103. https://doi.org/10.1063/1.3579521
Xue, F., Weber, D. P., Peddibhotla, P., & (2011). Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample. Physical Review B (Condensed Matter), 84(20), 205328. https://doi.org/10.1103/physrevb.84.205328
Xue, F., Weber, D. P., Peddibhotla, P., & (2011). Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample. Physical Review B (Condensed Matter), 84(20), 205328. https://doi.org/10.1103/physrevb.84.205328
Oosterkamp, T. H., , Degen, C. L., Mamin, H. J., & Rugar, D. (2010). Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy. Applied Physics Letters, 96(8), 83107. https://doi.org/10.1063/1.3304788
Oosterkamp, T. H., , Degen, C. L., Mamin, H. J., & Rugar, D. (2010). Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy. Applied Physics Letters, 96(8), 83107. https://doi.org/10.1063/1.3304788
(2010, January 1). Taking MRI to the nanoscale by force. nanotechweb.org, 1. http://nanotechweb.org/cws/article/lab/43632
(2010, January 1). Taking MRI to the nanoscale by force. nanotechweb.org, 1. http://nanotechweb.org/cws/article/lab/43632
, & Degen, C. L. (2010). Force-detected nuclear magnetic resonance : recent advances and future challenges. Nanotechnology, 21(34), 342001. https://doi.org/10.1088/0957-4484/21/34/342001
, & Degen, C. L. (2010). Force-detected nuclear magnetic resonance : recent advances and future challenges. Nanotechnology, 21(34), 342001. https://doi.org/10.1088/0957-4484/21/34/342001
Degen, C L, , Mamin, H J, Rettner, C T, & Rugar, D. (2009). Nanoscale magnetic resonance imaging. Proceedings of the National Academy of Sciences, 106(5), 7–1313. https://doi.org/10.1073/pnas.0812068106
Degen, C L, , Mamin, H J, Rettner, C T, & Rugar, D. (2009). Nanoscale magnetic resonance imaging. Proceedings of the National Academy of Sciences, 106(5), 7–1313. https://doi.org/10.1073/pnas.0812068106
Mamin, H J, Oosterkamp, T H, , Degen, C L, Rettner, C T, & Rugar, D. (2009). Isotope-Selective Detection and Imaging of Organic Nanolayers. Nano Letters, 9(8), 4–3020. https://doi.org/10.1021/nl901466p
Mamin, H J, Oosterkamp, T H, , Degen, C L, Rettner, C T, & Rugar, D. (2009). Isotope-Selective Detection and Imaging of Organic Nanolayers. Nano Letters, 9(8), 4–3020. https://doi.org/10.1021/nl901466p
, Mamin, H J, Degen, C L, Sherwood, M H, & Rugar, D. (2009). Nuclear Double Resonance between Statistical Spin Polarizations. Physical Review Letters, 102(8), 87604. https://doi.org/10.1103/physrevlett.102.087604
, Mamin, H J, Degen, C L, Sherwood, M H, & Rugar, D. (2009). Nuclear Double Resonance between Statistical Spin Polarizations. Physical Review Letters, 102(8), 87604. https://doi.org/10.1103/physrevlett.102.087604
Degen, C.L., , Mamin, H.J., & Rugar, D. (2008). Nuclear spin relaxation induced by a mechanical resonator. Physical Review Letters, 100(13). https://doi.org/10.1103/physrevlett.100.137601
Degen, C.L., , Mamin, H.J., & Rugar, D. (2008). Nuclear spin relaxation induced by a mechanical resonator. Physical Review Letters, 100(13). https://doi.org/10.1103/physrevlett.100.137601
, Jura, M.P., Degen, C.L., Topinka, M.A., Mamin, H.J., Goldhaber-Gordon, D., & Rugar, D. (2008). An off-board quantum point contact as a sensitive detector of cantilever motion. Nature Physics, 4(8), 635–638. https://doi.org/10.1038/nphys992
, Jura, M.P., Degen, C.L., Topinka, M.A., Mamin, H.J., Goldhaber-Gordon, D., & Rugar, D. (2008). An off-board quantum point contact as a sensitive detector of cantilever motion. Nature Physics, 4(8), 635–638. https://doi.org/10.1038/nphys992
Degen, C.L., , Mamin, H.J., & Rugar, D. (2007). Role of spin noise in the detection of nanoscale ensembles of nuclear spins. Physical Review Letters, 99(25). https://doi.org/10.1103/physrevlett.99.250601
Degen, C.L., , Mamin, H.J., & Rugar, D. (2007). Role of spin noise in the detection of nanoscale ensembles of nuclear spins. Physical Review Letters, 99(25). https://doi.org/10.1103/physrevlett.99.250601
, Degen, C.L., Rettner, C.T., Mamin, H.J., & Rugar, D. (2007). Nuclear magnetic resonance force microscopy with a microwire rf source. Applied Physics Letters, 90(26). https://doi.org/10.1063/1.2752536
, Degen, C.L., Rettner, C.T., Mamin, H.J., & Rugar, D. (2007). Nuclear magnetic resonance force microscopy with a microwire rf source. Applied Physics Letters, 90(26). https://doi.org/10.1063/1.2752536
, Degen, C.L., Mamin, H.J., & Rugar, D. (2007). Feedback cooling of a cantilever’s fundamental mode below 5 mK. Physical Review Letters, 99(1). https://doi.org/10.1103/physrevlett.99.017201
, Degen, C.L., Mamin, H.J., & Rugar, D. (2007). Feedback cooling of a cantilever’s fundamental mode below 5 mK. Physical Review Letters, 99(1). https://doi.org/10.1103/physrevlett.99.017201
Stern, N.P., Myers, R.C., , Gossard, A.C., & Awschalom, D.D. (2007). Confinement engineering of s-d exchange interactions in Ga1-x Mnx As/Aly Ga1-y As quantum wells. Physical Review B - Condensed Matter and Materials Physics, 75(4). https://doi.org/10.1103/physrevb.75.045329
Stern, N.P., Myers, R.C., , Gossard, A.C., & Awschalom, D.D. (2007). Confinement engineering of s-d exchange interactions in Ga1-x Mnx As/Aly Ga1-y As quantum wells. Physical Review B - Condensed Matter and Materials Physics, 75(4). https://doi.org/10.1103/physrevb.75.045329
Mamin, H.J., , Degen, C.L., & Rugar, D. (2007). Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotechnology, 2(5), 301–306. https://doi.org/10.1038/nnano.2007.105
Mamin, H.J., , Degen, C.L., & Rugar, D. (2007). Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotechnology, 2(5), 301–306. https://doi.org/10.1038/nnano.2007.105
, Myers, R.C., Steeves, G.M., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2006). Nuclear and ion spins in semiconductor nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 35(2), 264–271. https://doi.org/10.1016/j.physe.2006.08.032
, Myers, R.C., Steeves, G.M., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2006). Nuclear and ion spins in semiconductor nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 35(2), 264–271. https://doi.org/10.1016/j.physe.2006.08.032
, Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Structural, electrical, and magneto-optical characterization of paramagnetic GaMnAs quantum wells. Physical Review B - Condensed Matter and Materials Physics, 72(23). https://doi.org/10.1103/physrevb.72.235313
, Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Structural, electrical, and magneto-optical characterization of paramagnetic GaMnAs quantum wells. Physical Review B - Condensed Matter and Materials Physics, 72(23). https://doi.org/10.1103/physrevb.72.235313
Myers, R.C., , Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Erratum: Antiferromagnetic s-d exchange coupling in GaMnAs (Physics Review Letter (2005) 95 (017204)). Physical Review Letters, 95(22). https://doi.org/10.1103/physrevlett.95.229902
Myers, R.C., , Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Erratum: Antiferromagnetic s-d exchange coupling in GaMnAs (Physics Review Letter (2005) 95 (017204)). Physical Review Letters, 95(22). https://doi.org/10.1103/physrevlett.95.229902
Stern, N.P., , Bartl, M.H., Hu, E.L., Stucky, G.D., & Awschalom, D.D. (2005). Spin dynamics in electrochemically charged CdSe quantum dots. Physical Review B - Condensed Matter and Materials Physics, 72(16). https://doi.org/10.1103/physrevb.72.161303
Stern, N.P., , Bartl, M.H., Hu, E.L., Stucky, G.D., & Awschalom, D.D. (2005). Spin dynamics in electrochemically charged CdSe quantum dots. Physical Review B - Condensed Matter and Materials Physics, 72(16). https://doi.org/10.1103/physrevb.72.161303
Myers, R.C., , Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Antiferromagnetic s-d exchange coupling in GaMnAs. Physical Review Letters, 95(1). https://doi.org/10.1103/physrevlett.95.017204
Myers, R.C., , Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2005). Antiferromagnetic s-d exchange coupling in GaMnAs. Physical Review Letters, 95(1). https://doi.org/10.1103/physrevlett.95.017204
, & Awschalom, D.D. (2005). High-field optically detected nuclear magnetic resonance in GaAs. Applied Physics Letters, 86(18), 1–3. https://doi.org/10.1063/1.1923191
, & Awschalom, D.D. (2005). High-field optically detected nuclear magnetic resonance in GaAs. Applied Physics Letters, 86(18), 1–3. https://doi.org/10.1063/1.1923191
, Steeves, G.M., Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2004). Spin transfer and coherence in coupled quantum wells. Physical Review B - Condensed Matter and Materials Physics, 70(12). https://doi.org/10.1103/physrevb.70.121305
, Steeves, G.M., Myers, R.C., Stern, N.P., Gossard, A.C., & Awschalom, D.D. (2004). Spin transfer and coherence in coupled quantum wells. Physical Review B - Condensed Matter and Materials Physics, 70(12). https://doi.org/10.1103/physrevb.70.121305