Publications
58 found
Show per page
Stubbusch, Astrid K.M., Peaudecerf, Francois J., Soo Lee, Kang, Paoli, Lucas, Schwartzman, Julia, Stocker, Roman, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.04.621785
, Schubert, Olga T., Ackermann, Martin, Magnabosco, Cara, & D’Souza, Glen G. (2024). Antagonism as a foraging strategy in microbial communities [Posted-content]. In
Stubbusch, Astrid K.M., Peaudecerf, Francois J., Soo Lee, Kang, Paoli, Lucas, Schwartzman, Julia, Stocker, Roman, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.04.621785
, Schubert, Olga T., Ackermann, Martin, Magnabosco, Cara, & D’Souza, Glen G. (2024). Antagonism as a foraging strategy in microbial communities [Posted-content]. In
Smith, William P. J., Armstrong-Bond, Ewan, Coyte, Katharine Z., Knight, Christopher G., bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.07.30.605577
, & Brockhurst, Michael A. (2024). Multiplicity of Type 6 Secretion System toxins limits the evolution of resistance [Posted-content]. In
Smith, William P. J., Armstrong-Bond, Ewan, Coyte, Katharine Z., Knight, Christopher G., bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.07.30.605577
, & Brockhurst, Michael A. (2024). Multiplicity of Type 6 Secretion System toxins limits the evolution of resistance [Posted-content]. In
George, M., Narayanan, S., Tejada-Arranz, A., Plack, A., & mBio, 15(8). https://doi.org/10.1128/mbio.00355-24
(2024). Initiation of H1-T6SS dueling between Pseudomonas aeruginosa [Journal-article].
George, M., Narayanan, S., Tejada-Arranz, A., Plack, A., & mBio, 15(8). https://doi.org/10.1128/mbio.00355-24
(2024). Initiation of H1-T6SS dueling between Pseudomonas aeruginosa [Journal-article].
Plum, Miro Thorsten Wilhelm, Cheung, Hoi Ching, Iscar, Patricia Reist, Iscar, Patricia Reist, Chen, Yahua, Gan, Yunn-Hwen, & Cell Host & Microbe, 32(5), 676–692. https://doi.org/10.1016/j.chom.2024.03.013
. (2024). Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses [Journal-article].
Plum, Miro Thorsten Wilhelm, Cheung, Hoi Ching, Iscar, Patricia Reist, Iscar, Patricia Reist, Chen, Yahua, Gan, Yunn-Hwen, & Cell Host & Microbe, 32(5), 676–692. https://doi.org/10.1016/j.chom.2024.03.013
. (2024). Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses [Journal-article].
Sollier, Julie, Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
, Broz, Petr, Dittrich, Petra S., Drescher, Knut, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions.
Sollier, Julie, Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
, Broz, Petr, Dittrich, Petra S., Drescher, Knut, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions.
Trotta, Kristine L., Hayes, Beth M., Schneider, Johannes P., Wang, Jing, Todor, Horia, Rockefeller Grimes, Patrick, Zhao, Ziyi, Hatleberg, William L., Silvis, Melanie R., Kim, Rachel, Koo, Byoung Mo, PLoS Pathogens, 19(6), e1011454. https://doi.org/10.1371/journal.ppat.1011454
, & Chou, Seemay. (2023). Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin.
Trotta, Kristine L., Hayes, Beth M., Schneider, Johannes P., Wang, Jing, Todor, Horia, Rockefeller Grimes, Patrick, Zhao, Ziyi, Hatleberg, William L., Silvis, Melanie R., Kim, Rachel, Koo, Byoung Mo, PLoS Pathogens, 19(6), e1011454. https://doi.org/10.1371/journal.ppat.1011454
, & Chou, Seemay. (2023). Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin.
Trotta, Kristine L., Hayes, Beth M., Schneider, Johannes P., Wang, Jing, Todor, Horia, Rockefeller Grimes, Patrick, Zhao, Ziyi, Hatleberg, William L., Silvis, Melanie R., Kim, Rachel, Koo, Byoung Mo, Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin. bioRxiv. https://doi.org/10.1101/2023.01.20.524922
, & Chou, Seemay. (2023).
Trotta, Kristine L., Hayes, Beth M., Schneider, Johannes P., Wang, Jing, Todor, Horia, Rockefeller Grimes, Patrick, Zhao, Ziyi, Hatleberg, William L., Silvis, Melanie R., Kim, Rachel, Koo, Byoung Mo, Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin. bioRxiv. https://doi.org/10.1101/2023.01.20.524922
, & Chou, Seemay. (2023).
Adamer, Michael F., Brüningk, Sarah C., Tejada-Arranz, Alejandro, Estermann, Fabienne, Bioinformatics Advances, 2(1), vbac071. https://doi.org/10.1093/bioadv/vbac071
, & Borgwardt, Karsten. (2022). reComBat: batch-effect removal in large-scale multi-source gene-expression data integration.
Adamer, Michael F., Brüningk, Sarah C., Tejada-Arranz, Alejandro, Estermann, Fabienne, Bioinformatics Advances, 2(1), vbac071. https://doi.org/10.1093/bioadv/vbac071
, & Borgwardt, Karsten. (2022). reComBat: batch-effect removal in large-scale multi-source gene-expression data integration.
Lin, Lin, Capozzoli, Raffaella, Ferrand, Alexia, Plum, Miro, Vettiger, Andrea, & The EMBO Journal, 41(13), e108595. https://doi.org/10.15252/embj.2021108595
. (2022). Subcellular localization of Type VI secretion system assembly in response to cell-cell contact.
Lin, Lin, Capozzoli, Raffaella, Ferrand, Alexia, Plum, Miro, Vettiger, Andrea, & The EMBO Journal, 41(13), e108595. https://doi.org/10.15252/embj.2021108595
. (2022). Subcellular localization of Type VI secretion system assembly in response to cell-cell contact.
Adamer, Michael R., Brüningk, Sarah C., Tejada-Arranz, Alejandro, Estermann, Fabienne, reComBat: Batch effect removal in large-scale, multi-source omics data integration. biorxiv.org. https://doi.org/10.1101/2021.11.22.469488
, & Borgwardt, Karsten. (2021).
Adamer, Michael R., Brüningk, Sarah C., Tejada-Arranz, Alejandro, Estermann, Fabienne, reComBat: Batch effect removal in large-scale, multi-source omics data integration. biorxiv.org. https://doi.org/10.1101/2021.11.22.469488
, & Borgwardt, Karsten. (2021).
Brodmann, Maj, Schnider, Sophie T., & Infection and immunity, 89(7), e0057920. https://doi.org/10.1128/iai.00579-20
. (2021). Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to; Francisella; Virulence in Galleria mellonella Larvae.
Brodmann, Maj, Schnider, Sophie T., & Infection and immunity, 89(7), e0057920. https://doi.org/10.1128/iai.00579-20
. (2021). Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to; Francisella; Virulence in Galleria mellonella Larvae.
García-Bayona, Leonor, Coyne, Michael J., Hantman, Noam, Montero-Llopis, Paula, Von, Salena S., Ito, Takeshi, Malamy, Michael H., Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24484–24493. https://doi.org/10.1073/pnas.2009556117
, Barquera, Blanca, & Comstock, Laurie E. (2020). Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts.
García-Bayona, Leonor, Coyne, Michael J., Hantman, Noam, Montero-Llopis, Paula, Von, Salena S., Ito, Takeshi, Malamy, Michael H., Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24484–24493. https://doi.org/10.1073/pnas.2009556117
, Barquera, Blanca, & Comstock, Laurie E. (2020). Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts.
Smith, William P. J., Brodmann, Maj, Unterweger, Daniel, Davit, Yohan, Comstock, Laurie E., Nature Communications, 11(1), 5395. https://doi.org/10.1038/s41467-020-19017-z
, & Foster, Kevin R. (2020). The evolution of tit-for-tat in bacteria via the type VI secretion system.
Smith, William P. J., Brodmann, Maj, Unterweger, Daniel, Davit, Yohan, Comstock, Laurie E., Nature Communications, 11(1), 5395. https://doi.org/10.1038/s41467-020-19017-z
, & Foster, Kevin R. (2020). The evolution of tit-for-tat in bacteria via the type VI secretion system.
Smith, William P. J., Vettiger, Andrea, Winter, Julius, Ryser, Till, Comstock, Laurie E., PLoS biology, 18(5), e3000720. https://doi.org/10.1371/journal.pbio.3000720
, & Foster, Kevin R. (2020). The evolution of the type VI secretion system as a disintegration weapon.
Smith, William P. J., Vettiger, Andrea, Winter, Julius, Ryser, Till, Comstock, Laurie E., PLoS biology, 18(5), e3000720. https://doi.org/10.1371/journal.pbio.3000720
, & Foster, Kevin R. (2020). The evolution of the type VI secretion system as a disintegration weapon.
Basler, M. (2019). Cellular microbiology interview—Dr Marek Basler. Cellular Microbiology, 21(4). https://doi.org/10.1111/cmi.12991
Basler, M. (2019). Cellular microbiology interview—Dr Marek Basler. Cellular Microbiology, 21(4). https://doi.org/10.1111/cmi.12991
Agnetti, Jessica, Seth-Smith, Helena M. B., Ursich, Sebastian, Reist, Josiane, BMC Infectious Diseases, 19(1), 237. https://doi.org/10.1186/s12879-019-3858-x
, Nickel, Christian, Bassetti, Stefano, Ritz, Nicole, Tschudin-Sutter, Sarah, & Egli, Adrian. (2019). Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection.
Agnetti, Jessica, Seth-Smith, Helena M. B., Ursich, Sebastian, Reist, Josiane, BMC Infectious Diseases, 19(1), 237. https://doi.org/10.1186/s12879-019-3858-x
, Nickel, Christian, Bassetti, Stefano, Ritz, Nicole, Tschudin-Sutter, Sarah, & Egli, Adrian. (2019). Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection.
Lin, Lin, Lezan, Emmanuelle, Schmidt, Alexander, & Nature Communications, 10(1), 2584. https://doi.org/10.1038/s41467-019-10466-9
. (2019). Abundance of bacterial Type VI secretion system components measured by targeted proteomics.
Lin, Lin, Lezan, Emmanuelle, Schmidt, Alexander, & Nature Communications, 10(1), 2584. https://doi.org/10.1038/s41467-019-10466-9
. (2019). Abundance of bacterial Type VI secretion system components measured by targeted proteomics.
Lin, Lin, Ringel, Peter David, Vettiger, Andrea, Dürr, Lara, & Cell Reports, 29(6), 1633–1644. https://doi.org/10.1016/j.celrep.2019.09.083
. (2019). DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi.
Lin, Lin, Ringel, Peter David, Vettiger, Andrea, Dürr, Lara, & Cell Reports, 29(6), 1633–1644. https://doi.org/10.1016/j.celrep.2019.09.083
. (2019). DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi.
Schneider, Johannes Paul, Nazarov, Sergey, Adaixo, Ricardo, Liuzzo, Martina, Ringel, Peter David, Stahlberg, Henning, & The EMBO journal, 38(18), e100825. https://doi.org/10.15252/embj.2018100825
. (2019). Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems.
Schneider, Johannes Paul, Nazarov, Sergey, Adaixo, Ricardo, Liuzzo, Martina, Ringel, Peter David, Stahlberg, Henning, & The EMBO journal, 38(18), e100825. https://doi.org/10.15252/embj.2018100825
. (2019). Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems.
Wang, Jing, Brodmann, Maj, & Annual Review of Microbiology, 73, 621–638. https://doi.org/10.1146/annurev-micro-020518-115420
. (2019). Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems.
Wang, Jing, Brodmann, Maj, & Annual Review of Microbiology, 73, 621–638. https://doi.org/10.1146/annurev-micro-020518-115420
. (2019). Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems.
Basler, M., & Shao, F. (2018). Bacterial infection and symbiosis. 29, 683–684. https://doi.org/10.1091/mbc.E17-11-0668
Basler, M., & Shao, F. (2018). Bacterial infection and symbiosis. 29, 683–684. https://doi.org/10.1091/mbc.E17-11-0668
Brackmann, Maximilian, Wang, Jing, & EMBO Reports, 19(2), 225–233. https://doi.org/10.15252/embr.201744416
. (2018). Type VI secretion system sheath inter-subunit interactions modulate its contraction.
Brackmann, Maximilian, Wang, Jing, & EMBO Reports, 19(2), 225–233. https://doi.org/10.15252/embr.201744416
. (2018). Type VI secretion system sheath inter-subunit interactions modulate its contraction.
Brodmann, Maj, Heilig, Rosalie, Broz, Petr, & Frontiers in Cellular and Infection Microbiology, 8, 284. https://doi.org/10.3389/fcimb.2018.00284
. (2018). Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida.
Brodmann, Maj, Heilig, Rosalie, Broz, Petr, & Frontiers in Cellular and Infection Microbiology, 8, 284. https://doi.org/10.3389/fcimb.2018.00284
. (2018). Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida.
Nazarov, Sergey, Schneider, Johannes P., Brackmann, Maximilian, Goldie, Kenneth N., Stahlberg, Henning, & The EMBO Journal, 37(4), e97103. https://doi.org/10.15252/embj.201797103
. (2018). Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end.
Nazarov, Sergey, Schneider, Johannes P., Brackmann, Maximilian, Goldie, Kenneth N., Stahlberg, Henning, & The EMBO Journal, 37(4), e97103. https://doi.org/10.15252/embj.201797103
. (2018). Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end.
Brackmann, Maximilian, Wang, Jing, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/152785
. (2017). VipA N-terminal linker and VipB-VipB interaction modulate the contraction of Type VI secretion system sheath [Posted-content]. In
Brackmann, Maximilian, Wang, Jing, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/152785
. (2017). VipA N-terminal linker and VipB-VipB interaction modulate the contraction of Type VI secretion system sheath [Posted-content]. In
Brackmann, Maximilian, Nazarov, Sergey, Wang, Jing, & Trends in Cell Biology, 27(9), 623–632. https://doi.org/10.1016/j.tcb.2017.05.003
. (2017). Using Force to Punch Holes: Mechanics of Contractile Nanomachines.
Brackmann, Maximilian, Nazarov, Sergey, Wang, Jing, & Trends in Cell Biology, 27(9), 623–632. https://doi.org/10.1016/j.tcb.2017.05.003
. (2017). Using Force to Punch Holes: Mechanics of Contractile Nanomachines.
Brodmann, Maj, Dreier, Roland F., Broz, Petr, & Nature Communications, 8, 15853. https://doi.org/10.1038/ncomms15853
. (2017). Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape.
Brodmann, Maj, Dreier, Roland F., Broz, Petr, & Nature Communications, 8, 15853. https://doi.org/10.1038/ncomms15853
. (2017). Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape.
Ringel, Peter David, Hu, Di, & Cell Reports, 21(13), 3927–3940. https://doi.org/10.1016/j.celrep.2017.12.020
. (2017). The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer.
Ringel, Peter David, Hu, Di, & Cell Reports, 21(13), 3927–3940. https://doi.org/10.1016/j.celrep.2017.12.020
. (2017). The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer.
Vettiger, Andrea, Winter, Julius, Lin, Lin, & Nature Communications, 8, 16088. https://doi.org/10.1038/ncomms16088
. (2017). The type VI secretion system sheath assembles at the end distal from the membrane anchor.
Vettiger, Andrea, Winter, Julius, Lin, Lin, & Nature Communications, 8, 16088. https://doi.org/10.1038/ncomms16088
. (2017). The type VI secretion system sheath assembles at the end distal from the membrane anchor.
Wang, Jing, Brackmann, Maximilian, Castaño-Díez, Daniel, Kudryashev, Mikhail, Goldie, Kenneth N., Maier, Timm, Stahlberg, Henning, & Nature Microbiology, 2(11), 1507–1512. https://doi.org/10.1038/s41564-017-0020-7
. (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex.
Wang, Jing, Brackmann, Maximilian, Castaño-Díez, Daniel, Kudryashev, Mikhail, Goldie, Kenneth N., Maier, Timm, Stahlberg, Henning, & Nature Microbiology, 2(11), 1507–1512. https://doi.org/10.1038/s41564-017-0020-7
. (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex.
Nelson, Michaeline B., Chase, Alexander B., Martiny, Jennifer B. H., Stocker, Roman, Nguyen, Jen, Lloyd, Karen, Oshiro, Reid T., Kearns, Daniel B., Schneider, Johannes P., Ringel, Peter D., Nature Microbiology, 1(8), 16122. https://doi.org/10.1038/nmicrobiol.2016.122
, Olson, Christine A., Vuong, Helen E., Hsiao, Elaine Y., Roller, Benjamin R. K., Ackermann, Martin, Smillie, Chris, Chien, Diana, Alm, Eric, & Jermy, Andrew J. (2016). The Microbial Olympics 2016.
Nelson, Michaeline B., Chase, Alexander B., Martiny, Jennifer B. H., Stocker, Roman, Nguyen, Jen, Lloyd, Karen, Oshiro, Reid T., Kearns, Daniel B., Schneider, Johannes P., Ringel, Peter D., Nature Microbiology, 1(8), 16122. https://doi.org/10.1038/nmicrobiol.2016.122
, Olson, Christine A., Vuong, Helen E., Hsiao, Elaine Y., Roller, Benjamin R. K., Ackermann, Martin, Smillie, Chris, Chien, Diana, Alm, Eric, & Jermy, Andrew J. (2016). The Microbial Olympics 2016.
Schneider, Johannes P., & Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences, 371(1707), 20150499. https://doi.org/10.1098/rstb.2015.0499
. (2016). Shedding light on biology of bacterial cells.
Schneider, Johannes P., & Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences, 371(1707), 20150499. https://doi.org/10.1098/rstb.2015.0499
. (2016). Shedding light on biology of bacterial cells.
Vettiger, Andrea, & Cell, 167(1), 99–110. https://doi.org/10.1016/j.cell.2016.08.023
. (2016). Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells.
Vettiger, Andrea, & Cell, 167(1), 99–110. https://doi.org/10.1016/j.cell.2016.08.023
. (2016). Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells.
Philosophical Transactions : the Royal Society of London, 370(1679), 20150021. https://doi.org/10.1098/rstb.2015.0021
. (2015). Type VI secretion system : secretion by a contractile nanomachine.
Philosophical Transactions : the Royal Society of London, 370(1679), 20150021. https://doi.org/10.1098/rstb.2015.0021
. (2015). Type VI secretion system : secretion by a contractile nanomachine.
Borenstein, David Bruce, Ringel, Peter, PLoS Computational Biology, 11(10), e1004520. https://doi.org/10.1371/journal.pcbi.1004520
, & Wingreen, Ned S. (2015). Established microbial colonies can survive type VI secretion assault.
Borenstein, David Bruce, Ringel, Peter, PLoS Computational Biology, 11(10), e1004520. https://doi.org/10.1371/journal.pcbi.1004520
, & Wingreen, Ned S. (2015). Established microbial colonies can survive type VI secretion assault.
Kudryashev, Mikhail, Wang, Ray Yu-Ruei, Brackmann, Maximilian, Scherer, Sebastian, Maier, Timm, Baker, David, DiMaio, Frank, Stahlberg, Henning, Egelman, Edward H, & Cell, 160(5), 952–962. https://doi.org/10.1016/j.cell.2015.01.037
. (2015). Structure of the Type VI Secretion System Contractile Sheath.
Kudryashev, Mikhail, Wang, Ray Yu-Ruei, Brackmann, Maximilian, Scherer, Sebastian, Maier, Timm, Baker, David, DiMaio, Frank, Stahlberg, Henning, Egelman, Edward H, & Cell, 160(5), 952–962. https://doi.org/10.1016/j.cell.2015.01.037
. (2015). Structure of the Type VI Secretion System Contractile Sheath.
Wang, Ray Yu-Ruei, Kudryashev, Mikhail, Li, Xueming, Egelman, Edward H, Nature Methods, 12(4), 335–338. https://doi.org/10.1038/nmeth.3287
, Cheng, Yifan, Baker, David, & DiMaio, Frank. (2015). De novo protein structure determination from near-atomic-resolution cryo-EM maps.
Wang, Ray Yu-Ruei, Kudryashev, Mikhail, Li, Xueming, Egelman, Edward H, Nature Methods, 12(4), 335–338. https://doi.org/10.1038/nmeth.3287
, Cheng, Yifan, Baker, David, & DiMaio, Frank. (2015). De novo protein structure determination from near-atomic-resolution cryo-EM maps.
Cell, 152(4), 884–894. https://doi.org/10.1016/j.cell.2013.01.042
, Ho, Brian T., & Mekalanos, John J. (2013). Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions.
Cell, 152(4), 884–894. https://doi.org/10.1016/j.cell.2013.01.042
, Ho, Brian T., & Mekalanos, John J. (2013). Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions.
Ho, Brian T., Science, 342(6155), 250–253. https://doi.org/10.1126/science.1243745
, & Mekalanos, John J. (2013). Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer.
Ho, Brian T., Science, 342(6155), 250–253. https://doi.org/10.1126/science.1243745
, & Mekalanos, John J. (2013). Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer.
Shneider, Mikhail M., Buth, Sergey A., Ho, Brian T., Nature, 500(7462), 350–353. https://doi.org/10.1038/nature12453
, Mekalanos, John J., & Leiman, Petr G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike.
Shneider, Mikhail M., Buth, Sergey A., Ho, Brian T., Nature, 500(7462), 350–353. https://doi.org/10.1038/nature12453
, Mekalanos, John J., & Leiman, Petr G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike.
Science, 337(6096), 815. https://doi.org/10.1126/science.1222901
, & Mekalanos, J. J. (2012). Type 6 secretion dynamics within and between bacterial cells.
Science, 337(6096), 815. https://doi.org/10.1126/science.1222901
, & Mekalanos, J. J. (2012). Type 6 secretion dynamics within and between bacterial cells.
Nature, 483(7388), 182–186. https://doi.org/10.1038/nature10846
, Pilhofer, M., Henderson, G. P., Jensen, G. J., & Mekalanos, J. J. (2012). Type VI secretion requires a dynamic contractile phage tail-like structure.
Nature, 483(7388), 182–186. https://doi.org/10.1038/nature10846
, Pilhofer, M., Henderson, G. P., Jensen, G. J., & Mekalanos, J. J. (2012). Type VI secretion requires a dynamic contractile phage tail-like structure.
Fiser, Radovan, Masin, Jiri, Bumba, Ladislav, Pospisilova, Eva, Fayolle, Catherine, PLoS Pathogens, 8(4), e1002580. https://doi.org/10.1371/journal.ppat.1002580
, Sadilkova, Lenka, Adkins, Irena, Kamanova, Jana, Cerny, Jan, Konopasek, Ivo, Osicka, Radim, Leclerc, Claude, & Sebo, Peter. (2012). Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.
Fiser, Radovan, Masin, Jiri, Bumba, Ladislav, Pospisilova, Eva, Fayolle, Catherine, PLoS Pathogens, 8(4), e1002580. https://doi.org/10.1371/journal.ppat.1002580
, Sadilkova, Lenka, Adkins, Irena, Kamanova, Jana, Cerny, Jan, Konopasek, Ivo, Osicka, Radim, Leclerc, Claude, & Sebo, Peter. (2012). Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.
Horváthová, Lenka, Safaríková, Lucie, Genome Biology and Evolution, 4(10), 1017–1029. https://doi.org/10.1093/gbe/evs078
, Hrdy, Ivan, Campo, Neritza B., Shin, Jyh-Wei, Huang, Kuo-Yang, Huang, Po-Jung, Lin, Rose, Tang, Petrus, & Tachezy, Jan. (2012). Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome.
Horváthová, Lenka, Safaríková, Lucie, Genome Biology and Evolution, 4(10), 1017–1029. https://doi.org/10.1093/gbe/evs078
, Hrdy, Ivan, Campo, Neritza B., Shin, Jyh-Wei, Huang, Kuo-Yang, Huang, Po-Jung, Lin, Rose, Tang, Petrus, & Tachezy, Jan. (2012). Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome.
Rao, Jayasimha, Damron, F. Heath, Frontiers in Microbiology, 2, 162. https://doi.org/10.3389/fmicb.2011.00162
, Digiandomenico, Antonio, Sherman, Nicholas E., Fox, Jay W., Mekalanos, John J., & Goldberg, Joanna B. (2011). Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient.
Rao, Jayasimha, Damron, F. Heath, Frontiers in Microbiology, 2, 162. https://doi.org/10.3389/fmicb.2011.00162
, Digiandomenico, Antonio, Sherman, Nicholas E., Fox, Jay W., Mekalanos, John J., & Goldberg, Joanna B. (2011). Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient.
Linhartová, Irena, Bumba, Ladislav, Mašín, Jiří, FEMS Microbiology Reviews, 34(6), 1076–1112. https://doi.org/10.1111/j.1574-6976.2010.00231.x
, Osička, Radim, Kamanová, Jana, Procházková, Kateřina, Adkins, Irena, Hejnová-Holubová, Jana, Sadílková, Lenka, Morová, Jana, & Sebo, Peter. (2010). RTX proteins: a highly diverse family secreted by a common mechanism.
Linhartová, Irena, Bumba, Ladislav, Mašín, Jiří, FEMS Microbiology Reviews, 34(6), 1076–1112. https://doi.org/10.1111/j.1574-6976.2010.00231.x
, Osička, Radim, Kamanová, Jana, Procházková, Kateřina, Adkins, Irena, Hejnová-Holubová, Jana, Sadílková, Lenka, Morová, Jana, & Sebo, Peter. (2010). RTX proteins: a highly diverse family secreted by a common mechanism.
Osickova, Adriana, Masin, Jiri, Fayolle, Catherine, Krusek, Jan, Molecular Microbiology, 75(6), 1550–1562. https://doi.org/10.1111/j.1365-2958.2010.07077.x
, Pospisilova, Eva, Leclerc, Claude, Osicka, Radim, & Sebo, Peter. (2010). Adenylate cyclase toxin translocates across target cell membrane without forming a pore.
Osickova, Adriana, Masin, Jiri, Fayolle, Catherine, Krusek, Jan, Molecular Microbiology, 75(6), 1550–1562. https://doi.org/10.1111/j.1365-2958.2010.07077.x
, Pospisilova, Eva, Leclerc, Claude, Osicka, Radim, & Sebo, Peter. (2010). Adenylate cyclase toxin translocates across target cell membrane without forming a pore.
Leiman, Petr G., Proceedings of the National Academy of Sciences, 106(11), 4154–4159. https://doi.org/10.1073/pnas.0813360106
, Ramagopal, Udupi A., Bonanno, Jeffrey B., Sauder, J. Michael, Pukatzki, Stefan, Burley, Stephen K., Almo, Steven C., & Mekalanos, John J. (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin.
Leiman, Petr G., Proceedings of the National Academy of Sciences, 106(11), 4154–4159. https://doi.org/10.1073/pnas.0813360106
, Ramagopal, Udupi A., Bonanno, Jeffrey B., Sauder, J. Michael, Pukatzki, Stefan, Burley, Stephen K., Almo, Steven C., & Mekalanos, John J. (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin.
Vojtova-Vodolanova, Jana, FASEB Journal, 23(9), 2831–2843. https://doi.org/10.1096/fj.09-131250
, Osicka, Radim, Knapp, Oliver, Maier, Elke, Cerny, Jan, Benada, Oldrich, Benz, Roland, & Sebo, Peter. (2009). Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin.
Vojtova-Vodolanova, Jana, FASEB Journal, 23(9), 2831–2843. https://doi.org/10.1096/fj.09-131250
, Osicka, Radim, Knapp, Oliver, Maier, Elke, Cerny, Jan, Benada, Oldrich, Benz, Roland, & Sebo, Peter. (2009). Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin.
Pánek, Josef, Bobek, Jan, Mikulík, Karel, BMC Genomics, 9, 217. https://doi.org/10.1186/1471-2164-9-217
, & Vohradský, Jirí. (2008). Biocomputational prediction of small non-coding RNAs in Streptomyces.
Pánek, Josef, Bobek, Jan, Mikulík, Karel, BMC Genomics, 9, 217. https://doi.org/10.1186/1471-2164-9-217
, & Vohradský, Jirí. (2008). Biocomputational prediction of small non-coding RNAs in Streptomyces.
Journal of Biological Chemistry, 282(17), 12419–12429. https://doi.org/10.1074/jbc.m611226200
, Knapp, Oliver, Masin, Jiri, Fiser, Radovan, Maier, Elke, Benz, Roland, Sebo, Peter, & Osicka, Radim. (2007). Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin.
Journal of Biological Chemistry, 282(17), 12419–12429. https://doi.org/10.1074/jbc.m611226200
, Knapp, Oliver, Masin, Jiri, Fiser, Radovan, Maier, Elke, Benz, Roland, Sebo, Peter, & Osicka, Radim. (2007). Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin.
Fiser, Radovan, Masín, Jirí, Journal of Biological Chemistry, 282(5), 2808–2820. https://doi.org/10.1074/jbc.m609979200
, Krusek, Jan, Spuláková, Veronika, Konopásek, Ivo, & Sebo, Peter. (2007). Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities.
Fiser, Radovan, Masín, Jirí, Journal of Biological Chemistry, 282(5), 2808–2820. https://doi.org/10.1074/jbc.m609979200
, Krusek, Jan, Spuláková, Veronika, Konopásek, Ivo, & Sebo, Peter. (2007). Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities.
Frýdlová, Ivana, Current Genetics, 52(2), 87–95. https://doi.org/10.1007/s00294-007-0141-2
, Vasicová, Pavla, Malcová, Ivana, & Hasek, Jirí. (2007). Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae.
Frýdlová, Ivana, Current Genetics, 52(2), 87–95. https://doi.org/10.1007/s00294-007-0141-2
, Vasicová, Pavla, Malcová, Ivana, & Hasek, Jirí. (2007). Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae.
Sasková, Lenka, Nováková, Linda, Journal of Bacteriology, 189(11), 4168–4179. https://doi.org/10.1128/jb.01616-06
, & Branny, Pavel. (2007). Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae.
Sasková, Lenka, Nováková, Linda, Journal of Bacteriology, 189(11), 4168–4179. https://doi.org/10.1128/jb.01616-06
, & Branny, Pavel. (2007). Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae.
Proteomics, 6(23), 6194–6206. https://doi.org/10.1002/pmic.200600312
, Linhartová, Irena, Halada, Petr, Novotná, Jana, Bezousková, Silvia, Osicka, Radim, Weiser, Jaroslav, Vohradský, Jirí, & Sebo, Peter. (2006). The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C.
Proteomics, 6(23), 6194–6206. https://doi.org/10.1002/pmic.200600312
, Linhartová, Irena, Halada, Petr, Novotná, Jana, Bezousková, Silvia, Osicka, Radim, Weiser, Jaroslav, Vohradský, Jirí, & Sebo, Peter. (2006). The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C.
Infection and Immunity, 74(4), 2207–2214. https://doi.org/10.1128/iai.74.4.2207-2214.2006
, Masin, Jiri, Osicka, Radim, & Sebo, Peter. (2006). Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes.
Infection and Immunity, 74(4), 2207–2214. https://doi.org/10.1128/iai.74.4.2207-2214.2006
, Masin, Jiri, Osicka, Radim, & Sebo, Peter. (2006). Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes.
Linhartova, Irena, FEMS Microbiology Letters, 263(1), 109–118. https://doi.org/10.1111/j.1574-6968.2006.00407.x
, Ichikawa, Jeffrey, Pelicic, Vladimir, Osicka, Radim, Lory, Stephen, Nassif, Xavier, & Sebo, Peter. (2006). Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells.
Linhartova, Irena, FEMS Microbiology Letters, 263(1), 109–118. https://doi.org/10.1111/j.1574-6968.2006.00407.x
, Ichikawa, Jeffrey, Pelicic, Vladimir, Osicka, Radim, Lory, Stephen, Nassif, Xavier, & Sebo, Peter. (2006). Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells.
Masin, Jiri, Biochemistry, 44(38), 12759–12766. https://doi.org/10.1021/bi050459b
, Knapp, Oliver, El-Azami-El-Idrissi, Mohammed, Maier, Elke, Konopasek, Ivo, Benz, Roland, Leclerc, Claude, & Sebo, Peter. (2005). Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells.
Masin, Jiri, Biochemistry, 44(38), 12759–12766. https://doi.org/10.1021/bi050459b
, Knapp, Oliver, El-Azami-El-Idrissi, Mohammed, Maier, Elke, Konopasek, Ivo, Benz, Roland, Leclerc, Claude, & Sebo, Peter. (2005). Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells.