Publications
127 found
Show per page
Galbusera, Luca, Bellement, Gwendoline, Julou, Thomas, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.28.625836
. (2024). Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage [Posted-content]. In
Galbusera, Luca, Bellement, Gwendoline, Julou, Thomas, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.28.625836
. (2024). Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage [Posted-content]. In
Grobecker, Pascal, Sakoparnig, Thomas, & PLOS Computational Biology, 20(7). https://doi.org/10.1371/journal.pcbi.1012224
. (2024). Identifying cell states in single-cell RNA-seq data at statistically maximal resolution [Journal-article].
Grobecker, Pascal, Sakoparnig, Thomas, & PLOS Computational Biology, 20(7). https://doi.org/10.1371/journal.pcbi.1012224
. (2024). Identifying cell states in single-cell RNA-seq data at statistically maximal resolution [Journal-article].
Bak, Maciej, Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48046-1
, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Zavolan, Mihaela, & Gruber, Andreas J. (2024). MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer [Journal-article].
Bak, Maciej, Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48046-1
, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Zavolan, Mihaela, & Gruber, Andreas J. (2024). MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer [Journal-article].
Bak, Maciej, Supplementary Results. https://doi.org/10.5281/zenodo.10849750
, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Zavolan, Mihaela, & Gruber, Andreas J. (2024, March 21).
Bak, Maciej, Supplementary Results. https://doi.org/10.5281/zenodo.10849750
, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Zavolan, Mihaela, & Gruber, Andreas J. (2024, March 21).
Bak, Maciej, Nature Communications, 15(1). https://doi.org/10.5281/zenodo.10845501
, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Zavolan, Mihaela, & Gruber, Andreas J. (2024). MAPP.
Bak, Maciej, Nature Communications, 15(1). https://doi.org/10.5281/zenodo.10845501
, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Zavolan, Mihaela, & Gruber, Andreas J. (2024). MAPP.
Gervais, Théo, Kscheschinski, Bjoern, Mell, Michael, Goepfert, Nevil, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.29.582700
, & Julou, Thomas. (2024). E. coli prepares for starvation by dramatically remodeling its proteome in the first hours after loss of nutrients [Posted-content]. In
Gervais, Théo, Kscheschinski, Bjoern, Mell, Michael, Goepfert, Nevil, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.29.582700
, & Julou, Thomas. (2024). E. coli prepares for starvation by dramatically remodeling its proteome in the first hours after loss of nutrients [Posted-content]. In
Sollier, Julie, Basler, Marek, Broz, Petr, Dittrich, Petra S., Drescher, Knut, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions. Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
Sollier, Julie, Basler, Marek, Broz, Petr, Dittrich, Petra S., Drescher, Knut, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions. Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
Grobecker, P., & van Nimwegen, E. (2023). Identifying cell states in single-cell RNA-seq data at statistically maximal resolution [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.31.564980
Grobecker, P., & van Nimwegen, E. (2023). Identifying cell states in single-cell RNA-seq data at statistically maximal resolution [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.31.564980
de Groot, Daan H., Tjalma, Age J., Bruggeman, Frank J., & Proceedings of the National Academy of Sciences of the United States of America, 120(8), e2211091120. https://doi.org/10.1073/pnas.2211091120
. (2023). Effective bet-hedging through growth rate dependent stability.
de Groot, Daan H., Tjalma, Age J., Bruggeman, Frank J., & Proceedings of the National Academy of Sciences of the United States of America, 120(8), e2211091120. https://doi.org/10.1073/pnas.2211091120
. (2023). Effective bet-hedging through growth rate dependent stability.
Katsantoni, Maria, Genome Biology, 24(1), 77. https://doi.org/10.1186/s13059-023-02913-0
, & Zavolan, Mihaela. (2023). Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs.
Katsantoni, Maria, Genome Biology, 24(1), 77. https://doi.org/10.1186/s13059-023-02913-0
, & Zavolan, Mihaela. (2023). Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs.
Grison, Alice, Karimaddini, Zahra, Breda, Jeremie, Mukhtar, Tanzila, Boareto, Marcelo, Eschbach, Katja, Beisel, Christian, Iber, Dagmar, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.12.16.520470
, Taylor, Verdon, & Atanasoski, Suzana. (2022). The protooncogene Ski regulates the neuron-glia switch during development of the mammalian cerebral cortex [Posted-content]. In
Grison, Alice, Karimaddini, Zahra, Breda, Jeremie, Mukhtar, Tanzila, Boareto, Marcelo, Eschbach, Katja, Beisel, Christian, Iber, Dagmar, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.12.16.520470
, Taylor, Verdon, & Atanasoski, Suzana. (2022). The protooncogene Ski regulates the neuron-glia switch during development of the mammalian cerebral cortex [Posted-content]. In
Kruglyak, L., Beyer, A., Bloom, J. S., Grossbach, J., Lieberman, T. D., Mancuso, C. P., Rich, M. S., Sherlock, G., van Nimwegen, E., & Kaplan, C. D. (2022). No evidence that synonymous mutations in yeast genes are mostly deleterious. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.07.14.500130
Kruglyak, L., Beyer, A., Bloom, J. S., Grossbach, J., Lieberman, T. D., Mancuso, C. P., Rich, M. S., Sherlock, G., van Nimwegen, E., & Kaplan, C. D. (2022). No evidence that synonymous mutations in yeast genes are mostly deleterious. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.07.14.500130
de Groot, D. H., Tjalma, A. J., Bruggeman, F. J., & van Nimwegen, E. (2022). Coupling phenotype stability to growth rate overcomes limitations of bet-hedging strategies [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.12.488059
de Groot, D. H., Tjalma, A. J., Bruggeman, F. J., & van Nimwegen, E. (2022). Coupling phenotype stability to growth rate overcomes limitations of bet-hedging strategies [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.12.488059
Julou, T., Gervais, T., & van Nimwegen, E. (2022). Growth rate controls the sensitivity of gene regulatory circuits [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.03.486858
Julou, T., Gervais, T., & van Nimwegen, E. (2022). Growth rate controls the sensitivity of gene regulatory circuits [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.03.486858
Baranasic, Damir, Hörtenhuber, Matthias, Balwierz, Piotr J., Zehnder, Tobias, Mukarram, Abdul Kadir, Nepal, Chirag, Várnai, Csilla, Hadzhiev, Yavor, Jimenez-Gonzalez, Ada, Li, Nan, Wragg, Joseph, D’Orazio, Fabio M., Relic, Dorde, Pachkov, Mikhail, Díaz, Noelia, Hernández-Rodríguez, Benjamín, Chen, Zelin, Stoiber, Marcus, Dong, Michaël, et al. (2022). Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 54(7), 1037–1050. https://doi.org/10.1038/s41588-022-01089-w
Baranasic, Damir, Hörtenhuber, Matthias, Balwierz, Piotr J., Zehnder, Tobias, Mukarram, Abdul Kadir, Nepal, Chirag, Várnai, Csilla, Hadzhiev, Yavor, Jimenez-Gonzalez, Ada, Li, Nan, Wragg, Joseph, D’Orazio, Fabio M., Relic, Dorde, Pachkov, Mikhail, Díaz, Noelia, Hernández-Rodríguez, Benjamín, Chen, Zelin, Stoiber, Marcus, Dong, Michaël, et al. (2022). Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 54(7), 1037–1050. https://doi.org/10.1038/s41588-022-01089-w
Mukhtar, Tanzila, Breda, Jeremie, Adam, Manal A., Boareto, Marcelo, Grobecker, Pascal, Karimaddini, Zahra, Grison, Alice, Eschbach, Katja, Chandrasekhar, Ramakrishnan, Vermeul, Swen, Okoniewski, Michal, Pachkov, Mikhail, Harwell, Corey C., Atanasoski, Suzana, Beisel, Christian, Iber, Dagmar, The EMBO Journal, 41(24), e111132. https://doi.org/10.15252/embj.2022111132
, & Taylor, Verdon. (2022). Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis.
Mukhtar, Tanzila, Breda, Jeremie, Adam, Manal A., Boareto, Marcelo, Grobecker, Pascal, Karimaddini, Zahra, Grison, Alice, Eschbach, Katja, Chandrasekhar, Ramakrishnan, Vermeul, Swen, Okoniewski, Michal, Pachkov, Mikhail, Harwell, Corey C., Atanasoski, Suzana, Beisel, Christian, Iber, Dagmar, The EMBO Journal, 41(24), e111132. https://doi.org/10.15252/embj.2022111132
, & Taylor, Verdon. (2022). Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis.
Bloom, Jesse D., Chan, Yujia Alina, Baric, Ralph S., Bjorkman, Pamela J., Cobey, Sarah, Deverman, Benjamin E., Fisman, David N., Gupta, Ravindra, Iwasaki, Akiko, Lipsitch, Marc, Medzhitov, Ruslan, Neher, Richard A., Nielsen, Rasmus, Patterson, Nick, Stearns, Tim, Science, 372(6543), 694. https://doi.org/10.1126/science.abj0016
, Worobey, Michael, & Relman, David A. (2021). Investigate the origins of COVID-19.
Bloom, Jesse D., Chan, Yujia Alina, Baric, Ralph S., Bjorkman, Pamela J., Cobey, Sarah, Deverman, Benjamin E., Fisman, David N., Gupta, Ravindra, Iwasaki, Akiko, Lipsitch, Marc, Medzhitov, Ruslan, Neher, Richard A., Nielsen, Rasmus, Patterson, Nick, Stearns, Tim, Science, 372(6543), 694. https://doi.org/10.1126/science.abj0016
, Worobey, Michael, & Relman, David A. (2021). Investigate the origins of COVID-19.
Breda, Jérémie, Zavolan, Mihaela, & Nature Biotechnology, 39(8), 1008–1016. https://doi.org/10.1038/s41587-021-00875-x
. (2021). Bayesian inference of gene expression states from single-cell RNA-seq data.
Breda, Jérémie, Zavolan, Mihaela, & Nature Biotechnology, 39(8), 1008–1016. https://doi.org/10.1038/s41587-021-00875-x
. (2021). Bayesian inference of gene expression states from single-cell RNA-seq data.
Sakoparnig, Thomas, Field, Chris, & eLife, 10, e65366. https://doi.org/10.7554/elife.65366
. (2021). Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species.
Sakoparnig, Thomas, Field, Chris, & eLife, 10, e65366. https://doi.org/10.7554/elife.65366
. (2021). Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species.
Urchueguía, Arantxa, Galbusera, Luca, Chauvin, Dany, Bellement, Gwendoline, Julou, Thomas, & PLoS Biology, 19(12), e3001491. https://doi.org/10.1371/journal.pbio.3001491
. (2021). Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network.
Urchueguía, Arantxa, Galbusera, Luca, Chauvin, Dany, Bellement, Gwendoline, Julou, Thomas, & PLoS Biology, 19(12), e3001491. https://doi.org/10.1371/journal.pbio.3001491
. (2021). Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network.
Galbusera, Luca, Bellement-Theroue, Gwendoline, Urchueguia, Arantxa, Julou, Thomas, & PLoS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233
. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria.
Galbusera, Luca, Bellement-Theroue, Gwendoline, Urchueguia, Arantxa, Julou, Thomas, & PLoS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233
. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria.
Julou, Thomas, & Single-cell data on lac operon induction by lactose in E. coli (Julou, Thomas; ;, Ed.) [dataset]. https://doi.org/10.5281/zenodo.3894719
. (2020).
Julou, Thomas, & Single-cell data on lac operon induction by lactose in E. coli (Julou, Thomas; ;, Ed.) [dataset]. https://doi.org/10.5281/zenodo.3894719
. (2020).
Julou, Thomas, Zweifel, Ludovit, Blank, Diana, Fiori, Athos, & PLoS Biology, 18(12), e3000952. https://doi.org/10.1371/journal.pbio.3000952
. (2020). Subpopulations of sensorless bacteria drive fitness in fluctuating environments.
Julou, Thomas, Zweifel, Ludovit, Blank, Diana, Fiori, Athos, & PLoS Biology, 18(12), e3000952. https://doi.org/10.1371/journal.pbio.3000952
. (2020). Subpopulations of sensorless bacteria drive fitness in fluctuating environments.
Mukhtar, Tanzila, Breda, Jeremie, Grison, Alice, Karimaddini, Zahra, Grobecker, Pascal, Iber, Dagmar, Beisel, Christian, Scientific Reports, 10(1), 4625. https://doi.org/10.1038/s41598-020-61490-5
, & Taylor, Verdon. (2020). Tead transcription factors differentially regulate cortical development.
Mukhtar, Tanzila, Breda, Jeremie, Grison, Alice, Karimaddini, Zahra, Grobecker, Pascal, Iber, Dagmar, Beisel, Christian, Scientific Reports, 10(1), 4625. https://doi.org/10.1038/s41598-020-61490-5
, & Taylor, Verdon. (2020). Tead transcription factors differentially regulate cortical development.
Witz, Guillaume, Julou, Thomas, & Response to comment on textquoteleftInitiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanismtextquoteright. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.227694
. (2020).
Witz, Guillaume, Julou, Thomas, & Response to comment on textquoteleftInitiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanismtextquoteright. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.227694
. (2020).
Urchueguía, A., Galbusera, L., Bellement, G., Julou, T., & Nimwegen, E. v. (2019). Noise propagation shapes condition-dependent gene expression noise in Escherichia coli [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/795369
Urchueguía, A., Galbusera, L., Bellement, G., Julou, T., & Nimwegen, E. v. (2019). Noise propagation shapes condition-dependent gene expression noise in Escherichia coli [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/795369
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & Nimwegen, E. v. (2019). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/793976
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & Nimwegen, E. v. (2019). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/793976
Berger, Severin, Pachkov, Mikhail, Arnold, Phil, Omidi, Saeed, Kelley, Nicholas, Salatino, Silvia, & Genome Research, 29(7), 1164–1177. https://doi.org/10.1101/gr.239319.118
. (2019). Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
Berger, Severin, Pachkov, Mikhail, Arnold, Phil, Omidi, Saeed, Kelley, Nicholas, Salatino, Silvia, & Genome Research, 29(7), 1164–1177. https://doi.org/10.1101/gr.239319.118
. (2019). Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
Witz, Guillaume, eLife, 8, e48063. https://doi.org/10.7554/elife.48063
, & Julou, Thomas. (2019). Initiation of chromosome replication controls both division and replication cycles in; E. coli; through a double-adder mechanism.
Witz, Guillaume, eLife, 8, e48063. https://doi.org/10.7554/elife.48063
, & Julou, Thomas. (2019). Initiation of chromosome replication controls both division and replication cycles in; E. coli; through a double-adder mechanism.
Gruber, Andreas J., Schmidt, Ralf, Ghosh, Souvik, Martin, Georges, Gruber, Andreas R., Genome Biology, 19(1), 44. https://doi.org/10.1186/s13059-018-1415-3
, & Zavolan, Mihaela. (2018). Discovery of physiological and cancer-related regulators of 3′ UTR processing with KAPAC.
Gruber, Andreas J., Schmidt, Ralf, Ghosh, Souvik, Martin, Georges, Gruber, Andreas R., Genome Biology, 19(1), 44. https://doi.org/10.1186/s13059-018-1415-3
, & Zavolan, Mihaela. (2018). Discovery of physiological and cancer-related regulators of 3′ UTR processing with KAPAC.
Kaiser, Matthias, Jug, Florian, Julou, Thomas, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin K., Myers, Gene, & Nature Communications, 9(1), 212. https://doi.org/10.1038/s41467-017-02505-0
. (2018). Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software.
Kaiser, Matthias, Jug, Florian, Julou, Thomas, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin K., Myers, Gene, & Nature Communications, 9(1), 212. https://doi.org/10.1038/s41467-017-02505-0
. (2018). Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software.
Rzepiela, Andrzej J., Ghosh, Souvik, Breda, Jeremie, Vina-Vilaseca, Arnau, Syed, Afzal P., Gruber, Andreas J., Eschbach, Katja, Beisel, Christian, Molecular Systems Biology, 14(8), e8266. https://doi.org/10.15252/msb.20188266
, & Zavolan, Mihaela. (2018). Single-cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction.
Rzepiela, Andrzej J., Ghosh, Souvik, Breda, Jeremie, Vina-Vilaseca, Arnau, Syed, Afzal P., Gruber, Andreas J., Eschbach, Katja, Beisel, Christian, Molecular Systems Biology, 14(8), e8266. https://doi.org/10.15252/msb.20188266
, & Zavolan, Mihaela. (2018). Single-cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction.
Kaiser, Matthias, Jug, Florian, Julou, Thomas, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin, Myers, Gene, & Analysis of lac operon induction with single cell resolution using the DIMM microfluidics chip and the MoMA software (Kaiser, Matthias; Jug, Florian; Julou, Thomas; Deshpande, Siddharth; Pfohl, Thomas; Silander, Olin; Myers, Gene; van Nimwegen, Erik, Ed.) [dataset]. https://doi.org/10.5281/zenodo.746230
. (2017).
Kaiser, Matthias, Jug, Florian, Julou, Thomas, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin, Myers, Gene, & Analysis of lac operon induction with single cell resolution using the DIMM microfluidics chip and the MoMA software (Kaiser, Matthias; Jug, Florian; Julou, Thomas; Deshpande, Siddharth; Pfohl, Thomas; Silander, Olin; Myers, Gene; van Nimwegen, Erik, Ed.) [dataset]. https://doi.org/10.5281/zenodo.746230
. (2017).
Omidi, Saeed, Zavolan, Mihaela, Pachkov, Mikhail, Breda, Jeremie, Berger, Severin, & PLoS Computational Biology, 13(7), e1005176. https://doi.org/10.1371/journal.pcbi.1005176
. (2017). Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
Omidi, Saeed, Zavolan, Mihaela, Pachkov, Mikhail, Breda, Jeremie, Berger, Severin, & PLoS Computational Biology, 13(7), e1005176. https://doi.org/10.1371/journal.pcbi.1005176
. (2017). Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
Artimo, Panu, Duvaud, Séverine, Pachkov, Mikhail, Ioannidis, Vassilios, F1000Research, 5(Elixir), 2851. https://doi.org/10.12688/f1000research.9794.1
, & Stockinger, Heinz. (2016). The ISMARA client.
Artimo, Panu, Duvaud, Séverine, Pachkov, Mikhail, Ioannidis, Vassilios, F1000Research, 5(Elixir), 2851. https://doi.org/10.12688/f1000research.9794.1
, & Stockinger, Heinz. (2016). The ISMARA client.
Berger, Severin, Omidi, Saeed, Pachkov, Mikhail, Arnold, Phil, Kelley, Nicholas, Salatino, Silvia, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/042903
. (2016). Crunch: Completely Automated Analysis of ChIP-seq Data. In
Berger, Severin, Omidi, Saeed, Pachkov, Mikhail, Arnold, Phil, Kelley, Nicholas, Salatino, Silvia, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/042903
. (2016). Crunch: Completely Automated Analysis of ChIP-seq Data. In
Salatino, Silvia, Kupr, Barbara, Baresic, Mario, Molecular Endocrinology, 30(7), 809–825. https://doi.org/10.1210/me.2016-1036
, & Handschin, Christoph. (2016). The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
Salatino, Silvia, Kupr, Barbara, Baresic, Mario, Molecular Endocrinology, 30(7), 809–825. https://doi.org/10.1210/me.2016-1036
, & Handschin, Christoph. (2016). The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
PLoS Computational Biology, 12(5), e1004726. https://doi.org/10.1371/journal.pcbi.1004726
. (2016). Inferring Contacting Residues within and between Proteins: What Do the Probabilities Mean?
PLoS Computational Biology, 12(5), e1004726. https://doi.org/10.1371/journal.pcbi.1004726
. (2016). Inferring Contacting Residues within and between Proteins: What Do the Probabilities Mean?
Breda, Jeremie, Rzepiela, Andrzej J, Gumienny, Rafal, Methods, 85, 90–99. https://doi.org/10.1016/j.ymeth.2015.04.012
, & Zavolan, Mihaela. (2015). Quantifying the strength of miRNA-target interactions.
Breda, Jeremie, Rzepiela, Andrzej J, Gumienny, Rafal, Methods, 85, 90–99. https://doi.org/10.1016/j.ymeth.2015.04.012
, & Zavolan, Mihaela. (2015). Quantifying the strength of miRNA-target interactions.
Pemberton-Ross, Peter J, Pachkov, Mikhail, & Methods, 85, 62–74. https://doi.org/10.1016/j.ymeth.2015.06.024
. (2015). ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data.
Pemberton-Ross, Peter J, Pachkov, Mikhail, & Methods, 85, 62–74. https://doi.org/10.1016/j.ymeth.2015.06.024
. (2015). ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data.
Schertel, Claus, Albarca, Monica, Rockel-Bauer, Claudia, Kelley, Nicholas W., Bischof, Johannes, Hens, Korneel, Genome Research, 25(4), 514–523. https://doi.org/10.1101/gr.181305.114
, Basler, Konrad, & Deplancke, Bart. (2015). A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.
Schertel, Claus, Albarca, Monica, Rockel-Bauer, Claudia, Kelley, Nicholas W., Bischof, Johannes, Hens, Korneel, Genome Research, 25(4), 514–523. https://doi.org/10.1101/gr.181305.114
, Basler, Konrad, & Deplancke, Bart. (2015). A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.
Wolf, Luise, Silander, Olin K, & eLife, 4(4), e05856. https://doi.org/10.7554/elife.05856
. (2015). Expression noise facilitates the evolution of gene regulation.
Wolf, Luise, Silander, Olin K, & eLife, 4(4), e05856. https://doi.org/10.7554/elife.05856
. (2015). Expression noise facilitates the evolution of gene regulation.
Wolf, L., Silander, O. K., & van Nimwegen, E. J. (2014). Expression noise facilitates the evolution of gene regulation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/007237
Wolf, L., Silander, O. K., & van Nimwegen, E. J. (2014). Expression noise facilitates the evolution of gene regulation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/007237
Balwierz, Piotr J, Pachkov, Mikhail, Arnold, Phil, Gruber, Andreas J, Zavolan, Mihaela, & Genome Research, 24(5), 869–884. https://doi.org/10.1101/gr.169508.113
. (2014). ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs.
Balwierz, Piotr J, Pachkov, Mikhail, Arnold, Phil, Gruber, Andreas J, Zavolan, Mihaela, & Genome Research, 24(5), 869–884. https://doi.org/10.1101/gr.169508.113
. (2014). ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs.
Baresic, Mario, Salatino, Silvia, Kupr, Barbara, Molecular and cellular biology, 34(16), 2996–3012. https://doi.org/10.1128/mcb.01710-13
, & Handschin, Christoph. (2014). Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
Baresic, Mario, Salatino, Silvia, Kupr, Barbara, Molecular and cellular biology, 34(16), 2996–3012. https://doi.org/10.1128/mcb.01710-13
, & Handschin, Christoph. (2014). Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
Bertels, Frederic, Silander, Olin K, Pachkov, Mikhail, Rainey, Paul B, & Molecular Biology and Evolution, 31(5), 1077–1088. https://doi.org/10.1093/molbev/msu088
. (2014). Automated reconstruction of whole genome phylogenies from short sequence reads.
Bertels, Frederic, Silander, Olin K, Pachkov, Mikhail, Rainey, Paul B, & Molecular Biology and Evolution, 31(5), 1077–1088. https://doi.org/10.1093/molbev/msu088
. (2014). Automated reconstruction of whole genome phylogenies from short sequence reads.
Diepenbruck, Maren, Waldmeier, Lorenz, Ivanek, Robert, Berninger, Philipp, Arnold, Phil, Journal of Cell Science, 127(Pt 7), 1523–1536. https://doi.org/10.1242/jcs.139865
, & Christofori, Gerhard. (2014). Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition.
Diepenbruck, Maren, Waldmeier, Lorenz, Ivanek, Robert, Berninger, Philipp, Arnold, Phil, Journal of Cell Science, 127(Pt 7), 1523–1536. https://doi.org/10.1242/jcs.139865
, & Christofori, Gerhard. (2014). Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition.
Dill, Michael T., Makowska, Zuzanna, Trincucci, Gaia, Gruber, Andreas J., Vogt, Julia E., Filipowicz, Magdalena, Calabrese, Diego, Krol, Ilona, Lau, Daryl T., Terracciano, Luigi, Journal of Clinical Investigation, 124(4), 1568–1581. https://doi.org/10.1172/jci70408
, Roth, Volker, & Heim, Markus H. (2014). Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation.
Dill, Michael T., Makowska, Zuzanna, Trincucci, Gaia, Gruber, Andreas J., Vogt, Julia E., Filipowicz, Magdalena, Calabrese, Diego, Krol, Ilona, Lau, Daryl T., Terracciano, Luigi, Journal of Clinical Investigation, 124(4), 1568–1581. https://doi.org/10.1172/jci70408
, Roth, Volker, & Heim, Markus H. (2014). Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation.
Dill, M.T., Makowska, Z., Trincucci, G., Gruber, A.J., Vogt,
J.E., Filipowicz, M., Calabrese, D., Krol, I., Lau, D.T., Terracciano, L., Journal of Hepatology, 60, S1–S22. https://doi.org/10.1016/s0168-8278(14)60049-0
, Roth, V., & Heim, M.H. (2014). O47 PEGYLATED INTERFERON-ALPHA INDUCES SUSTAINED TRANSCRIPTIONAL RESPONSE IN LIVER INFILTRATING IMMUNE CELLS BUT NOT IN HEPATOCYTES IN THE LIVER OF PATIENTS WITH CHRONIC HEPATITIS C.
Dill, M.T., Makowska, Z., Trincucci, G., Gruber, A.J., Vogt,
J.E., Filipowicz, M., Calabrese, D., Krol, I., Lau, D.T., Terracciano, L., Journal of Hepatology, 60, S1–S22. https://doi.org/10.1016/s0168-8278(14)60049-0
, Roth, V., & Heim, M.H. (2014). O47 PEGYLATED INTERFERON-ALPHA INDUCES SUSTAINED TRANSCRIPTIONAL RESPONSE IN LIVER INFILTRATING IMMUNE CELLS BUT NOT IN HEPATOCYTES IN THE LIVER OF PATIENTS WITH CHRONIC HEPATITIS C.
Forrest, Alistair R. R., Kawaji, Hideya, Rehli, Michael, Baillie, J. Kenneth, de Hoon, Michiel J. L., Haberle, Vanja, Lassmann, Timo, Kulakovskiy, Ivan V., Lizio, Marina, Itoh, Masayoshi, Andersson, Robin, Mungall, Christopher J., Meehan, Terrence F., Schmeier, Sebastian, Bertin, Nicolas, Jorgensen, Mette, Dimont, Emmanuel, Arner, Erik, Schmidl, Christian, et al. (2014). A promoter-level mammalian expression atlas. Nature, 507(7493), 462–470. https://doi.org/10.1038/nature13182
Forrest, Alistair R. R., Kawaji, Hideya, Rehli, Michael, Baillie, J. Kenneth, de Hoon, Michiel J. L., Haberle, Vanja, Lassmann, Timo, Kulakovskiy, Ivan V., Lizio, Marina, Itoh, Masayoshi, Andersson, Robin, Mungall, Christopher J., Meehan, Terrence F., Schmeier, Sebastian, Bertin, Nicolas, Jorgensen, Mette, Dimont, Emmanuel, Arner, Erik, Schmidl, Christian, et al. (2014). A promoter-level mammalian expression atlas. Nature, 507(7493), 462–470. https://doi.org/10.1038/nature13182
Gruber, Andreas J., Grandy, William A., Balwierz, Piotr J., Dimitrova, Yoana A., Pachkov, Mikhail, Ciaudo, Constance, Nucleic Acids Research, 42(14), 9313–9326. https://doi.org/10.1093/nar/gku544
, & Zavolan, Mihaela. (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways.
Gruber, Andreas J., Grandy, William A., Balwierz, Piotr J., Dimitrova, Yoana A., Pachkov, Mikhail, Ciaudo, Constance, Nucleic Acids Research, 42(14), 9313–9326. https://doi.org/10.1093/nar/gku544
, & Zavolan, Mihaela. (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways.
Gruber, Andreas R., Martin, Georges, Müller, Philipp, Schmidt, Alexander, Gruber, Andreas J., Gumienny, Rafal, Mittal, Nitish, Jayachandran, Rajesh, Pieters, Jean, Keller, Walter, Nature Communications, 5(5465), 5465. https://doi.org/10.1038/ncomms6465
, & Zavolan, Mihaela. (2014). Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells.
Gruber, Andreas R., Martin, Georges, Müller, Philipp, Schmidt, Alexander, Gruber, Andreas J., Gumienny, Rafal, Mittal, Nitish, Jayachandran, Rajesh, Pieters, Jean, Keller, Walter, Nature Communications, 5(5465), 5465. https://doi.org/10.1038/ncomms6465
, & Zavolan, Mihaela. (2014). Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells.
Luisier, Raphaëlle, Unterberger, Elif B., Goodman, Jay I., Schwarz, Michael, Moggs, Jonathan, Terranova, Rémi, & Nucleic Acids Research, 42(7), 4180–4195. https://doi.org/10.1093/nar/gkt1415
. (2014). Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion.
Luisier, Raphaëlle, Unterberger, Elif B., Goodman, Jay I., Schwarz, Michael, Moggs, Jonathan, Terranova, Rémi, & Nucleic Acids Research, 42(7), 4180–4195. https://doi.org/10.1093/nar/gkt1415
. (2014). Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion.
Morikawa, Hiromasa, Ohkura, Naganari, Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5289–5294. https://doi.org/10.1073/pnas.1312717110
, Itoh, Masayoshi, Nagao-Sato, Sayaka, Kawaji, Hideya, Lassmann, Timo, Carninci, Piero, Hayashizaki, Yoshihide, Forrest, Alistair R R, Standley, Daron M, Date, Hiroshi, Sakaguchi, Shimon, & FANTOM Consortium. (2014). Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation.
Morikawa, Hiromasa, Ohkura, Naganari, Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5289–5294. https://doi.org/10.1073/pnas.1312717110
, Itoh, Masayoshi, Nagao-Sato, Sayaka, Kawaji, Hideya, Lassmann, Timo, Carninci, Piero, Hayashizaki, Yoshihide, Forrest, Alistair R R, Standley, Daron M, Date, Hiroshi, Sakaguchi, Shimon, & FANTOM Consortium. (2014). Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation.
Stockinger, Heinz, Altenhoff, Adrian M., Arnold, Konstantin, Bairoch, Amos, Bastian, Frederic, Bergmann, Sven, Bougueleret, Lydie, Bucher, Philipp, Delorenzi, Mauro, Lane, Lydie, Mercier, Philippe Le, Lisacek, Frédérique, Michielin, Olivier, Palagi, Patricia M., Rougemont, Jacques, Schwede, Torsten, Mering, Christian von, Nucleic Acids Research, 42(Web Server issue), W436–41. https://doi.org/10.1093/nar/gku380
, Walther, Daniel, et al. (2014). Fifteen years SIB Swiss Institute of Bioinformatics : life science databases, tools and support.
Stockinger, Heinz, Altenhoff, Adrian M., Arnold, Konstantin, Bairoch, Amos, Bastian, Frederic, Bergmann, Sven, Bougueleret, Lydie, Bucher, Philipp, Delorenzi, Mauro, Lane, Lydie, Mercier, Philippe Le, Lisacek, Frédérique, Michielin, Olivier, Palagi, Patricia M., Rougemont, Jacques, Schwede, Torsten, Mering, Christian von, Nucleic Acids Research, 42(Web Server issue), W436–41. https://doi.org/10.1093/nar/gku380
, Walther, Daniel, et al. (2014). Fifteen years SIB Swiss Institute of Bioinformatics : life science databases, tools and support.
Vigano, Maria Alessandra, Ivanek, Robert, Balwierz, Piotr, Berninger, Philipp, European Journal of Immunology, 44(4), 1181–1193. https://doi.org/10.1002/eji.201344022
, Karjalainen, Klaus, & Rolink, Antonius. (2014). An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants.
Vigano, Maria Alessandra, Ivanek, Robert, Balwierz, Piotr, Berninger, Philipp, European Journal of Immunology, 44(4), 1181–1193. https://doi.org/10.1002/eji.201344022
, Karjalainen, Klaus, & Rolink, Antonius. (2014). An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants.
Jug, Florian, Pietzsch, Tobias, Kainmüller, Dagmar, Funke, Jan, Kaiser, Matthias, Bayesian and grAphical models for biomedical imaging : First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18, 2014 ; revised selected papers (pp. 25–36). Springer. https://doi.org/10.1007/978-3-319-12289-2_3
, Rother, Carsten, & Myers, Gene. (2014). Optimal joint segmentation and tracking of Escherichia coli in the mother machine. In Cardoso, M. Jorge; Simpson, Ivor; Arbel, Tal; Precup, Doina; Ribbens, Annemie (Ed.),
Jug, Florian, Pietzsch, Tobias, Kainmüller, Dagmar, Funke, Jan, Kaiser, Matthias, Bayesian and grAphical models for biomedical imaging : First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18, 2014 ; revised selected papers (pp. 25–36). Springer. https://doi.org/10.1007/978-3-319-12289-2_3
, Rother, Carsten, & Myers, Gene. (2014). Optimal joint segmentation and tracking of Escherichia coli in the mother machine. In Cardoso, M. Jorge; Simpson, Ivor; Arbel, Tal; Precup, Doina; Ribbens, Annemie (Ed.),
Arnold, Phil, Schöler, Anne, Pachkov, Mikhail, Balwierz, Piotr J, Jørgensen, Helle, Stadler, Michael B, Genome Research, 23(1), 60–73. https://doi.org/10.1101/gr.142661.112
, & Schübeler, Dirk. (2013). Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting.
Arnold, Phil, Schöler, Anne, Pachkov, Mikhail, Balwierz, Piotr J, Jørgensen, Helle, Stadler, Michael B, Genome Research, 23(1), 60–73. https://doi.org/10.1101/gr.142661.112
, & Schübeler, Dirk. (2013). Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting.
Hausser, Jean, Syed, Afzal Pasha, Selevsek, Nathalie, Molecular Systems Biology, 9, 711. https://doi.org/10.1038/msb.2013.68
, Jaskiewicz, Lukasz, Aebersold, Ruedi, & Zavolan, Mihaela. (2013). Timescales and bottlenecks in miRNA-dependent gene regulation.
Hausser, Jean, Syed, Afzal Pasha, Selevsek, Nathalie, Molecular Systems Biology, 9, 711. https://doi.org/10.1038/msb.2013.68
, Jaskiewicz, Lukasz, Aebersold, Ruedi, & Zavolan, Mihaela. (2013). Timescales and bottlenecks in miRNA-dependent gene regulation.
Hofsteenge, Niels, BMC Microbiology, 13(1), 25. https://doi.org/10.1186/1471-2180-13-25
, & Silander, Olin K. (2013). Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli.
Hofsteenge, Niels, BMC Microbiology, 13(1), 25. https://doi.org/10.1186/1471-2180-13-25
, & Silander, Olin K. (2013). Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli.
Khorshid, Mohsen, Hausser, Jean, Zavolan, Mihaela, & Nature Methods, 10(3), 253–255. https://doi.org/10.1038/nmeth.2341
. (2013). A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets.
Khorshid, Mohsen, Hausser, Jean, Zavolan, Mihaela, & Nature Methods, 10(3), 253–255. https://doi.org/10.1038/nmeth.2341
. (2013). A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets.
Meier-Abt, Fabienne, Milani, Emanuela, Roloff, Tim, Brinkhaus, Heike, Duss, Stephan, Meyer, Dominique S., Klebba, Ina, Balwierz, Piotr J., Breast Cancer Research, 15(2), R36. https://doi.org/10.1186/bcr3419
, & Bentires-Alj, Mohamed. (2013). Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium.
Meier-Abt, Fabienne, Milani, Emanuela, Roloff, Tim, Brinkhaus, Heike, Duss, Stephan, Meyer, Dominique S., Klebba, Ina, Balwierz, Piotr J., Breast Cancer Research, 15(2), R36. https://doi.org/10.1186/bcr3419
, & Bentires-Alj, Mohamed. (2013). Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium.
Ozonov, Evgeniy A., & PLoS Computational Biology, 9(8), e1003181. https://doi.org/10.1371/journal.pcbi.1003181
. (2013). Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
Ozonov, Evgeniy A., & PLoS Computational Biology, 9(8), e1003181. https://doi.org/10.1371/journal.pcbi.1003181
. (2013). Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
Tiwari, Neha, Tiwari, Vijay K, Waldmeier, Lorenz, Balwierz, Piotr J, Arnold, Phil, Pachkov, Mikhail, Meyer-Schaller, Nathalie, Schübeler, Dirk, Cancer Cell, 23(6), 768–783. https://doi.org/10.1016/j.ccr.2013.04.020
, & Christofori, Gerhard. (2013). Sox4 is a master regulator of epithelial-mesenchymal transition by controlling ezh2 expression and epigenetic reprogramming.
Tiwari, Neha, Tiwari, Vijay K, Waldmeier, Lorenz, Balwierz, Piotr J, Arnold, Phil, Pachkov, Mikhail, Meyer-Schaller, Nathalie, Schübeler, Dirk, Cancer Cell, 23(6), 768–783. https://doi.org/10.1016/j.ccr.2013.04.020
, & Christofori, Gerhard. (2013). Sox4 is a master regulator of epithelial-mesenchymal transition by controlling ezh2 expression and epigenetic reprogramming.
Tiwari, N., Meyer-Schaller, N., Arnold, P., Antoniadis, H., Pachkov, M., PLoS ONE, 8(2), e57329. https://doi.org/10.1371/journal.pone.0057329
, & Christofori, G. (2013). Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8).
Tiwari, N., Meyer-Schaller, N., Arnold, P., Antoniadis, H., Pachkov, M., PLoS ONE, 8(2), e57329. https://doi.org/10.1371/journal.pone.0057329
, & Christofori, G. (2013). Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8).
Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., Van Nimwegen, E., Wirbelauer, C., Oakeley, E. J., Gaidatzis, D., Tiwari, V. K., & Schübeler, D. (2012). Erratum: DNA-binding factors shape the mouse methylome at distal regulatory regions (Nature (2011) 480 (490-495)). Nature, 484(7395). https://doi.org/10.1038/nature11086
Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., Van Nimwegen, E., Wirbelauer, C., Oakeley, E. J., Gaidatzis, D., Tiwari, V. K., & Schübeler, D. (2012). Erratum: DNA-binding factors shape the mouse methylome at distal regulatory regions (Nature (2011) 480 (490-495)). Nature, 484(7395). https://doi.org/10.1038/nature11086
Aceto, Nicola, Sausgruber, Nina, Brinkhaus, Heike, Gaidatzis, Dimos, Martiny-Baron, Georg, Mazzarol, Giovanni, Confalonieri, Stefano, Quarto, Micaela, Hu, Guang, Balwierz, Piotr J, Pachkov, Mikhail, Elledge, Stephen J, Nature Medicine, 18(4), 529–537. https://doi.org/10.1038/nm.2645
, Stadler, Michael B, & Bentires-Alj, Mohamed. (2012). Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Aceto, Nicola, Sausgruber, Nina, Brinkhaus, Heike, Gaidatzis, Dimos, Martiny-Baron, Georg, Mazzarol, Giovanni, Confalonieri, Stefano, Quarto, Micaela, Hu, Guang, Balwierz, Piotr J, Pachkov, Mikhail, Elledge, Stephen J, Nature Medicine, 18(4), 529–537. https://doi.org/10.1038/nm.2645
, Stadler, Michael B, & Bentires-Alj, Mohamed. (2012). Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Arner, Erik, Mejhert, Niklas, Kulyté, Agné, Balwierz, Piotr J, Pachkov, Mikhail, Cormont, Mireille, Lorente-Cebrián, Silvia, Ehrlund, Anna, Laurencikiene, Jurga, Hedén, Per, Dahlman-Wright, Karin, Tanti, Jean-François, Hayashizaki, Yoshihide, Rydén, Mikael, Dahlman, Ingrid, Diabetes, 61(8), 1986–1993. https://doi.org/10.2337/db11-1508
, Daub, Carsten O, & Arner, Peter. (2012). Adipose tissue microRNAs as regulators of CCL2 production in human obesity.
Arner, Erik, Mejhert, Niklas, Kulyté, Agné, Balwierz, Piotr J, Pachkov, Mikhail, Cormont, Mireille, Lorente-Cebrián, Silvia, Ehrlund, Anna, Laurencikiene, Jurga, Hedén, Per, Dahlman-Wright, Karin, Tanti, Jean-François, Hayashizaki, Yoshihide, Rydén, Mikael, Dahlman, Ingrid, Diabetes, 61(8), 1986–1993. https://doi.org/10.2337/db11-1508
, Daub, Carsten O, & Arner, Peter. (2012). Adipose tissue microRNAs as regulators of CCL2 production in human obesity.
Arnold, Phil, Erb, Ionas, Pachkov, Mikhail, Molina, Nacho, & Bioinformatics, 28(4), 487–494. https://doi.org/10.1093/bioinformatics/btr695
. (2012). MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences.
Arnold, Phil, Erb, Ionas, Pachkov, Mikhail, Molina, Nacho, & Bioinformatics, 28(4), 487–494. https://doi.org/10.1093/bioinformatics/btr695
. (2012). MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences.
Pachkov, Mikhail, Balwierz, Piotr J., Arnold, Phil, Ozonov, Evgeniy, & Nucleic Acids Research, 41(Database issue), D214–20. https://doi.org/10.1093/nar/gks1145
. (2012). SwissRegulon : a database of genome-wide annotations of regulatory sites: recent updates.
Pachkov, Mikhail, Balwierz, Piotr J., Arnold, Phil, Ozonov, Evgeniy, & Nucleic Acids Research, 41(Database issue), D214–20. https://doi.org/10.1093/nar/gks1145
. (2012). SwissRegulon : a database of genome-wide annotations of regulatory sites: recent updates.
Pérez-Schindler, Joaquín, Summermatter, Serge, Salatino, Silvia, Zorzato, Francesco, Beer, Markus, Balwierz, Piotr J, Molecular and cellular biology, 32(24), 4913–4924. https://doi.org/10.1128/mcb.00877-12
, Feige, Jérôme N, Auwerx, Johan, & Handschin, Christoph. (2012). The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism.
Pérez-Schindler, Joaquín, Summermatter, Serge, Salatino, Silvia, Zorzato, Francesco, Beer, Markus, Balwierz, Piotr J, Molecular and cellular biology, 32(24), 4913–4924. https://doi.org/10.1128/mcb.00877-12
, Feige, Jérôme N, Auwerx, Johan, & Handschin, Christoph. (2012). The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism.
Tippmann, Sylvia C, Ivanek, Robert, Gaidatzis, Dimos, Schöler, Anne, Hoerner, Leslie, Molecular Systems Biology, 8, 593. https://doi.org/10.1038/msb.2012.23
, Stadler, Peter F, Stadler, Michael B, & Schübeler, Dirk. (2012). Chromatin measurements reveal contributions of synthesis and decay to steady-state mRNA levels.
Tippmann, Sylvia C, Ivanek, Robert, Gaidatzis, Dimos, Schöler, Anne, Hoerner, Leslie, Molecular Systems Biology, 8, 593. https://doi.org/10.1038/msb.2012.23
, Stadler, Peter F, Stadler, Michael B, & Schübeler, Dirk. (2012). Chromatin measurements reveal contributions of synthesis and decay to steady-state mRNA levels.
Erb, Ionas, & PLoS ONE, 6(9), e24279. https://doi.org/10.1371/journal.pone.0024279
. (2011). Transcription Factor Binding Site Positioning in Yeast : Proximal Promoter Motifs Characterize TATA-Less Promoters.
Erb, Ionas, & PLoS ONE, 6(9), e24279. https://doi.org/10.1371/journal.pone.0024279
. (2011). Transcription Factor Binding Site Positioning in Yeast : Proximal Promoter Motifs Characterize TATA-Less Promoters.
Kawaji, H., Severin, J., Lizio, M., Forrest, A. R., Nucleic Acids Research, 39(Database issue), D856–60. https://doi.org/10.1093/nar/gkq1112
, Rehli, M., Schroder, K., Irvine, K., Suzuki, H., Carninci, P., Hayashizaki, Y., & Daub, C. O. (2011). Update of the FANTOM web resource : from mammalian transcriptional landscape to its dynamic regulation.
Kawaji, H., Severin, J., Lizio, M., Forrest, A. R., Nucleic Acids Research, 39(Database issue), D856–60. https://doi.org/10.1093/nar/gkq1112
, Rehli, M., Schroder, K., Irvine, K., Suzuki, H., Carninci, P., Hayashizaki, Y., & Daub, C. O. (2011). Update of the FANTOM web resource : from mammalian transcriptional landscape to its dynamic regulation.
Stadler, Michael B, Murr, Rabih, Burger, Lukas, Ivanek, Robert, Lienert, Florian, Schöler, Anne, Nature, 480(7378), 490–495. https://doi.org/10.1038/nature10716
, Wirbelauer, Christiane, Oakeley, Edward J, Gaidatzis, Dimos, Tiwari, Vijay K, & Schübeler, Dirk. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions.
Stadler, Michael B, Murr, Rabih, Burger, Lukas, Ivanek, Robert, Lienert, Florian, Schöler, Anne, Nature, 480(7378), 490–495. https://doi.org/10.1038/nature10716
, Wirbelauer, Christiane, Oakeley, Edward J, Gaidatzis, Dimos, Tiwari, Vijay K, & Schübeler, Dirk. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions.
Burger, L., & PLoS Computational Biology, 6(1), e1000633. https://doi.org/10.1371/journal.pcbi.1000633
(2010). Disentangling direct from indirect co-evolution of residues in protein alignments.
Burger, L., & PLoS Computational Biology, 6(1), e1000633. https://doi.org/10.1371/journal.pcbi.1000633
(2010). Disentangling direct from indirect co-evolution of residues in protein alignments.
Chen, Kevin, Genome Biology and Evolution, 2, 697–707. https://doi.org/10.1093/gbe/evq054
, Rajewsky, Nikolaus, & Siegal, Mark L. (2010). Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae.
Chen, Kevin, Genome Biology and Evolution, 2, 697–707. https://doi.org/10.1093/gbe/evq054
, Rajewsky, Nikolaus, & Siegal, Mark L. (2010). Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae.
Ravasi, Timothy, Suzuki, Harukazu, Cannistraci, Carlo Vittorio, Katayama, Shintaro, Bajic, Vladimir B, Tan, Kai, Akalin, Altuna, Schmeier, Sebastian, Kanamori-Katayama, Mutsumi, Bertin, Nicolas, Carninci, Piero, Daub, Carsten O, Forrest, Alistair R R, Gough, Julian, Grimmond, Sean, Han, Jung-Hoon, Hashimoto, Takehiro, Hide, Winston, Hofmann, Oliver, et al. (2010). An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 140(5), 744–752. https://doi.org/10.1016/j.cell.2010.01.044
Ravasi, Timothy, Suzuki, Harukazu, Cannistraci, Carlo Vittorio, Katayama, Shintaro, Bajic, Vladimir B, Tan, Kai, Akalin, Altuna, Schmeier, Sebastian, Kanamori-Katayama, Mutsumi, Bertin, Nicolas, Carninci, Piero, Daub, Carsten O, Forrest, Alistair R R, Gough, Julian, Grimmond, Sean, Han, Jung-Hoon, Hashimoto, Takehiro, Hide, Winston, Hofmann, Oliver, et al. (2010). An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 140(5), 744–752. https://doi.org/10.1016/j.cell.2010.01.044
Summers, Kim M, Raza, Sobia, European Journal of Human Genetics, 18(11), 1209–1215. https://doi.org/10.1038/ejhg.2010.91
, Freeman, Thomas C, & Hume, David A. (2010). Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines : implications for phenotypic variability in Marfan syndrome.
Summers, Kim M, Raza, Sobia, European Journal of Human Genetics, 18(11), 1209–1215. https://doi.org/10.1038/ejhg.2010.91
, Freeman, Thomas C, & Hume, David A. (2010). Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines : implications for phenotypic variability in Marfan syndrome.
Nucleic Acids Research, 39. https://doi.org/ 10.1093/nar/gkq1112
. (2010). Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation.
Nucleic Acids Research, 39. https://doi.org/ 10.1093/nar/gkq1112
. (2010). Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation.
Balwierz, Piotr J, Carninci, Piero, Daub, Carsten O, Kawai, Jun, Hayashizaki, Yoshihide, Van Belle, Werner, Beisel, Christian, & Genome Biology, 10(7), R79. https://doi.org/10.1186/gb-2009-10-7-r79
. (2009). Methods for analyzing deep sequencing expression data : constructing the human and mouse promoterome with deepCAGE data.
Balwierz, Piotr J, Carninci, Piero, Daub, Carsten O, Kawai, Jun, Hayashizaki, Yoshihide, Van Belle, Werner, Beisel, Christian, & Genome Biology, 10(7), R79. https://doi.org/10.1186/gb-2009-10-7-r79
. (2009). Methods for analyzing deep sequencing expression data : constructing the human and mouse promoterome with deepCAGE data.
FANTOM Consortium, Suzuki, Harukazu, Forrest, Alistair R R, Nature Genetics, 41(5), 553–562. https://doi.org/10.1038/ng.375
, Daub, Carsten O, Balwierz, Piotr J, Irvine, Katharine M, Lassmann, Timo, Ravasi, Timothy, Hasegawa, Yuki, de Hoon, Michiel J L, Katayama, Shintaro, Schroder, Kate, Carninci, Piero, Tomaru, Yasuhiro, Kanamori-Katayama, Mutsumi, Kubosaki, Atsutaka, Akalin, Altuna, Ando, Yoshinari, et al. (2009). The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line.
FANTOM Consortium, Suzuki, Harukazu, Forrest, Alistair R R, Nature Genetics, 41(5), 553–562. https://doi.org/10.1038/ng.375
, Daub, Carsten O, Balwierz, Piotr J, Irvine, Katharine M, Lassmann, Timo, Ravasi, Timothy, Hasegawa, Yuki, de Hoon, Michiel J L, Katayama, Shintaro, Schroder, Kate, Carninci, Piero, Tomaru, Yasuhiro, Kanamori-Katayama, Mutsumi, Kubosaki, Atsutaka, Akalin, Altuna, Ando, Yoshinari, et al. (2009). The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line.
Mayoral, Ramon J, Pipkin, Matthew E, Pachkov, Mikhail, Journal of Immunology, 182(1), 433–445. https://doi.org/10.4049/jimmunol.182.1.433
, Rao, Anjana, & Monticelli, Silvia. (2009). MicroRNA-221-222 regulate the cell cycle in mast cells.
Mayoral, Ramon J, Pipkin, Matthew E, Pachkov, Mikhail, Journal of Immunology, 182(1), 433–445. https://doi.org/10.4049/jimmunol.182.1.433
, Rao, Anjana, & Monticelli, Silvia. (2009). MicroRNA-221-222 regulate the cell cycle in mast cells.
Molina, Nacho, & Trends in Genetics, 25(6), 243–247. https://doi.org/10.1016/j.tig.2009.04.004
. (2009). Scaling laws in functional genome content across prokaryotic clades and lifestyles.
Molina, Nacho, & Trends in Genetics, 25(6), 243–247. https://doi.org/10.1016/j.tig.2009.04.004
. (2009). Scaling laws in functional genome content across prokaryotic clades and lifestyles.
Severin, Jessica, Waterhouse, Andrew M, Kawaji, Hideya, Lassmann, Timo, Genome Biology, 10(4), R39. https://doi.org/10.1186/gb-2009-10-4-r39
, Balwierz, Piotr J, de Hoon, Michiel Jl, Hume, David A, Carninci, Piero, Hayashizaki, Yoshihide, Suzuki, Harukazu, Daub, Carsten O, & Forrest, Alistair Rr. (2009). FANTOM4 EdgeExpressDB: : an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions.
Severin, Jessica, Waterhouse, Andrew M, Kawaji, Hideya, Lassmann, Timo, Genome Biology, 10(4), R39. https://doi.org/10.1186/gb-2009-10-4-r39
, Balwierz, Piotr J, de Hoon, Michiel Jl, Hume, David A, Carninci, Piero, Hayashizaki, Yoshihide, Suzuki, Harukazu, Daub, Carsten O, & Forrest, Alistair Rr. (2009). FANTOM4 EdgeExpressDB: : an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions.
Taddei, Angela, Van Houwe, Griet, Nagai, Shigeki, Erb, Ionas, Genome Research, 19(4), 611–625. https://doi.org/10.1101/gr.083881.108
, & Gasser, Susan M. (2009). The functional importance of telomere clustering : Global changes in gene expression result from SIR factor dispersion.
Taddei, Angela, Van Houwe, Griet, Nagai, Shigeki, Erb, Ionas, Genome Research, 19(4), 611–625. https://doi.org/10.1101/gr.083881.108
, & Gasser, Susan M. (2009). The functional importance of telomere clustering : Global changes in gene expression result from SIR factor dispersion.
Berninger, Philipp, Gaidatzis, Dimos, Methods, 44(1), 13–21. https://doi.org/10.1016/j.ymeth.2007.10.002
, & Zavolan, Mihaela. (2008). Computational analysis of small RNA cloning data.
Berninger, Philipp, Gaidatzis, Dimos, Methods, 44(1), 13–21. https://doi.org/10.1016/j.ymeth.2007.10.002
, & Zavolan, Mihaela. (2008). Computational analysis of small RNA cloning data.
Burger, Lukas, & Molecular Systems Biology, 4, 165. https://doi.org/10.1038/msb4100203
. (2008). Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method.
Burger, Lukas, & Molecular Systems Biology, 4, 165. https://doi.org/10.1038/msb4100203
. (2008). Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method.
Chern, Tzu-Ming, Paul, Nicodeme, DNA research, 15(2), 63–72. https://doi.org/10.1093/dnares/dsm036
, & Zavolan, Mihaela. (2008). Computational analysis of full-length cDNAs reveals frequent coupling between transcriptional and splicing programs.
Chern, Tzu-Ming, Paul, Nicodeme, DNA research, 15(2), 63–72. https://doi.org/10.1093/dnares/dsm036
, & Zavolan, Mihaela. (2008). Computational analysis of full-length cDNAs reveals frequent coupling between transcriptional and splicing programs.
Molina, Nacho, & Biology Direct, 3, 51. https://doi.org/10.1186/1745-6150-3-51
. (2008). The evolution of domain-content in bacterial genomes.
Molina, Nacho, & Biology Direct, 3, 51. https://doi.org/10.1186/1745-6150-3-51
. (2008). The evolution of domain-content in bacterial genomes.
Molina, Nacho, & Genome Research, 18(1), 148–160. https://doi.org/10.1101/gr.6759507
. (2008). Universal patterns of purifying selection at noncoding positions in bacteria.
Molina, Nacho, & Genome Research, 18(1), 148–160. https://doi.org/10.1101/gr.6759507
. (2008). Universal patterns of purifying selection at noncoding positions in bacteria.
Schlecht, U., Erb, I., Demougin, P., Robine, N., Borde, V., Molecular Biology of the Cell, 19(5), 2193–2207. https://doi.org/10.1091/mbc.e07-12-1242
, Nicolas, A., & Primig, M. (2008). Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.
Schlecht, U., Erb, I., Demougin, P., Robine, N., Borde, V., Molecular Biology of the Cell, 19(5), 2193–2207. https://doi.org/10.1091/mbc.e07-12-1242
, Nicolas, A., & Primig, M. (2008). Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.
Gaidatzis, D., van Nimwegen, E., Hausser, J., & Zavolan, M. (2007). Erratum: Inference of miRNA targets using evolutionary conservation and pathway analysis (BMC Bioinformatics). BMC Bioinformatics, 8. https://doi.org/10.1186/1471-2105-8-248
Gaidatzis, D., van Nimwegen, E., Hausser, J., & Zavolan, M. (2007). Erratum: Inference of miRNA targets using evolutionary conservation and pathway analysis (BMC Bioinformatics). BMC Bioinformatics, 8. https://doi.org/10.1186/1471-2105-8-248
Gaidatzis, Dimos, BMC Bioinformatics, 8, 69. https://doi.org/10.1186/1471-2105-8-69
, Hausser, Jean, & Zavolan, Mihaela. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis.
Gaidatzis, Dimos, BMC Bioinformatics, 8, 69. https://doi.org/10.1186/1471-2105-8-69
, Hausser, Jean, & Zavolan, Mihaela. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis.
Gaidatzis, D, BMC Bioinformatics , 8. https://doi.org/10.1186/1471-2105-8-69
, Hausser, J, & Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis.
Gaidatzis, D, BMC Bioinformatics , 8. https://doi.org/10.1186/1471-2105-8-69
, Hausser, J, & Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis.
Pachkov, M., Erb, I., Molina, N., & Nucleic Acids Research, 35(Database issue), D127–31. https://doi.org/10.1093/nar/gkl857
(2007). SwissRegulon : a database of genome-wide annotations of regulatory sites.
Pachkov, M., Erb, I., Molina, N., & Nucleic Acids Research, 35(Database issue), D127–31. https://doi.org/10.1093/nar/gkl857
(2007). SwissRegulon : a database of genome-wide annotations of regulatory sites.
Siddharthan, Rahul, & Methods in Molecular Biology, 395, 381–402. https://doi.org/10.1007/978-1-59745-514-5_24
. (2007). Detecting regulatory sites using PhyloGibbs.
Siddharthan, Rahul, & Methods in Molecular Biology, 395, 381–402. https://doi.org/10.1007/978-1-59745-514-5_24
. (2007). Detecting regulatory sites using PhyloGibbs.
BMC Bioinformatics, 8, S4. https://doi.org/10.1186/1471-2105-8-s6-s4
. (2007). Finding regulatory elements and regulatory motifs : a general probabilistic framework.
BMC Bioinformatics, 8, S4. https://doi.org/10.1186/1471-2105-8-s6-s4
. (2007). Finding regulatory elements and regulatory motifs : a general probabilistic framework.
Zavolan, M., & van Nimwegen, E. (2006). The types and prevalence of alternative splice forms [Current Opinion in Structural Biology 2006, 16:362-367] (DOI:10.1016/j.sbi.2006.05.002). Current Opinion in Structural Biology, 16(4). https://doi.org/10.1016/j.sbi.2006.06.010
Zavolan, M., & van Nimwegen, E. (2006). The types and prevalence of alternative splice forms [Current Opinion in Structural Biology 2006, 16:362-367] (DOI:10.1016/j.sbi.2006.05.002). Current Opinion in Structural Biology, 16(4). https://doi.org/10.1016/j.sbi.2006.06.010
Burger, L., & Van Nimwegen, E. (2006). A Bayesian algorithm for reconstructing two-component signaling networks. 4175 LNBI, 44–55. https://doi.org/10.1007/11851561_5
Burger, L., & Van Nimwegen, E. (2006). A Bayesian algorithm for reconstructing two-component signaling networks. 4175 LNBI, 44–55. https://doi.org/10.1007/11851561_5