Publications
97 found
Show per page
Fidelin, Kevin, & Neuron, 111(3), 294–296. https://doi.org/10.1016/j.neuron.2023.01.001
. (2023). Brainstem circuits help zebrafish get into the swim of things.
Fidelin, Kevin, & Neuron, 111(3), 294–296. https://doi.org/10.1016/j.neuron.2023.01.001
. (2023). Brainstem circuits help zebrafish get into the swim of things.
Yang, Wuzhou, Kanodia, Harsh, & Cell, 186(1), 162–177. https://doi.org/10.1016/j.cell.2022.12.009
. (2023). Structural and functional map for forelimb movement phases between cortex and medulla.
Yang, Wuzhou, Kanodia, Harsh, & Cell, 186(1), 162–177. https://doi.org/10.1016/j.cell.2022.12.009
. (2023). Structural and functional map for forelimb movement phases between cortex and medulla.
Nature reviews. Neuroscience, 23(6), 342–360. https://doi.org/10.1038/s41583-022-00581-w
, & Costa, Rui M. (2022). Networking brainstem and basal ganglia circuits for movement.
Nature reviews. Neuroscience, 23(6), 342–360. https://doi.org/10.1038/s41583-022-00581-w
, & Costa, Rui M. (2022). Networking brainstem and basal ganglia circuits for movement.
Krüttner, Sebastian, Falasconi, Antonio, Valbuena, Sergio, Galimberti, Ivan, Bouwmeester, Tewis, Neuron, 110(9), 1468–1482. https://doi.org/10.1016/j.neuron.2022.02.001
, & Caroni, Pico. (2022). Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling.
Krüttner, Sebastian, Falasconi, Antonio, Valbuena, Sergio, Galimberti, Ivan, Bouwmeester, Tewis, Neuron, 110(9), 1468–1482. https://doi.org/10.1016/j.neuron.2022.02.001
, & Caroni, Pico. (2022). Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling.
Nature, 598(7879), 33–34. https://doi.org/10.1038/d41586-021-02493-8
. (2021). A census of cell types in the brain’s motor cortex. Cell census will be a boon for future studies.
Nature, 598(7879), 33–34. https://doi.org/10.1038/d41586-021-02493-8
. (2021). A census of cell types in the brain’s motor cortex. Cell census will be a boon for future studies.
Ferreira-Pinto, Manuel J., Kanodia, Harsh, Falasconi, Antonio, Sigrist, Markus, Esposito, Maria S., & Cell, 184(17), 4564–4578. https://doi.org/10.1016/j.cell.2021.07.002
. (2021). Functional diversity for body actions in the mesencephalic locomotor region.
Ferreira-Pinto, Manuel J., Kanodia, Harsh, Falasconi, Antonio, Sigrist, Markus, Esposito, Maria S., & Cell, 184(17), 4564–4578. https://doi.org/10.1016/j.cell.2021.07.002
. (2021). Functional diversity for body actions in the mesencephalic locomotor region.
Ruder, Ludwig, Schina, Riccardo, Kanodia, Harsh, Valencia-Garcia, Sara, Pivetta, Chiara, & Nature, 590(7846), 445–450. https://doi.org/10.1038/s41586-020-03080-z
. (2021). A functional map for diverse forelimb actions within brainstem circuitry.
Ruder, Ludwig, Schina, Riccardo, Kanodia, Harsh, Valencia-Garcia, Sara, Pivetta, Chiara, & Nature, 590(7846), 445–450. https://doi.org/10.1038/s41586-020-03080-z
. (2021). A functional map for diverse forelimb actions within brainstem circuitry.
Maheshwari, Upasana, Kraus, Dominik, Vilain, Nathalie, Holwerda, Sjoerd J. B., Cankovic, Vanja, Maiorano, Nicola A., Kohler, Hubertus, Satoh, Daisuke, Sigrist, Markus, Cell reports, 31(11), 107767. https://doi.org/10.1016/j.celrep.2020.107767
, Kratochwil, Claudius F., Di Meglio, Thomas, Ducret, Sebastien, & Rijli, Filippo M. (2020). Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets.
Maheshwari, Upasana, Kraus, Dominik, Vilain, Nathalie, Holwerda, Sjoerd J. B., Cankovic, Vanja, Maiorano, Nicola A., Kohler, Hubertus, Satoh, Daisuke, Sigrist, Markus, Cell reports, 31(11), 107767. https://doi.org/10.1016/j.celrep.2020.107767
, Kratochwil, Claudius F., Di Meglio, Thomas, Ducret, Sebastien, & Rijli, Filippo M. (2020). Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets.
Development, 146(10), dev180505. https://doi.org/10.1242/dev.180505
, & Briscoe, James. (2019). Thomas M. Jessell (1951-2019).
Development, 146(10), dev180505. https://doi.org/10.1242/dev.180505
, & Briscoe, James. (2019). Thomas M. Jessell (1951-2019).
Heindorf, Matthias, Neuron, 101(6), 1202. https://doi.org/10.1016/j.neuron.2019.02.042
, & Keller, Georg B. (2019). Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback.
Heindorf, Matthias, Neuron, 101(6), 1202. https://doi.org/10.1016/j.neuron.2019.02.042
, & Keller, Georg B. (2019). Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback.
Ruder, Ludwig, & Annual review of neuroscience, 42, 485–504. https://doi.org/10.1146/annurev-neuro-070918-050201
. (2019). Brainstem Circuits Controlling Action Diversification.
Ruder, Ludwig, & Annual review of neuroscience, 42, 485–504. https://doi.org/10.1146/annurev-neuro-070918-050201
. (2019). Brainstem Circuits Controlling Action Diversification.
Takeoka, Aya, & Cell Reports, 27(1), 71–85. https://doi.org/10.1016/j.celrep.2019.03.010
. (2019). Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury.
Takeoka, Aya, & Cell Reports, 27(1), 71–85. https://doi.org/10.1016/j.celrep.2019.03.010
. (2019). Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury.
Science, 360(6396), 1403–1404. https://doi.org/10.1126/science.aat5994
, & Costa, Rui M. (2018). Connecting neuronal circuits for movement.
Science, 360(6396), 1403–1404. https://doi.org/10.1126/science.aat5994
, & Costa, Rui M. (2018). Connecting neuronal circuits for movement.
Ferreira-Pinto, Manuel J., Ruder, Ludwig, Capelli, Paolo, & Neuron, 100(2), 361–374. https://doi.org/10.1016/j.neuron.2018.09.015
. (2018). Connecting Circuits for Supraspinal Control of Locomotion.
Ferreira-Pinto, Manuel J., Ruder, Ludwig, Capelli, Paolo, & Neuron, 100(2), 361–374. https://doi.org/10.1016/j.neuron.2018.09.015
. (2018). Connecting Circuits for Supraspinal Control of Locomotion.
Heindorf, Matthias, Neuron, 99(5), 1040–1054. https://doi.org/10.1016/j.neuron.2018.07.046
, & Keller, Georg B. (2018). Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback.
Heindorf, Matthias, Neuron, 99(5), 1040–1054. https://doi.org/10.1016/j.neuron.2018.07.046
, & Keller, Georg B. (2018). Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback.
Pecho-Vrieseling, Eline, Rieker, Claus, Fuchs, Sascha, Bleckmann, Dorothee, Esposito, Maria Soledad, Botta, Paolo, Goldstein, Chris, Bernhard, Mario, Galimberti, Ivan, Müller, Matthias, Lüthi, Andreas, Nature Neuroscience, 21(9), 1291. https://doi.org/10.1038/s41593-018-0201-6
, Bouwmeester, Tewis, van der Putten, Herman, & Di Giorgio, Francesco Paolo. (2018). Author Correction: Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons.
Pecho-Vrieseling, Eline, Rieker, Claus, Fuchs, Sascha, Bleckmann, Dorothee, Esposito, Maria Soledad, Botta, Paolo, Goldstein, Chris, Bernhard, Mario, Galimberti, Ivan, Müller, Matthias, Lüthi, Andreas, Nature Neuroscience, 21(9), 1291. https://doi.org/10.1038/s41593-018-0201-6
, Bouwmeester, Tewis, van der Putten, Herman, & Di Giorgio, Francesco Paolo. (2018). Author Correction: Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons.
EMBO Molecular Medicine, 9(3), 281–284. https://doi.org/10.15252/emmm.201607226
. (2017). Organization and function of neuronal circuits controlling movement.
EMBO Molecular Medicine, 9(3), 281–284. https://doi.org/10.15252/emmm.201607226
. (2017). Organization and function of neuronal circuits controlling movement.
Baek, Myungin, Pivetta, Chiara, Liu, Jeh-Ping, Cell Reports, 21(4), 867–877. https://doi.org/10.1016/j.celrep.2017.10.004
, & Dasen, Jeremy S. (2017). Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits.
Baek, Myungin, Pivetta, Chiara, Liu, Jeh-Ping, Cell Reports, 21(4), 867–877. https://doi.org/10.1016/j.celrep.2017.10.004
, & Dasen, Jeremy S. (2017). Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits.
Capelli, Paolo, Pivetta, Chiara, Soledad Esposito, Maria, & Nature, 551(7680), 373–377. https://doi.org/10.1038/nature24064
. (2017). Locomotor speed control circuits in the caudal brainstem.
Capelli, Paolo, Pivetta, Chiara, Soledad Esposito, Maria, & Nature, 551(7680), 373–377. https://doi.org/10.1038/nature24064
. (2017). Locomotor speed control circuits in the caudal brainstem.
Wu, Jinjin, Capelli, Paolo, Bouvier, Julien, Goulding, Martyn, Nature Communications, 8(1), 544. https://doi.org/10.1038/s41467-017-00589-2
, & Fortin, Gilles. (2017). A V0 core neuronal circuit for inspiration.
Wu, Jinjin, Capelli, Paolo, Bouvier, Julien, Goulding, Martyn, Nature Communications, 8(1), 544. https://doi.org/10.1038/s41467-017-00589-2
, & Fortin, Gilles. (2017). A V0 core neuronal circuit for inspiration.
Esposito, Maria S, & Current Biology, 26(7), R291–3. https://doi.org/10.1016/j.cub.2016.02.043
. (2016). Motor Control: Illuminating an Enigmatic Midbrain Locomotor Center.
Esposito, Maria S, & Current Biology, 26(7), R291–3. https://doi.org/10.1016/j.cub.2016.02.043
. (2016). Motor Control: Illuminating an Enigmatic Midbrain Locomotor Center.
Fleming, Michael S., Li, Jian J., Ramos, Daniel, Li, Tong, Talmage, David A., Abe, Shin-Ichi, Journal of Neuroscience, 36(40), 10337–10355. https://doi.org/10.1523/jneurosci.2160-16.2016
, & Luo, Wenqin. (2016). A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles.
Fleming, Michael S., Li, Jian J., Ramos, Daniel, Li, Tong, Talmage, David A., Abe, Shin-Ichi, Journal of Neuroscience, 36(40), 10337–10355. https://doi.org/10.1523/jneurosci.2160-16.2016
, & Luo, Wenqin. (2016). A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles.
Ruder, Ludwig, Takeoka, Aya, & Neuron, 92(5), 1063–1078. https://doi.org/10.1016/j.neuron.2016.10.032
. (2016). Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability.
Ruder, Ludwig, Takeoka, Aya, & Neuron, 92(5), 1063–1078. https://doi.org/10.1016/j.neuron.2016.10.032
. (2016). Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability.
Satoh, Daisuke, Pudenz, Christiane, & Neuron, 89(5), 1046–1058. https://doi.org/10.1016/j.neuron.2016.01.033
. (2016). Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons.
Satoh, Daisuke, Pudenz, Christiane, & Neuron, 89(5), 1046–1058. https://doi.org/10.1016/j.neuron.2016.01.033
. (2016). Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons.
Tovote, Philip, Esposito, Maria Soledad, Botta, Paolo, Chaudun, Fabrice, Fadok, Jonathan P, Markovic, Milica, Wolff, Steffen B E, Ramakrishnan, Charu, Fenno, Lief, Deisseroth, Karl, Herry, Cyril, Nature, 534(7606), 206–212. https://doi.org/10.1038/nature17996
, & Lüthi, Andreas. (2016). Midbrain circuits for defensive behaviour.
Tovote, Philip, Esposito, Maria Soledad, Botta, Paolo, Chaudun, Fabrice, Fadok, Jonathan P, Markovic, Milica, Wolff, Steffen B E, Ramakrishnan, Charu, Fenno, Lief, Deisseroth, Karl, Herry, Cyril, Nature, 534(7606), 206–212. https://doi.org/10.1038/nature17996
, & Lüthi, Andreas. (2016). Midbrain circuits for defensive behaviour.
Adamantidis, Antoine, Nature Neuroscience, 18(9), 1202–1212. https://doi.org/10.1038/nn.4106
, Bains, Jaideep S., Bamberg, Ernst, Bonci, Antonello, Buzsaki, Gyoergy, Cardin, Jessica A., Costa, Rui M., Dan, Yang, Goda, Yukiko, Graybiel, Ann M., Haeusser, Michael, Hegemann, Peter, Huguenard, John R., Insel, Thomas R., Janak, Patricia H., Johnston, Daniel, Josselyn, Sheena A., Koch, Christof, et al. (2015). Optogenetics: 10 years after ChR2 in neurons--views from the community.
Adamantidis, Antoine, Nature Neuroscience, 18(9), 1202–1212. https://doi.org/10.1038/nn.4106
, Bains, Jaideep S., Bamberg, Ernst, Bonci, Antonello, Buzsaki, Gyoergy, Cardin, Jessica A., Costa, Rui M., Dan, Yang, Goda, Yukiko, Graybiel, Ann M., Haeusser, Michael, Hegemann, Peter, Huguenard, John R., Insel, Thomas R., Janak, Patricia H., Johnston, Daniel, Josselyn, Sheena A., Koch, Christof, et al. (2015). Optogenetics: 10 years after ChR2 in neurons--views from the community.
Basaldella, Emanuela, Takeoka, Aya, Sigrist, Markus, & Cell, 163(2), 301–312. https://doi.org/10.1016/j.cell.2015.09.023
. (2015). Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity.
Basaldella, Emanuela, Takeoka, Aya, Sigrist, Markus, & Cell, 163(2), 301–312. https://doi.org/10.1016/j.cell.2015.09.023
. (2015). Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity.
Goetz, Cyrill, Pivetta, Chiara, & Neuron, 85(1), 131–144. https://doi.org/10.1016/j.neuron.2014.11.024
. (2015). Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord.
Goetz, Cyrill, Pivetta, Chiara, & Neuron, 85(1), 131–144. https://doi.org/10.1016/j.neuron.2014.11.024
. (2015). Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord.
Akay, Turgay, Tourtellotte, Warren G, Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16877–16882. https://doi.org/10.1073/pnas.1419045111
, & Jessell, Thomas M. (2014). Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.
Akay, Turgay, Tourtellotte, Warren G, Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16877–16882. https://doi.org/10.1073/pnas.1419045111
, & Jessell, Thomas M. (2014). Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.
Esposito, Maria Soledad, Capelli, Paolo, & Nature, 508(7496), 351–356. https://doi.org/10.1038/nature13023
. (2014). Brainstem nucleus MdV mediates skilled forelimb motor tasks.
Esposito, Maria Soledad, Capelli, Paolo, & Nature, 508(7496), 351–356. https://doi.org/10.1038/nature13023
. (2014). Brainstem nucleus MdV mediates skilled forelimb motor tasks.
Pecho-Vrieseling, Eline, Rieker, Claus, Fuchs, Sascha, Bleckmann, Dorothee, Esposito, Maria Soledad, Botta, Paolo, Goldstein, Chris, Bernhard, Mario, Galimberti, Ivan, Müller, Matthias, Lüthi, Andreas, Nature Neuroscience, 17(8), 1064–1072. https://doi.org/10.1038/nn.3761
, Bouwmeester, Tewis, van der Putten, Herman, & Di Giorgio, Francesco Paolo. (2014). Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons.
Pecho-Vrieseling, Eline, Rieker, Claus, Fuchs, Sascha, Bleckmann, Dorothee, Esposito, Maria Soledad, Botta, Paolo, Goldstein, Chris, Bernhard, Mario, Galimberti, Ivan, Müller, Matthias, Lüthi, Andreas, Nature Neuroscience, 17(8), 1064–1072. https://doi.org/10.1038/nn.3761
, Bouwmeester, Tewis, van der Putten, Herman, & Di Giorgio, Francesco Paolo. (2014). Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons.
Pivetta, Chiara, Esposito, Maria Soledad, Sigrist, Markus, & Cell, 156(3), 537–548. https://doi.org/10.1016/j.cell.2013.12.014
. (2014). Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.
Pivetta, Chiara, Esposito, Maria Soledad, Sigrist, Markus, & Cell, 156(3), 537–548. https://doi.org/10.1016/j.cell.2013.12.014
. (2014). Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.
Takeoka, Aya, Vollenweider, Isabel, Courtine, Grégoire, & Cell, 159(7), 1626–1639. https://doi.org/10.1016/j.cell.2014.11.019
. (2014). Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.
Takeoka, Aya, Vollenweider, Isabel, Courtine, Grégoire, & Cell, 159(7), 1626–1639. https://doi.org/10.1016/j.cell.2014.11.019
. (2014). Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.
Dougherty, Kimberly J, Zagoraiou, Laskaro, Satoh, Daisuke, Rozani, Ismini, Doobar, Staceyann, Neuron, 80(4), 920–933. https://doi.org/10.1016/j.neuron.2013.08.015
, Jessell, Thomas M, & Kiehn, Ole. (2013). Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons.
Dougherty, Kimberly J, Zagoraiou, Laskaro, Satoh, Daisuke, Rozani, Ismini, Doobar, Staceyann, Neuron, 80(4), 920–933. https://doi.org/10.1016/j.neuron.2013.08.015
, Jessell, Thomas M, & Kiehn, Ole. (2013). Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons.
Fukuhara, Kaori, Imai, Fumiyasu, Ladle, David R, Katayama, Kei-ichi, Leslie, Jennifer R, Cell Reports, 5(3), 748–758. https://doi.org/10.1016/j.celrep.2013.10.005
, Jessell, Thomas M, & Yoshida, Yutaka. (2013). Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling.
Fukuhara, Kaori, Imai, Fumiyasu, Ladle, David R, Katayama, Kei-ichi, Leslie, Jennifer R, Cell Reports, 5(3), 748–758. https://doi.org/10.1016/j.celrep.2013.10.005
, Jessell, Thomas M, & Yoshida, Yutaka. (2013). Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling.
Sakurai, Katsuyasu, Akiyama, Masahiro, Cai, Bin, Scott, Alexandra, Han, Bao-Xia, Takatoh, Jun, Sigrist, Markus, Cell Reports, 5(1), 87–98. https://doi.org/10.1016/j.celrep.2013.08.051
, & Wang, Fan. (2013). The organization of submodality-specific touch afferent inputs in the vibrissa column.
Sakurai, Katsuyasu, Akiyama, Masahiro, Cai, Bin, Scott, Alexandra, Han, Bao-Xia, Takatoh, Jun, Sigrist, Markus, Cell Reports, 5(1), 87–98. https://doi.org/10.1016/j.celrep.2013.08.051
, & Wang, Fan. (2013). The organization of submodality-specific touch afferent inputs in the vibrissa column.
Satoh, Daisuke, & Carving axon arbors to fit: master directs one kinase at a time]. Cell, 153, Article 7. https://doi.org/10.1016/j.cell.2013.05.047
. (2013). Carving axon arbors to fit: master directs one kinase at a time [Review of
Satoh, Daisuke, & Carving axon arbors to fit: master directs one kinase at a time]. Cell, 153, Article 7. https://doi.org/10.1016/j.cell.2013.05.047
. (2013). Carving axon arbors to fit: master directs one kinase at a time [Review of
Motor circuits in action : specification, connectivity, and function]. Neuron, 74, Article 6. https://doi.org/10.1016/j.neuron.2012.05.011
. (2012). Motor circuits in action : specification, connectivity, and function [Review of
Motor circuits in action : specification, connectivity, and function]. Neuron, 74, Article 6. https://doi.org/10.1016/j.neuron.2012.05.011
. (2012). Motor circuits in action : specification, connectivity, and function [Review of
Ashrafi, Soha, Lalancette-Hébert, Melanie, Friese, Andreas, Sigrist, Markus, The Journal of Neuroscience, 32(25), 8725–8731. https://doi.org/10.1523/jneurosci.1160-12.2012
, Shneider, Neil A., & Kaltschmidt, Julia A. (2012). Wnt7A identifies embryonic gamma-motor neurons and reveals early postnatal dependence of gamma-motor neurons on a muscle spindle-derived signal.
Ashrafi, Soha, Lalancette-Hébert, Melanie, Friese, Andreas, Sigrist, Markus, The Journal of Neuroscience, 32(25), 8725–8731. https://doi.org/10.1523/jneurosci.1160-12.2012
, Shneider, Neil A., & Kaltschmidt, Julia A. (2012). Wnt7A identifies embryonic gamma-motor neurons and reveals early postnatal dependence of gamma-motor neurons on a muscle spindle-derived signal.
Lee, Jun, Friese, Andreas, Mielich, Monika, Sigrist, Markus, & PLoS ONE, 7(9), 1–15. https://doi.org/10.1371/journal.pone.0045551
. (2012). Scaling proprioceptor gene transcription by retrograde NT3 signaling.
Lee, Jun, Friese, Andreas, Mielich, Monika, Sigrist, Markus, & PLoS ONE, 7(9), 1–15. https://doi.org/10.1371/journal.pone.0045551
. (2012). Scaling proprioceptor gene transcription by retrograde NT3 signaling.
Tripodi, Marco, & Current Opinion in Neurobiology, 22(4), 615–623. https://doi.org/10.1016/j.conb.2012.02.011
. (2012). Regulation of motor circuit assembly by spatial and temporal mechanisms.
Tripodi, Marco, & Current Opinion in Neurobiology, 22(4), 615–623. https://doi.org/10.1016/j.conb.2012.02.011
. (2012). Regulation of motor circuit assembly by spatial and temporal mechanisms.
Arber, S., & Davis, G. (2011). Developmental neuroscience. Current Opinion in Neurobiology, 21(1), 1–4. https://doi.org/10.1016/j.conb.2010.12.001
Arber, S., & Davis, G. (2011). Developmental neuroscience. Current Opinion in Neurobiology, 21(1), 1–4. https://doi.org/10.1016/j.conb.2010.12.001
Developmental neuroscience]. Current Opinion in Neurobiology, 21, Article 1. https://doi.org/10.1016/j.conb.2010.12.001
, & Davis, Graeme. (2011). Developmental neuroscience [Review of
Developmental neuroscience]. Current Opinion in Neurobiology, 21, Article 1. https://doi.org/10.1016/j.conb.2010.12.001
, & Davis, Graeme. (2011). Developmental neuroscience [Review of
Ma, Chi H. E., Brenner, Gary J., Omura, Takao, Samad, Omar A., Costigan, Michael, Inquimbert, Perrine, Niederkofler, Vera, Salie, Rishard, Sun, Chia C., Lin, Herbert Y., Journal of Neuroscience, 31(50), 18391–18400. https://doi.org/10.1523/jneurosci.4550-11.2011
, Coppola, Giovanni, Woolfe, Clifford J., & Samad, T. A. (2011). The BMP Coreceptor RGMb Promotes While the Endogenous BMP Antagonist Noggin Reduces Neurite Outgrowth and Peripheral Nerve Regeneration by Modulating BMP Signaling.
Ma, Chi H. E., Brenner, Gary J., Omura, Takao, Samad, Omar A., Costigan, Michael, Inquimbert, Perrine, Niederkofler, Vera, Salie, Rishard, Sun, Chia C., Lin, Herbert Y., Journal of Neuroscience, 31(50), 18391–18400. https://doi.org/10.1523/jneurosci.4550-11.2011
, Coppola, Giovanni, Woolfe, Clifford J., & Samad, T. A. (2011). The BMP Coreceptor RGMb Promotes While the Endogenous BMP Antagonist Noggin Reduces Neurite Outgrowth and Peripheral Nerve Regeneration by Modulating BMP Signaling.
Tripodi, Marco, Stepien, Anna E, & Nature, 479(7371), 61–66. https://doi.org/10.1038/nature10538
. (2011). Motor antagonism exposed by spatial segregation and timing of neurogenesis.
Tripodi, Marco, Stepien, Anna E, & Nature, 479(7371), 61–66. https://doi.org/10.1038/nature10538
. (2011). Motor antagonism exposed by spatial segregation and timing of neurogenesis.
Xia, Y., Cortez-Retamozo, V., Niederkofler, V., Salie, R., Chen, S., Samad, T. A., Hong, C. C., Journal of Immunology, 186(3), 1369–1376. https://doi.org/10.4049/jimmunol.1002047
, Vyas, J. M., Weissleder, R., Pittet, M. J., & Lin, H. Y. (2011). Dragon (repulsive guidance molecule B) inhibits IL-6 expression in macrophages.
Xia, Y., Cortez-Retamozo, V., Niederkofler, V., Salie, R., Chen, S., Samad, T. A., Hong, C. C., Journal of Immunology, 186(3), 1369–1376. https://doi.org/10.4049/jimmunol.1002047
, Vyas, J. M., Weissleder, R., Pittet, M. J., & Lin, H. Y. (2011). Dragon (repulsive guidance molecule B) inhibits IL-6 expression in macrophages.
Abdel Samad, Omar, Liu, Yang, Yang, Fu-Chia, Kramer, Ina, Molecular Pain, 6, 45. https://doi.org/10.1186/1744-8069-6-45
, & Ma, Qiufu. (2010). Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain.
Abdel Samad, Omar, Liu, Yang, Yang, Fu-Chia, Kramer, Ina, Molecular Pain, 6, 45. https://doi.org/10.1186/1744-8069-6-45
, & Ma, Qiufu. (2010). Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain.
Stepien, Anna E, Tripodi, Marco, & Neuron, 68(3), 456–472. https://doi.org/10.1016/j.neuron.2010.10.019
. (2010). Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells.
Stepien, Anna E, Tripodi, Marco, & Neuron, 68(3), 456–472. https://doi.org/10.1016/j.neuron.2010.10.019
. (2010). Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells.
Zimmer, Céline, Lee, Jun, Griveau, Amélie, Development, 137(2), 293–302. https://doi.org/10.1242/dev.041178
, Pierani, Alessandra, Garel, Sonia, & Guillemot, François. (2010). Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells.
Zimmer, Céline, Lee, Jun, Griveau, Amélie, Development, 137(2), 293–302. https://doi.org/10.1242/dev.041178
, Pierani, Alessandra, Garel, Sonia, & Guillemot, François. (2010). Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells.
Friese, A., Kaltschmidt, J. A., Ladle, D. R., Sigrist, M., Jessell, T. M., & Arbera, S. (2009). Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13588–13593. https://doi.org/10.1073/pnas.0906809106
Friese, A., Kaltschmidt, J. A., Ladle, D. R., Sigrist, M., Jessell, T. M., & Arbera, S. (2009). Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13588–13593. https://doi.org/10.1073/pnas.0906809106
Lu, Benson C, Cebrian, Cristina, Chi, Xuan, Kuure, Satu, Kuo, Richard, Bates, Carlton M, Nature Genetics, 41(12), 1295–1302. https://doi.org/10.1038/ng.476
, Hassell, John, MacNeil, Lesley, Hoshi, Masato, Jain, Sanjay, Asai, Naoya, Takahashi, Masahide, Schmidt-Ott, Kai M, Barasch, Jonathan, D’Agati, Vivette, & Costantini, Frank. (2009). Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis.
Lu, Benson C, Cebrian, Cristina, Chi, Xuan, Kuure, Satu, Kuo, Richard, Bates, Carlton M, Nature Genetics, 41(12), 1295–1302. https://doi.org/10.1038/ng.476
, Hassell, John, MacNeil, Lesley, Hoshi, Masato, Jain, Sanjay, Asai, Naoya, Takahashi, Masahide, Schmidt-Ott, Kai M, Barasch, Jonathan, D’Agati, Vivette, & Costantini, Frank. (2009). Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis.
Pecho-Vrieseling, Eline, Sigrist, Markus, Yoshida, Yutaka, Jessell, Thomas M, & Nature, 459(7248), 842–846. https://doi.org/10.1038/nature08000
. (2009). Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition.
Pecho-Vrieseling, Eline, Sigrist, Markus, Yoshida, Yutaka, Jessell, Thomas M, & Nature, 459(7248), 842–846. https://doi.org/10.1038/nature08000
. (2009). Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition.
Zhu, Peixin, Narita, Yuichi, Bundschuh, Sebastian T, Fajardo, Otto, Schärer, Yan-Ping Zhang, Chattopadhyaya, Bidisha, Bouldoires, Estelle Arn, Stepien, Anna Ewa, Deisseroth, Karl, Frontiers in Neural Circuits, 3, 21. https://doi.org/10.3389/neuro.04.021.2009
, Sprengel, Rolf, Rijli, Filippo M, & Friedrich, Rainer W. (2009). Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System.
Zhu, Peixin, Narita, Yuichi, Bundschuh, Sebastian T, Fajardo, Otto, Schärer, Yan-Ping Zhang, Chattopadhyaya, Bidisha, Bouldoires, Estelle Arn, Stepien, Anna Ewa, Deisseroth, Karl, Frontiers in Neural Circuits, 3, 21. https://doi.org/10.3389/neuro.04.021.2009
, Sprengel, Rolf, Rijli, Filippo M, & Friedrich, Rainer W. (2009). Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System.
Stepien, A. E., & Arber, S. (2008). Probing the Locomotor Conundrum: Descending the ‘V’ Interneuron Ladder. Neuron, 60(1), 1–4. https://doi.org/10.1016/j.neuron.2008.09.030
Stepien, A. E., & Arber, S. (2008). Probing the Locomotor Conundrum: Descending the ‘V’ Interneuron Ladder. Neuron, 60(1), 1–4. https://doi.org/10.1016/j.neuron.2008.09.030
Nature Neuroscience, 11(10), 1122–1124. https://doi.org/10.1038/nn1008-1122
. (2008). FoxP1 : conducting the Hox symphony in spinal motor neurons.
Nature Neuroscience, 11(10), 1122–1124. https://doi.org/10.1038/nn1008-1122
. (2008). FoxP1 : conducting the Hox symphony in spinal motor neurons.
Dalla Torre di Sanguinetto, Simon A, Dasen, Jeremy S, & Current Opinion in Neurobiology, 18(1), 36–43. https://doi.org/10.1016/j.conb.2008.04.002
. (2008). Transcriptional mechanisms controlling motor neuron diversity and connectivity.
Dalla Torre di Sanguinetto, Simon A, Dasen, Jeremy S, & Current Opinion in Neurobiology, 18(1), 36–43. https://doi.org/10.1016/j.conb.2008.04.002
. (2008). Transcriptional mechanisms controlling motor neuron diversity and connectivity.
Stepien, Anna E., & Neuron, 60(1), 1–4. https://doi.org/10.1016/j.neuron.2008.09.030
. (2008). Probing the locomotor conundrum : descending the ‘V’ interneuron ladder.
Stepien, Anna E., & Neuron, 60(1), 1–4. https://doi.org/10.1016/j.neuron.2008.09.030
. (2008). Probing the locomotor conundrum : descending the ‘V’ interneuron ladder.
Belle, M. D., Pattison, E. F., Cheunsuang, O., Stewart, A., Kramer, I., Sigrist, M., Arber, S., & Morris, R. (2007). Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn. Genesis, 45(11), 679–688. https://doi.org/10.1002/dvg.20331
Belle, M. D., Pattison, E. F., Cheunsuang, O., Stewart, A., Kramer, I., Sigrist, M., Arber, S., & Morris, R. (2007). Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn. Genesis, 45(11), 679–688. https://doi.org/10.1002/dvg.20331
Belle, Mino D., Pattison, Edward F., Cheunsuang, Ornsiri, Stewart, Anika, Kramer, Ina, Sigrist, Markus, Genesis, 45(11), 679–688. https://doi.org/10.1002/dvg.20331
, & Morris, Richard. (2007). Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn.
Belle, Mino D., Pattison, Edward F., Cheunsuang, Ornsiri, Stewart, Anika, Kramer, Ina, Sigrist, Markus, Genesis, 45(11), 679–688. https://doi.org/10.1002/dvg.20331
, & Morris, Richard. (2007). Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn.
Hippenmeyer, Simon, Huber, Roland M, Ladle, David R, Murphy, Kenneth, & Neuron, 55(5), 726–740. https://doi.org/10.1016/j.neuron.2007.07.028
. (2007). ETS transcription factor Erm controls subsynaptic gene expression in skeletal muscles.
Hippenmeyer, Simon, Huber, Roland M, Ladle, David R, Murphy, Kenneth, & Neuron, 55(5), 726–740. https://doi.org/10.1016/j.neuron.2007.07.028
. (2007). ETS transcription factor Erm controls subsynaptic gene expression in skeletal muscles.
Ksiazek, Iwona, Burkhardt, Constanze, Lin, Shuo, Seddik, Riad, Maj, Marcin, Bezakova, Gabriela, Jucker, Mathias, Journal of Neuroscience, 27(27), 7183–7195. https://doi.org/10.1523/jneurosci.1609-07.2007
, Caroni, Pico, Sanes, Joshua R., Bettler, Bernhard, & Ruegg, Markus A. (2007). Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death.
Ksiazek, Iwona, Burkhardt, Constanze, Lin, Shuo, Seddik, Riad, Maj, Marcin, Bezakova, Gabriela, Jucker, Mathias, Journal of Neuroscience, 27(27), 7183–7195. https://doi.org/10.1523/jneurosci.1609-07.2007
, Caroni, Pico, Sanes, Joshua R., Bettler, Bernhard, & Ruegg, Markus A. (2007). Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death.
Ladle, David R, Pecho-Vrieseling, Eline, & Neuron, 56(2), 270–283. https://doi.org/10.1016/j.neuron.2007.09.026
. (2007). Assembly of motor circuits in the spinal cord : driven to function by genetic and experience-dependent mechanisms.
Ladle, David R, Pecho-Vrieseling, Eline, & Neuron, 56(2), 270–283. https://doi.org/10.1016/j.neuron.2007.09.026
. (2007). Assembly of motor circuits in the spinal cord : driven to function by genetic and experience-dependent mechanisms.
Kramer, Ina, Sigrist, Markus, de Nooij, Joriene C, Taniuchi, Ichiro, Jessell, Thomas M, & Neuron, 49(3), 379–393. https://doi.org/10.1016/j.neuron.2006.01.008
. (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.
Kramer, Ina, Sigrist, Markus, de Nooij, Joriene C, Taniuchi, Ichiro, Jessell, Thomas M, & Neuron, 49(3), 379–393. https://doi.org/10.1016/j.neuron.2006.01.008
. (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.
Raineteau, Olivier, Hugel, Sylvain, Ozen, Ilknur, Rietschin, Lotty, Sigrist, Markus, Molecular and Cellular Neuroscience, 32(4), 344–355. https://doi.org/10.1016/j.mcn.2006.05.006
, & Gähwiler, Beat H. (2006). Conditional labeling of newborn granule cells to visualize their integration into established circuits in hippocampal slice cultures.
Raineteau, Olivier, Hugel, Sylvain, Ozen, Ilknur, Rietschin, Lotty, Sigrist, Markus, Molecular and Cellular Neuroscience, 32(4), 344–355. https://doi.org/10.1016/j.mcn.2006.05.006
, & Gähwiler, Beat H. (2006). Conditional labeling of newborn granule cells to visualize their integration into established circuits in hippocampal slice cultures.
Vrieseling, Eline, & Cell, 127(7), 1439–1452. https://doi.org/10.1016/j.cell.2006.10.042
. (2006). Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3.
Vrieseling, Eline, & Cell, 127(7), 1439–1452. https://doi.org/10.1016/j.cell.2006.10.042
. (2006). Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3.
Bielle, Franck, Griveau, Amélie, Narboux-Nême, Nicolas, Vigneau, Sébastien, Sigrist, Markus, Nature Neuroscience, 8(8), 1002–1012. https://doi.org/10.1038/nn1511
, Wassef, Marion, & Pierani, Alessandra. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium.
Bielle, Franck, Griveau, Amélie, Narboux-Nême, Nicolas, Vigneau, Sébastien, Sigrist, Markus, Nature Neuroscience, 8(8), 1002–1012. https://doi.org/10.1038/nn1511
, Wassef, Marion, & Pierani, Alessandra. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium.
Chen, Chen, Ouyang, Wenjun, Grigura, Vadim, Zhou, Qing, Carnes, Kay, Lim, Hyunjung, Zhao, Guang-Quan, Nature, 436(7053), 1030–1034. https://doi.org/10.1038/nature03894
, Kurpios, Natasza, Murphy, Theresa L, Cheng, Alec M, Hassell, John A, Chandrashekar, Varadaraj, Hofmann, Marie-Claude, Hess, Rex A, & Murphy, Kenneth M. (2005). ERM is required for transcriptional control of the spermatogonial stem cell niche.
Chen, Chen, Ouyang, Wenjun, Grigura, Vadim, Zhou, Qing, Carnes, Kay, Lim, Hyunjung, Zhao, Guang-Quan, Nature, 436(7053), 1030–1034. https://doi.org/10.1038/nature03894
, Kurpios, Natasza, Murphy, Theresa L, Cheng, Alec M, Hassell, John A, Chandrashekar, Varadaraj, Hofmann, Marie-Claude, Hess, Rex A, & Murphy, Kenneth M. (2005). ERM is required for transcriptional control of the spermatogonial stem cell niche.
Hippenmeyer, Simon, Vrieseling, Eline, Sigrist, Markus, Portmann, Thomas, Laengle, Celia, Ladle, David R, & PLoS Biology, 3(5), e159. https://doi.org/10.1371/journal.pbio.0030159
. (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling.
Hippenmeyer, Simon, Vrieseling, Eline, Sigrist, Markus, Portmann, Thomas, Laengle, Celia, Ladle, David R, & PLoS Biology, 3(5), e159. https://doi.org/10.1371/journal.pbio.0030159
. (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling.
Niederkofler, V., Salie, R., & Journal of Clinical Investigation, 115(8), 2180–2186. https://doi.org/10.1172/jci25683
(2005). Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload.
Niederkofler, V., Salie, R., & Journal of Clinical Investigation, 115(8), 2180–2186. https://doi.org/10.1172/jci25683
(2005). Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload.
Salie, Rishard, Niederkofler, Vera, & Neuron, 45(2), 189–192. https://doi.org/10.1016/j.neuron.2005.01.002
. (2005). Patterning molecules : multitasking in the nervous system.
Salie, Rishard, Niederkofler, Vera, & Neuron, 45(2), 189–192. https://doi.org/10.1016/j.neuron.2005.01.002
. (2005). Patterning molecules : multitasking in the nervous system.
Trends in Neurosciences, 27(3), 111–113. https://doi.org/10.1016/j.tins.2004.01.005
. (2004). Subplate neurons : bridging the gap to function in the cortex.
Trends in Neurosciences, 27(3), 111–113. https://doi.org/10.1016/j.tins.2004.01.005
. (2004). Subplate neurons : bridging the gap to function in the cortex.
Neuronal and glial cell biology]. Current Opinion in Neurobiology, 14, Article 5. https://doi.org/10.1016/j.conb.2004.08.018
, & Wong, R. (2004). Neuronal and glial cell biology [Review of
Neuronal and glial cell biology]. Current Opinion in Neurobiology, 14, Article 5. https://doi.org/10.1016/j.conb.2004.08.018
, & Wong, R. (2004). Neuronal and glial cell biology [Review of
Hippenmeyer, Simon, Kramer, Ina, & Trends in Neurosciences, 27(8), 482–488. https://doi.org/10.1016/j.tins.2004.05.012
. (2004). Control of neuronal phenotype : what targets tell the cell bodies.
Hippenmeyer, Simon, Kramer, Ina, & Trends in Neurosciences, 27(8), 482–488. https://doi.org/10.1016/j.tins.2004.05.012
. (2004). Control of neuronal phenotype : what targets tell the cell bodies.
Niederkofler, Vera, Salie, Rishard, Sigrist, Markus, & Journal of Neuroscience, 24(4), 808–818. https://doi.org/10.1523/jneurosci.4610-03.2004
. (2004). Repulsive guidance molecule (RGM) gene function is required for neural tube closure but not retinal topography in the mouse visual system.
Niederkofler, Vera, Salie, Rishard, Sigrist, Markus, & Journal of Neuroscience, 24(4), 808–818. https://doi.org/10.1523/jneurosci.4610-03.2004
. (2004). Repulsive guidance molecule (RGM) gene function is required for neural tube closure but not retinal topography in the mouse visual system.
Chen, Hsiao-Huei, Hippenmeyer, Simon, Current Opinion in Neurobiology, 13(1), 96–102. https://doi.org/10.1016/s0959-4388(03)00006-0
, & Frank, Eric. (2003). Development of the monosynaptic stretch reflex circuit.
Chen, Hsiao-Huei, Hippenmeyer, Simon, Current Opinion in Neurobiology, 13(1), 96–102. https://doi.org/10.1016/s0959-4388(03)00006-0
, & Frank, Eric. (2003). Development of the monosynaptic stretch reflex circuit.
De Paola, Vincenzo, Nature Neuroscience, 6(5), 491–500. https://doi.org/10.1038/nn1046
, & Caroni, Pico. (2003). AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks.
De Paola, Vincenzo, Nature Neuroscience, 6(5), 491–500. https://doi.org/10.1038/nn1046
, & Caroni, Pico. (2003). AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks.
Helmbacher, Françoise, Dessaud, Eric, Neuron, 39(5), 767–777. https://doi.org/10.1016/s0896-6273(03)00493-8
, deLapeyrière, Odile, Henderson, Christopher E, Klein, Rüdiger, & Maina, Flavio. (2003). Met signaling is required for recruitment of motor neurons to PEA3-positive motor pools.
Helmbacher, Françoise, Dessaud, Eric, Neuron, 39(5), 767–777. https://doi.org/10.1016/s0896-6273(03)00493-8
, deLapeyrière, Odile, Henderson, Christopher E, Klein, Rüdiger, & Maina, Flavio. (2003). Met signaling is required for recruitment of motor neurons to PEA3-positive motor pools.
Hippenmeyer, S, Vrieseling, E, Ladle, DR, Portmann, T, Jessell, TM, & Molecular pathways controlling the assembly of the spinal monosynaptic reflex circuit : (Meeting Abstract)]. Developmental Biology, 259, Article 2.
. (2003). Molecular pathways controlling the assembly of the spinal monosynaptic reflex circuit : (Meeting Abstract) [Review of
Hippenmeyer, S, Vrieseling, E, Ladle, DR, Portmann, T, Jessell, TM, & Molecular pathways controlling the assembly of the spinal monosynaptic reflex circuit : (Meeting Abstract)]. Developmental Biology, 259, Article 2.
. (2003). Molecular pathways controlling the assembly of the spinal monosynaptic reflex circuit : (Meeting Abstract) [Review of
Patel, Tushar D, Kramer, Ina, Kucera, Jan, Niederkofler, Vera, Jessell, Thomas M, Neuron, 38(3), 403–416. https://doi.org/10.1016/s0896-6273(03)00261-7
, & Snider, William D. (2003). Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents.
Patel, Tushar D, Kramer, Ina, Kucera, Jan, Niederkofler, Vera, Jessell, Thomas M, Neuron, 38(3), 403–416. https://doi.org/10.1016/s0896-6273(03)00261-7
, & Snider, William D. (2003). Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents.
Current Opinion in Neurobiology, 12(1), 100–103. https://doi.org/10.1016/s0959-4388(02)00296-9
, Burden, SJ, & Harris, AJ. (2002). Patterning of skeletal muscle.
Current Opinion in Neurobiology, 12(1), 100–103. https://doi.org/10.1016/s0959-4388(02)00296-9
, Burden, SJ, & Harris, AJ. (2002). Patterning of skeletal muscle.
Haase, Georg, Dessaud, Eric, Garcès, Alain, de Bovis, Béatrice, Birling, Marie, Filippi, Pierre, Schmalbruch, Henning, Neuron, 35(5), 893–905. https://doi.org/10.1016/s0896-6273(02)00864-4
, & deLapeyrière, Odile. (2002). GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools.
Haase, Georg, Dessaud, Eric, Garcès, Alain, de Bovis, Béatrice, Birling, Marie, Filippi, Pierre, Schmalbruch, Henning, Neuron, 35(5), 893–905. https://doi.org/10.1016/s0896-6273(02)00864-4
, & deLapeyrière, Odile. (2002). GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools.
Hippenmeyer, Simon, Shneider, Neil A, Birchmeier, Carmen, Burden, Steven J, Jessell, Thomas M, & Neuron, 36(6), 1035–1049. https://doi.org/10.1016/s0896-6273(02)01101-7
. (2002). A role for neuregulin1 signaling in muscle spindle differentiation.
Hippenmeyer, Simon, Shneider, Neil A, Birchmeier, Carmen, Burden, Steven J, Jessell, Thomas M, & Neuron, 36(6), 1035–1049. https://doi.org/10.1016/s0896-6273(02)01101-7
. (2002). A role for neuregulin1 signaling in muscle spindle differentiation.
Livet, Jean, Sigrist, Markus, Stroebel, Simon, De Paola, Vincenzo, Price, Stephen R, Henderson, Christopher E, Jessell, Thomas M, & Neuron, 35(5), 877–892. https://doi.org/10.1016/s0896-6273(02)00863-2
. (2002). ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools.
Livet, Jean, Sigrist, Markus, Stroebel, Simon, De Paola, Vincenzo, Price, Stephen R, Henderson, Christopher E, Jessell, Thomas M, & Neuron, 35(5), 877–892. https://doi.org/10.1016/s0896-6273(02)00863-2
. (2002). ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools.
Pun, S., Sigrist, M., Santos, A. F., Ruegg, M. A., Sanes, J. R., Jessell, T. M., Neuron, 34(3), 357–370. https://doi.org/10.1016/s0896-6273(02)00670-0
, & Caroni, P. (2002). An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles.
Pun, S., Sigrist, M., Santos, A. F., Ruegg, M. A., Sanes, J. R., Jessell, T. M., Neuron, 34(3), 357–370. https://doi.org/10.1016/s0896-6273(02)00670-0
, & Caroni, P. (2002). An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles.
Yang, X, Neuron, 30(2), 399–410. https://doi.org/10.1016/s0896-6273(01)00287-2
, William, C, Li, L, Tanabe, Y, Jessell, T M, Birchmeier, C, & Burden, S J. (2001). Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation.
Yang, X, Neuron, 30(2), 399–410. https://doi.org/10.1016/s0896-6273(01)00287-2
, William, C, Li, L, Tanabe, Y, Jessell, T M, Birchmeier, C, & Burden, S J. (2001). Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation.
Cell, 101(5), 485–498. https://doi.org/10.1016/s0092-8674(00)80859-4
, Ladle, D R, Lin, J H, Frank, E, & Jessell, T M. (2000). ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons.
Cell, 101(5), 485–498. https://doi.org/10.1016/s0092-8674(00)80859-4
, Ladle, D R, Lin, J H, Frank, E, & Jessell, T M. (2000). ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons.
Neuron, 23(4), 659–674. https://doi.org/10.1016/s0896-6273(01)80026-x
, Han, B, Mendelsohn, M, Smith, M, Jessell, T M, & Sockanathan, S. (1999). Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity.
Neuron, 23(4), 659–674. https://doi.org/10.1016/s0896-6273(01)80026-x
, Han, B, Mendelsohn, M, Smith, M, Jessell, T M, & Sockanathan, S. (1999). Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity.
Li, H, Nature Genetics, 23(1), 67–70. https://doi.org/10.1038/12669
, Jessell, T M, & Edlund, H. (1999). Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.
Li, H, Nature Genetics, 23(1), 67–70. https://doi.org/10.1038/12669
, Jessell, T M, & Edlund, H. (1999). Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.
Nature, 393(6687), 805–809. https://doi.org/10.1038/31729
, Barbayannis, F A, Hanser, H, Schneider, C, Stanyon, C A, Bernard, O, & Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase.
Nature, 393(6687), 805–809. https://doi.org/10.1038/31729
, Barbayannis, F A, Hanser, H, Schneider, C, Stanyon, C A, Bernard, O, & Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase.
Lin, J H, Saito, T, Anderson, D J, Lance-Jones, C, Jessell, T M, & Cell, 95(3), 393–407. https://doi.org/10.1016/s0092-8674(00)81770-5
. (1998). Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression.
Lin, J H, Saito, T, Anderson, D J, Lance-Jones, C, Jessell, T M, & Cell, 95(3), 393–407. https://doi.org/10.1016/s0092-8674(00)81770-5
. (1998). Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression.
Cell, 88(3), 393–403. https://doi.org/10.1016/s0092-8674(00)81878-4
, Hunter, J J, Ross, J, Hongo, M, Sansig, G, Borg, J, Perriard, J C, Chien, K R, & Caroni, P. (1997). MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure.
Cell, 88(3), 393–403. https://doi.org/10.1016/s0092-8674(00)81878-4
, Hunter, J J, Ross, J, Hongo, M, Sansig, G, Borg, J, Perriard, J C, Chien, K R, & Caroni, P. (1997). MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure.
Baumeister, A, The Journal of cell biology, 139(5), 1231–1242. https://doi.org/10.1083/jcb.139.5.1231
, & Caroni, P. (1997). Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis.
Baumeister, A, The Journal of cell biology, 139(5), 1231–1242. https://doi.org/10.1083/jcb.139.5.1231
, & Caroni, P. (1997). Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis.
Genes & Development, 10(3), 289–300. https://doi.org/10.1101/gad.10.3.289
, & Caroni, P. (1996). Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ.
Genes & Development, 10(3), 289–300. https://doi.org/10.1101/gad.10.3.289
, & Caroni, P. (1996). Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ.
Aigner, L, Cell, 83(2), 269–278. https://doi.org/10.1016/0092-8674(95)90168-x
, Kapfhammer, J P, Laux, T, Schneider, C, Botteri, F, Brenner, H R, & Caroni, P. (1995). Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice.
Aigner, L, Cell, 83(2), 269–278. https://doi.org/10.1016/0092-8674(95)90168-x
, Kapfhammer, J P, Laux, T, Schneider, C, Botteri, F, Brenner, H R, & Caroni, P. (1995). Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice.
The Journal of cell biology, 131(4), 1083–1094. https://doi.org/10.1083/jcb.131.4.1083
, & Caroni, P. (1995). Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth.
The Journal of cell biology, 131(4), 1083–1094. https://doi.org/10.1083/jcb.131.4.1083
, & Caroni, P. (1995). Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth.
Cell, 79(2), 221–231. https://doi.org/10.1016/0092-8674(94)90192-9
, Halder, G, & Caroni, P. (1994). Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation.
Cell, 79(2), 221–231. https://doi.org/10.1016/0092-8674(94)90192-9
, Halder, G, & Caroni, P. (1994). Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation.
The Journal of cell biology, 116(1), 113–125. https://doi.org/10.1083/jcb.116.1.113
, Krause, K H, & Caroni, P. (1992). s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin.
The Journal of cell biology, 116(1), 113–125. https://doi.org/10.1083/jcb.116.1.113
, Krause, K H, & Caroni, P. (1992). s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin.