UNIverse - Public Research Portal
Profile Photo

Prof. Dr. Jiří Černý

Department of Mathematics and Computer Sciences
Profiles & Affiliations

Publications

50 found
Show per page

Černý, Jiří, Drewitz, Alexander, & Oswald, Pascal. (2025). On the tightness of the maximum of branching Brownian motion in random environment [Journal-article]. The Annals of Probability, 53(2). https://doi.org/10.1214/24-aop1713

URLs
URLs

Černý, J., & Locher, R. (2025). Critical and near-critical level-set percolation of the Gaussian free field on regular trees [Journal-article]. Annales de L’institut Henri Poincare (B) Probability and Statistics, 61(1), 746–767. https://doi.org/10.1214/23-AIHP1436

URLs
URLs

Birkner, M., Callegaro, A., Černý, J., Gantert, N., & Oswald, P. (2024). SURVIVAL AND COMPLETE CONVERGENCE FOR A BRANCHING ANNIHILATING RANDOM WALK. Annals of Applied Probability, 34(6), 5737–5768. https://doi.org/10.1214/24-AAP2105

URLs
URLs

Černý, Jiří. (2023). Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs [Journal-article]. Communications on Pure and Applied Mathematics, 76(11), 3346–3373. https://doi.org/10.1002/cpa.22112

URLs
URLs

Birkner, M., Callegaro, A., Černý, J., Gantert, N., & Oswald, P. (2023). Survival and complete convergence for a branching annihilating random walk. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.

URLs
URLs

Černý, J., Drewitz, A., & Oswald, P. (2023). On the tightness of the maximum of branching Brownian motion in random environment. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.

URLs
URLs

Černý, Jiří, Drewitz, Alexander, & Schmitz, Lars. (2023). (UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION [Journal-article]. Annals of Applied Probability, 33(3), 2342–2373. https://doi.org/10.1214/22-AAP1869

URLs
URLs

Černý, J., & Locher, R. (2023). Critical and near-critical level-set percolation of the Gaussian free field on regular trees. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.

URLs
URLs

Belius, David, Černý, Jiří, Nakajima, Shuta, & Schmidt, Marius Alexander. (2022). Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field. Journal of Statistical Physics, 186(1), 12. https://doi.org/10.1007/s10955-021-02855-6

URLs
URLs

Černý, Jiří, & Hayder, Thomas. (2022). Critical window for the vacant set left by random walk on the configuration model. Alea (Rio de Janeiro), 19(1), 231–257. https://doi.org/10.30757/ALEA.V19-10

URLs
URLs

Černý, J., & Hayder, T. (2021). Critical window for the vacant set left by random walk on the configuration model. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.

URLs
URLs

Belius, D., Černý, J., Nakajima, S., & Schmidt, M. (2021). Triviality of the geometry of mixed $p$-spin spherical Hamiltonians with external field. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.

URLs
URLs

Černý, J. (2021). Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.

URLs
URLs

Černý, J., Drewitz, A., & Schmitz, L. (2021). (Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.

URLs
URLs

Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees. Electronic Journal of Probability, 25, 1–24. https://doi.org/10.1214/20-ejp468

URLs
URLs

Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders. Electronic Journal of Probability, 25, 1–39. https://doi.org/10.1214/20-ejp532

URLs
URLs

Černý, Jiří, & Drewitz, Alexander. (2020). Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. The Annals of Probability, 48(1), 94–146. https://doi.org/10.1214/19-aop1347

URLs
URLs

Černý, Jiří, & Klimovsky, Anton. (2020). Markovian dynamics of exchangeable arrays. In Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (Ed.), Lecture Notes Series. World Scientific. https://doi.org/10.1142/9789811206092_0005

URLs
URLs

Abächerli, A., & Černý, J. (2019). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.

URLs
URLs

Abächerli, A., & Černý, J. (2019). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.

URLs
URLs

Černý, Jiří. (2019). Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM. In Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (Ed.), Springer Proceedings in Mathematics & Statistics. Springer. https://doi.org/10.1007/978-3-030-29077-1_5

URLs
URLs

Černý, J., & Wassmer, T. (2017). Aging of the Metropolis dynamics on the random energy model. Probability Theory and Related Fields, 167(1-2), 253–303. https://doi.org/10.1007/s00440-015-0681-1

URLs
URLs

Černý, J., & Teixeira, A. (2016). Random walks on torus and random interlacements: Macroscopic coupling and phase transition. Annals of Applied Probability, 26(5), 2883–2914. https://doi.org/10.1214/15-AAP1165

URLs
URLs

Birkner, M., Černý, J., & Depperschmidt, A. (2016). Random walks in dynamic random environments and ancestry under local population regulation. Electronic Journal of Probability, 21. https://doi.org/10.1214/16-EJP4666

URLs
URLs

Černý, J., & Sapozhnikov, A. (2016). Mixing time for the random walk on the range of the random walk on tori. Electronic Communications in Probability, 21. https://doi.org/10.1214/16-ECP4750

URLs
URLs

Ben Arous, Gérard, Cabezas, Manuel, Černý, Jiří, & Royfman, Roman. (2015). Randomly trapped random walks. Annals of Probability, 43(5), 2405–2457. https://doi.org/10.1214/14-AOP939

URLs
URLs

Černý, J., & Wassmer, T. (2015). Randomly trapped random walks on Zd. Stochastic Processes and Their Applications, 125(3), 1032–1057. https://doi.org/10.1016/j.spa.2014.10.002

URLs
URLs

Černý, J., & Teixeira, A. (2013). Critical window for the vacant set left by random walk on random regular graphs. Random Structures and Algorithms, 43(3), 313–337. https://doi.org/10.1002/rsa.20425

URLs
URLs

Birkner, M., Černý, J., Depperschmidt, A., & Gantert, N. (2013). Directed random walk on the backbone of an oriented percolation cluster. Electronic Journal of Probability, 18. https://doi.org/10.1214/EJP.v18-2302

URLs
URLs

Auffinger, Antonio, Ben Arous, Gérard, & Černý, Jiří. (2013). Random matrices and complexity of spin glasses. Communications on Pure and Applied Mathematics, 66(2), 165–201. https://doi.org/10.1002/cpa.21422

URLs
URLs

Černý, Jiří, & Popov, Serguei. (2012). On the internal distance in the interlacement set. Electronic Journal of Probability, 17. https://doi.org/10.1214/EJP.v17-1936

URLs
URLs

Černý, Jiří, & Teixeira, Augusto. (2012). From random walk trajectories to random interlacements. Ensaios Matemáticos, 23.

Černý, Jiří, Teixeira, Augusto, & Windisch, David. (2011). Giant vacant component left by a random walk in a random d-regular graph. Annales de L’institut Henri Poincare (B) Probability and Statistics, 47(4), 929–968. https://doi.org/10.1214/10-AIHP407

URLs
URLs

Barlow, M. T., & Černý, J. (2011). Convergence to fractional kinetics for random walks associated with unbounded conductances. Probability Theory and Related Fields, 149(3-4), 639–673. https://doi.org/10.1007/s00440-009-0257-z

URLs
URLs

Barlow, M. T., & Černý, J. (2011). Erratum to: Convergence to fractional kinetics for random walks associated with unbounded conductances, (Probab. Theory Relat. Fields, 10.1007/s00440-009-0257-z). Probability Theory and Related Fields, 149(3-4), 675–677. https://doi.org/10.1007/s00440-011-0344-9

URLs
URLs

Černý, J. (2011). On two-dimensional random walk among heavy-tailed conductances. Electronic Journal of Probability, 16, 293–313. https://doi.org/10.1214/EJP.v16-849

URLs
URLs

Černý, J. (2009). Another View on Aging in the REM (Vol. 62, pp. 85–101). Birkhauser. https://doi.org/10.1007/978-3-7643-9891-0_3

URLs
URLs

Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of the REM for dynamics of mean-field spin glasses. Communications in Mathematical Physics, 282(3), 663–695. https://doi.org/10.1007/s00220-008-0565-7

URLs
URLs

Černý, J., & Gayrard, V. (2008). Hitting time of large subsets of the hypercube. Random Structures and Algorithms, 33(2), 252–267. https://doi.org/10.1002/rsa.20217

URLs
URLs

Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of random energy model-like ageing in mean field spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2008(4). https://doi.org/10.1088/1742-5468/2008/04/L04003

URLs
URLs

Ben Arous, G., & Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Communications on Pure and Applied Mathematics, 61(3), 289–329. https://doi.org/10.1002/cpa.20177

URLs
URLs

Ben Arous, Gérard, & Černý, Jiří. (2007). Scaling limit for trap models on ℤd. Annals of Probability, 35(6), 2356–2384. https://doi.org/10.1214/009117907000000024

URLs
URLs

Černý, J. (2007). Moments and distribution of the local time of a two-dimensional random walk. Stochastic Processes and Their Applications, 117(2), 262–270. https://doi.org/10.1016/j.spa.2006.08.003

URLs
URLs

Bovier, A., Černý, J., & Hryniv, O. (2006). The opinion game: Stock price evolution from microscopic market modeling. International Journal of Theoretical and Applied Finance, 9(1), 91–111. https://doi.org/10.1142/S0219024906003421

URLs
URLs

Ben Arous, Gérard, & Černý, Jiří. (2006). Course 8 Dynamics of trap models. In - (Vol. 83, pp. 331–394). Elsevier. https://doi.org/10.1016/s0924-8099(06)80045-4

URLs
URLs

Ben Arous, Gérard, Černý, Jiří, & Mountford, Thomas. (2006). Aging in two-dimensional Bouchaud’s model. Probability Theory and Related Fields, 134(1), 1–43. https://doi.org/10.1007/s00440-004-0408-1

URLs
URLs

Černý, J. (2006). The behaviour of aging functions in one-dimensional Bouchaud’s trap model. Communications in Mathematical Physics, 261(1), 195–224. https://doi.org/10.1007/s00220-005-1447-x

URLs
URLs

Arous, G. B., & Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one [Journal-article]. The Annals of Applied Probability, 15(2). https://doi.org/10.1214/105051605000000124

URLs
URLs

Černý, J. (2004). Critical path analysis for continuum percolation. Annales de L’institut Henri Poincare (B) Probability and Statistics, 40(6), 661–675. https://doi.org/10.1016/j.anihpb.2004.05.001

URLs
URLs

Čerý, J., & Kotecký, R. (2003). Interfaces for Random Cluster Models. Journal of Statistical Physics, 111(1-2), 73–106. https://doi.org/10.1023/A:1022248822844

URLs
URLs