Publications
42 found
Show per page
Černý, Jiří. (2023). Giant component for the supercritical level‐set percolation of the Gaussian free field on regular expander graphs [Journal-article]. Communications on Pure and Applied Mathematics, 76(11), 3346–3373. https://doi.org/10.1002/cpa.22112
Černý, Jiří. (2023). Giant component for the supercritical level‐set percolation of the Gaussian free field on regular expander graphs [Journal-article]. Communications on Pure and Applied Mathematics, 76(11), 3346–3373. https://doi.org/10.1002/cpa.22112
Černý, Jiří, Drewitz, Alexander, & Schmitz, Lars. (2023). (Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation [Journal-article]. The Annals of Applied Probability, 33(3). https://doi.org/10.1214/22-aap1869
Černý, Jiří, Drewitz, Alexander, & Schmitz, Lars. (2023). (Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation [Journal-article]. The Annals of Applied Probability, 33(3). https://doi.org/10.1214/22-aap1869
Birkner, Matthias, Callegaro, Alice, Černý, Jiří, Gantert, Nina, & Oswald, Pascal. (2023). Survival and complete convergence for a branching annihilating random walk. https://doi.org/10.48550/arxiv.2304.09127
Birkner, Matthias, Callegaro, Alice, Černý, Jiří, Gantert, Nina, & Oswald, Pascal. (2023). Survival and complete convergence for a branching annihilating random walk. https://doi.org/10.48550/arxiv.2304.09127
Černý, Jiří, Drewitz, Alexander, & Oswald, Pascal. (2023). On the tightness of the maximum of branching Brownian motion in random environment. In ArXiv. Cornell University. https://doi.org/10.48550/arxiv.2212.12390
Černý, Jiří, Drewitz, Alexander, & Oswald, Pascal. (2023). On the tightness of the maximum of branching Brownian motion in random environment. In ArXiv. Cornell University. https://doi.org/10.48550/arxiv.2212.12390
Černý, Jiří, & Locher, Ramon. (2023). Critical and near-critical level-set percolation of the Gaussian free field on regular trees. https://doi.org/10.48550/arxiv.2302.02753
Černý, Jiří, & Locher, Ramon. (2023). Critical and near-critical level-set percolation of the Gaussian free field on regular trees. https://doi.org/10.48550/arxiv.2302.02753
Senthil Kumar, K., & Masser, David. (2023). On the values of Weierstrass zeta and sigma functions (with an appendix by David Masser) [Journal-article]. Acta Arithmetica, 208(3), 285–294. https://doi.org/10.4064/aa230201-22-5
Senthil Kumar, K., & Masser, David. (2023). On the values of Weierstrass zeta and sigma functions (with an appendix by David Masser) [Journal-article]. Acta Arithmetica, 208(3), 285–294. https://doi.org/10.4064/aa230201-22-5
Belius, David, Černý, Jiří, Nakajima, Shuta, & Schmidt, Marius Alexander. (2022). Triviality of the Geometry of Mixed $p$-Spin Spherical Hamiltonians with External Field. Journal of Statistical Physics, 186, 12. https://doi.org/10.1007/s10955-021-02855-6
Belius, David, Černý, Jiří, Nakajima, Shuta, & Schmidt, Marius Alexander. (2022). Triviality of the Geometry of Mixed $p$-Spin Spherical Hamiltonians with External Field. Journal of Statistical Physics, 186, 12. https://doi.org/10.1007/s10955-021-02855-6
Černý, Jiří, & Hayder, Thomas. (2022). Critical window for the vacant set left by random walk on the configuration model. ALEA Lat. Am. J. Probab. Math. Stat., 19(1), 231–257. https://doi.org/10.30757/alea.v19-10
Černý, Jiří, & Hayder, Thomas. (2022). Critical window for the vacant set left by random walk on the configuration model. ALEA Lat. Am. J. Probab. Math. Stat., 19(1), 231–257. https://doi.org/10.30757/alea.v19-10
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees. Electronic Journal of Probability, 25, 1–24. https://doi.org/10.1214/20-ejp468
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees. Electronic Journal of Probability, 25, 1–24. https://doi.org/10.1214/20-ejp468
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders. Electronic Journal of Probability, 25, 1–39. https://doi.org/10.1214/20-ejp532
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders. Electronic Journal of Probability, 25, 1–39. https://doi.org/10.1214/20-ejp532
Černý, Jiří, & Drewitz, Alexander. (2020). Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. The Annals of Probability, 48(1), 94–146. https://doi.org/10.1214/19-aop1347
Černý, Jiří, & Drewitz, Alexander. (2020). Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. The Annals of Probability, 48(1), 94–146. https://doi.org/10.1214/19-aop1347
Černý, Jiří, & Klimovsky, Anton. (2020). Markovian dynamics of exchangeable arrays. In Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (Ed.), Lecture Notes Series. World Scientific. https://doi.org/10.1142/9789811206092_0005
Černý, Jiří, & Klimovsky, Anton. (2020). Markovian dynamics of exchangeable arrays. In Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (Ed.), Lecture Notes Series. World Scientific. https://doi.org/10.1142/9789811206092_0005
Černý, Jiří. (2019). Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM. In Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (Ed.), Springer Proceedings in Mathematics & Statistics. Springer. https://doi.org/10.1007/978-3-030-29077-1_5
Černý, Jiří. (2019). Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM. In Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (Ed.), Springer Proceedings in Mathematics & Statistics. Springer. https://doi.org/10.1007/978-3-030-29077-1_5
Černý, J., & Wassmer, T. (2017). Aging of the Metropolis dynamics on the random energy model. Probability Theory and Related Fields, 167(1-2), 253–303. https://doi.org/10.1007/s00440-015-0681-1
Černý, J., & Wassmer, T. (2017). Aging of the Metropolis dynamics on the random energy model. Probability Theory and Related Fields, 167(1-2), 253–303. https://doi.org/10.1007/s00440-015-0681-1
Černý, J., & Teixeira, A. (2016). Random walks on torus and random interlacements: Macroscopic coupling and phase transition. Annals of Applied Probability, 26(5), 2883–2914. https://doi.org/10.1214/15-AAP1165
Černý, J., & Teixeira, A. (2016). Random walks on torus and random interlacements: Macroscopic coupling and phase transition. Annals of Applied Probability, 26(5), 2883–2914. https://doi.org/10.1214/15-AAP1165
Birkner, M., Černý, J., & Depperschmidt, A. (2016). Random walks in dynamic random environments and ancestry under local population regulation. Electronic Journal of Probability, 21. https://doi.org/10.1214/16-EJP4666
Birkner, M., Černý, J., & Depperschmidt, A. (2016). Random walks in dynamic random environments and ancestry under local population regulation. Electronic Journal of Probability, 21. https://doi.org/10.1214/16-EJP4666
Černý, J., & Sapozhnikov, A. (2016). Mixing time for the random walk on the range of the random walk on tori. Electronic Communications in Probability, 21. https://doi.org/10.1214/16-ECP4750
Černý, J., & Sapozhnikov, A. (2016). Mixing time for the random walk on the range of the random walk on tori. Electronic Communications in Probability, 21. https://doi.org/10.1214/16-ECP4750
Ben Arous, Gérard, Cabezas, Manuel, Černý, Jiří, & Royfman, Roman. (2015). Randomly trapped random walks. Annals of Probability, 43(5), 2405–2457. https://doi.org/10.1214/14-aop939
Ben Arous, Gérard, Cabezas, Manuel, Černý, Jiří, & Royfman, Roman. (2015). Randomly trapped random walks. Annals of Probability, 43(5), 2405–2457. https://doi.org/10.1214/14-aop939
Černý, J., & Wassmer, T. (2015). Randomly trapped random walks on Zd. Stochastic Processes and Their Applications, 125(3), 1032–1057. https://doi.org/10.1016/j.spa.2014.10.002
Černý, J., & Wassmer, T. (2015). Randomly trapped random walks on Zd. Stochastic Processes and Their Applications, 125(3), 1032–1057. https://doi.org/10.1016/j.spa.2014.10.002
Černý, J., & Teixeira, A. (2013). Critical window for the vacant set left by random walk on random regular graphs. Random Structures and Algorithms, 43(3), 313–337. https://doi.org/10.1002/rsa.20425
Černý, J., & Teixeira, A. (2013). Critical window for the vacant set left by random walk on random regular graphs. Random Structures and Algorithms, 43(3), 313–337. https://doi.org/10.1002/rsa.20425
Birkner, M., Černý, J., Depperschmidt, A., & Gantert, N. (2013). Directed random walk on the backbone of an oriented percolation cluster. Electronic Journal of Probability, 18. https://doi.org/10.1214/EJP.v18-2302
Birkner, M., Černý, J., Depperschmidt, A., & Gantert, N. (2013). Directed random walk on the backbone of an oriented percolation cluster. Electronic Journal of Probability, 18. https://doi.org/10.1214/EJP.v18-2302
Auffinger, Antonio, Ben Arous, Gérard, & Černý, Jiří. (2013). Random matrices and complexity of spin glasses. Communications on Pure and Applied Mathematics, 66(2), 165–201. https://doi.org/10.1002/cpa.21422
Auffinger, Antonio, Ben Arous, Gérard, & Černý, Jiří. (2013). Random matrices and complexity of spin glasses. Communications on Pure and Applied Mathematics, 66(2), 165–201. https://doi.org/10.1002/cpa.21422
Černý, Jiří, & Popov, Serguei. (2012). On the internal distance in the interlacement set. Electronic Journal of Probability, 17. https://doi.org/10.1214/ejp.v17-1936
Černý, Jiří, & Popov, Serguei. (2012). On the internal distance in the interlacement set. Electronic Journal of Probability, 17. https://doi.org/10.1214/ejp.v17-1936
Černý, Jiří, & Teixeira, Augusto. (2012). From random walk trajectories to random interlacements. Ensaios Matemáticos, 23.
Černý, Jiří, & Teixeira, Augusto. (2012). From random walk trajectories to random interlacements. Ensaios Matemáticos, 23.
Barlow, M. T., & Černý, J. (2011). Convergence to fractional kinetics for random walks associated with unbounded conductances. Probability Theory and Related Fields, 149(3-4), 639–673. https://doi.org/10.1007/s00440-009-0257-z
Barlow, M. T., & Černý, J. (2011). Convergence to fractional kinetics for random walks associated with unbounded conductances. Probability Theory and Related Fields, 149(3-4), 639–673. https://doi.org/10.1007/s00440-009-0257-z
Barlow, M. T., & Černý, J. (2011). Erratum to: Convergence to fractional kinetics for random walks associated with unbounded conductances, (Probab. Theory Relat. Fields, 10.1007/s00440-009-0257-z). Probability Theory and Related Fields, 149(3-4), 675–677. https://doi.org/10.1007/s00440-011-0344-9
Barlow, M. T., & Černý, J. (2011). Erratum to: Convergence to fractional kinetics for random walks associated with unbounded conductances, (Probab. Theory Relat. Fields, 10.1007/s00440-009-0257-z). Probability Theory and Related Fields, 149(3-4), 675–677. https://doi.org/10.1007/s00440-011-0344-9
Černý, J. (2011). On two-dimensional random walk among heavy-tailed conductances. Electronic Journal of Probability, 16, 293–313. https://doi.org/10.1214/EJP.v16-849
Černý, J. (2011). On two-dimensional random walk among heavy-tailed conductances. Electronic Journal of Probability, 16, 293–313. https://doi.org/10.1214/EJP.v16-849
Černý, Jiří, Teixeira, Augusto, & Windisch, David. (2011). Giant vacant component left by a random walk in a random d-regular graph. Annales de L’institut Henri Poincare (B) Probability and Statistics, 47, 929–968. https://doi.org/10.1214/10-aihp407
Černý, Jiří, Teixeira, Augusto, & Windisch, David. (2011). Giant vacant component left by a random walk in a random d-regular graph. Annales de L’institut Henri Poincare (B) Probability and Statistics, 47, 929–968. https://doi.org/10.1214/10-aihp407
Černý, J. (2009). Another View on Aging in the REM (Vol. 62, pp. 85–101). Birkhauser. https://doi.org/10.1007/978-3-7643-9891-0_3
Černý, J. (2009). Another View on Aging in the REM (Vol. 62, pp. 85–101). Birkhauser. https://doi.org/10.1007/978-3-7643-9891-0_3
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of the REM for dynamics of mean-field spin glasses. Communications in Mathematical Physics, 282(3), 663–695. https://doi.org/10.1007/s00220-008-0565-7
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of the REM for dynamics of mean-field spin glasses. Communications in Mathematical Physics, 282(3), 663–695. https://doi.org/10.1007/s00220-008-0565-7
Černý, J., & Gayrard, V. (2008). Hitting time of large subsets of the hypercube. Random Structures and Algorithms, 33(2), 252–267. https://doi.org/10.1002/rsa.20217
Černý, J., & Gayrard, V. (2008). Hitting time of large subsets of the hypercube. Random Structures and Algorithms, 33(2), 252–267. https://doi.org/10.1002/rsa.20217
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of random energy model-like ageing in mean field spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2008(4). https://doi.org/10.1088/1742-5468/2008/04/l04003
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of random energy model-like ageing in mean field spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2008(4). https://doi.org/10.1088/1742-5468/2008/04/l04003
Ben Arous, G., & Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Communications on Pure and Applied Mathematics, 61(3), 289–329. https://doi.org/10.1002/cpa.20177
Ben Arous, G., & Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Communications on Pure and Applied Mathematics, 61(3), 289–329. https://doi.org/10.1002/cpa.20177
Ben Arous, Gérard, & Černý, Jiří. (2007). Scaling limit for trap models on ℤd. Annals of Probability, 35(6), 2356–2384. https://doi.org/10.1214/009117907000000024
Ben Arous, Gérard, & Černý, Jiří. (2007). Scaling limit for trap models on ℤd. Annals of Probability, 35(6), 2356–2384. https://doi.org/10.1214/009117907000000024
Černý, J. (2007). Moments and distribution of the local time of a two-dimensional random walk. Stochastic Processes and Their Applications, 117(2), 262–270. https://doi.org/10.1016/j.spa.2006.08.003
Černý, J. (2007). Moments and distribution of the local time of a two-dimensional random walk. Stochastic Processes and Their Applications, 117(2), 262–270. https://doi.org/10.1016/j.spa.2006.08.003
Bovier, A., Černý, J., & Hryniv, O. (2006). The opinion game: Stock price evolution from microscopic market modeling. International Journal of Theoretical and Applied Finance, 9(1), 91–111. https://doi.org/10.1142/S0219024906003421
Bovier, A., Černý, J., & Hryniv, O. (2006). The opinion game: Stock price evolution from microscopic market modeling. International Journal of Theoretical and Applied Finance, 9(1), 91–111. https://doi.org/10.1142/S0219024906003421
Ben Arous, Gérard, & Černý, Jiří. (2006). Course 8 Dynamics of trap models. In - (Vol. 83, pp. 331–394). Elsevier. https://doi.org/10.1016/s0924-8099(06)80045-4
Ben Arous, Gérard, & Černý, Jiří. (2006). Course 8 Dynamics of trap models. In - (Vol. 83, pp. 331–394). Elsevier. https://doi.org/10.1016/s0924-8099(06)80045-4
Ben Arous, Gérard, Černý, Jiří, & Mountford, Thomas. (2006). Aging in two-dimensional Bouchaud’s model. Probability Theory and Related Fields, 134(1), 1–43. https://doi.org/10.1007/s00440-004-0408-1
Ben Arous, Gérard, Černý, Jiří, & Mountford, Thomas. (2006). Aging in two-dimensional Bouchaud’s model. Probability Theory and Related Fields, 134(1), 1–43. https://doi.org/10.1007/s00440-004-0408-1
Černý, J. (2006). The behaviour of aging functions in one-dimensional Bouchaud’s trap model. Communications in Mathematical Physics, 261(1), 195–224. https://doi.org/10.1007/s00220-005-1447-x
Černý, J. (2006). The behaviour of aging functions in one-dimensional Bouchaud’s trap model. Communications in Mathematical Physics, 261(1), 195–224. https://doi.org/10.1007/s00220-005-1447-x
Arous, G. B., & Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one [Journal-article]. The Annals of Applied Probability, 15(2). https://doi.org/10.1214/105051605000000124
Arous, G. B., & Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one [Journal-article]. The Annals of Applied Probability, 15(2). https://doi.org/10.1214/105051605000000124
Černý, J. (2004). Critical path analysis for continuum percolation. Annales de L’institut Henri Poincare (B) Probability and Statistics, 40(6), 661–675. https://doi.org/10.1016/j.anihpb.2004.05.001
Černý, J. (2004). Critical path analysis for continuum percolation. Annales de L’institut Henri Poincare (B) Probability and Statistics, 40(6), 661–675. https://doi.org/10.1016/j.anihpb.2004.05.001
Čerý, J., & Kotecký, R. (2003). Interfaces for Random Cluster Models. Journal of Statistical Physics, 111, 73–106. https://doi.org/10.1023/a:1022248822844
Čerý, J., & Kotecký, R. (2003). Interfaces for Random Cluster Models. Journal of Statistical Physics, 111, 73–106. https://doi.org/10.1023/a:1022248822844