Publications
50 found
Show per page
Černý, J., & Locher, R. (2025). Critical and near-critical level-set percolation of the Gaussian free field on regular trees [Journal-article]. Annales de L’institut Henri Poincare (B) Probability and Statistics, 61(1), 746–767. https://doi.org/10.1214/23-AIHP1436
Černý, J., & Locher, R. (2025). Critical and near-critical level-set percolation of the Gaussian free field on regular trees [Journal-article]. Annales de L’institut Henri Poincare (B) Probability and Statistics, 61(1), 746–767. https://doi.org/10.1214/23-AIHP1436
Černý, Jiří, Drewitz, Alexander, & Oswald, Pascal. (2025). ON THE TIGHTNESS OF THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN RANDOM ENVIRONMENT [Journal-article]. Annals of Probability, 53(2), 509–543. https://doi.org/10.1214/24-AOP1713
Černý, Jiří, Drewitz, Alexander, & Oswald, Pascal. (2025). ON THE TIGHTNESS OF THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN RANDOM ENVIRONMENT [Journal-article]. Annals of Probability, 53(2), 509–543. https://doi.org/10.1214/24-AOP1713
Birkner, M., Callegaro, A., Černý, J., Gantert, N., & Oswald, P. (2024). SURVIVAL AND COMPLETE CONVERGENCE FOR A BRANCHING ANNIHILATING RANDOM WALK. Annals of Applied Probability, 34(6), 5737–5768. https://doi.org/10.1214/24-AAP2105
Birkner, M., Callegaro, A., Černý, J., Gantert, N., & Oswald, P. (2024). SURVIVAL AND COMPLETE CONVERGENCE FOR A BRANCHING ANNIHILATING RANDOM WALK. Annals of Applied Probability, 34(6), 5737–5768. https://doi.org/10.1214/24-AAP2105
Černý, Jiří. (2023). Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs [Journal-article]. Communications on Pure and Applied Mathematics, 76(11), 3346–3373. https://doi.org/10.1002/cpa.22112
Černý, Jiří. (2023). Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs [Journal-article]. Communications on Pure and Applied Mathematics, 76(11), 3346–3373. https://doi.org/10.1002/cpa.22112
Birkner, M., Callegaro, A., Černý, J., Gantert, N., & Oswald, P. (2023). Survival and complete convergence for a branching annihilating random walk [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Birkner, M., Callegaro, A., Černý, J., Gantert, N., & Oswald, P. (2023). Survival and complete convergence for a branching annihilating random walk [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Černý, J., Drewitz, A., & Oswald, P. (2023). On the tightness of the maximum of branching Brownian motion in random environment [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Černý, J., Drewitz, A., & Oswald, P. (2023). On the tightness of the maximum of branching Brownian motion in random environment [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Černý, Jiří, Drewitz, Alexander, & Schmitz, Lars. (2023). (UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION [Journal-article]. Annals of Applied Probability, 33(3), 2342–2373. https://doi.org/10.1214/22-AAP1869
Černý, Jiří, Drewitz, Alexander, & Schmitz, Lars. (2023). (UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION [Journal-article]. Annals of Applied Probability, 33(3), 2342–2373. https://doi.org/10.1214/22-AAP1869
Černý, J., & Locher, R. (2023). Critical and near-critical level-set percolation of the Gaussian free field on regular trees [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Černý, J., & Locher, R. (2023). Critical and near-critical level-set percolation of the Gaussian free field on regular trees [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Belius, David, Černý, Jiří, Nakajima, Shuta, & Schmidt, Marius Alexander. (2022). Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field. Journal of Statistical Physics, 186(1), 12. https://doi.org/10.1007/s10955-021-02855-6
Belius, David, Černý, Jiří, Nakajima, Shuta, & Schmidt, Marius Alexander. (2022). Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field. Journal of Statistical Physics, 186(1), 12. https://doi.org/10.1007/s10955-021-02855-6
Černý, Jiří, & Hayder, Thomas. (2022). Critical window for the vacant set left by random walk on the configuration model. Alea (Rio de Janeiro), 19(1), 231–257. https://doi.org/10.30757/ALEA.V19-10
Černý, Jiří, & Hayder, Thomas. (2022). Critical window for the vacant set left by random walk on the configuration model. Alea (Rio de Janeiro), 19(1), 231–257. https://doi.org/10.30757/ALEA.V19-10
Černý, J., & Hayder, T. (2021). Critical window for the vacant set left by random walk on the configuration model [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Černý, J., & Hayder, T. (2021). Critical window for the vacant set left by random walk on the configuration model [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Belius, D., Černý, J., Nakajima, S., & Schmidt, M. (2021). Triviality of the geometry of mixed $p$-spin spherical Hamiltonians with external field [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Belius, D., Černý, J., Nakajima, S., & Schmidt, M. (2021). Triviality of the geometry of mixed $p$-spin spherical Hamiltonians with external field [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Černý, J. (2021). Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Černý, J. (2021). Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Černý, J., Drewitz, A., & Schmitz, L. (2021). (Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Černý, J., Drewitz, A., & Schmitz, L. (2021). (Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees. Electronic Journal of Probability, 25, 1–24. https://doi.org/10.1214/20-ejp468
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees. Electronic Journal of Probability, 25, 1–24. https://doi.org/10.1214/20-ejp468
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders. Electronic Journal of Probability, 25, 1–39. https://doi.org/10.1214/20-ejp532
Abächerli, Angelo, & Černý, Jiří. (2020). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders. Electronic Journal of Probability, 25, 1–39. https://doi.org/10.1214/20-ejp532
Černý, Jiří, & Drewitz, Alexander. (2020). Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. The Annals of Probability, 48(1), 94–146. https://doi.org/10.1214/19-aop1347
Černý, Jiří, & Drewitz, Alexander. (2020). Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. The Annals of Probability, 48(1), 94–146. https://doi.org/10.1214/19-aop1347
Černý, Jiří, & Klimovsky, Anton. (2020). Markovian dynamics of exchangeable arrays. In Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (Ed.), Lecture Notes Series. World Scientific. https://doi.org/10.1142/9789811206092_0005
Černý, Jiří, & Klimovsky, Anton. (2020). Markovian dynamics of exchangeable arrays. In Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (Ed.), Lecture Notes Series. World Scientific. https://doi.org/10.1142/9789811206092_0005
Abächerli, A., & Černý, J. (2019). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Abächerli, A., & Černý, J. (2019). Level-set percolation of the Gaussian free field on regular graphs I: Regular trees [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Abächerli, A., & Černý, J. (2019). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Abächerli, A., & Černý, J. (2019). Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders [Working Paper]. In Preprints Mathematics Faculty of Science (ed.), Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Černý, Jiří. (2019). Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM. In Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (Ed.), Springer Proceedings in Mathematics & Statistics. Springer. https://doi.org/10.1007/978-3-030-29077-1_5
Černý, Jiří. (2019). Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM. In Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (Ed.), Springer Proceedings in Mathematics & Statistics. Springer. https://doi.org/10.1007/978-3-030-29077-1_5
Černý, J., & Wassmer, T. (2017). Aging of the Metropolis dynamics on the random energy model. Probability Theory and Related Fields, 167(1-2), 253–303. https://doi.org/10.1007/s00440-015-0681-1
Černý, J., & Wassmer, T. (2017). Aging of the Metropolis dynamics on the random energy model. Probability Theory and Related Fields, 167(1-2), 253–303. https://doi.org/10.1007/s00440-015-0681-1
Černý, J., & Teixeira, A. (2016). Random walks on torus and random interlacements: Macroscopic coupling and phase transition. Annals of Applied Probability, 26(5), 2883–2914. https://doi.org/10.1214/15-AAP1165
Černý, J., & Teixeira, A. (2016). Random walks on torus and random interlacements: Macroscopic coupling and phase transition. Annals of Applied Probability, 26(5), 2883–2914. https://doi.org/10.1214/15-AAP1165
Birkner, M., Černý, J., & Depperschmidt, A. (2016). Random walks in dynamic random environments and ancestry under local population regulation. Electronic Journal of Probability, 21. https://doi.org/10.1214/16-EJP4666
Birkner, M., Černý, J., & Depperschmidt, A. (2016). Random walks in dynamic random environments and ancestry under local population regulation. Electronic Journal of Probability, 21. https://doi.org/10.1214/16-EJP4666
Černý, J., & Sapozhnikov, A. (2016). Mixing time for the random walk on the range of the random walk on tori. Electronic Communications in Probability, 21. https://doi.org/10.1214/16-ECP4750
Černý, J., & Sapozhnikov, A. (2016). Mixing time for the random walk on the range of the random walk on tori. Electronic Communications in Probability, 21. https://doi.org/10.1214/16-ECP4750
Ben Arous, Gérard, Cabezas, Manuel, Černý, Jiří, & Royfman, Roman. (2015). Randomly trapped random walks. Annals of Probability, 43(5), 2405–2457. https://doi.org/10.1214/14-AOP939
Ben Arous, Gérard, Cabezas, Manuel, Černý, Jiří, & Royfman, Roman. (2015). Randomly trapped random walks. Annals of Probability, 43(5), 2405–2457. https://doi.org/10.1214/14-AOP939
Černý, J., & Wassmer, T. (2015). Randomly trapped random walks on Zd. Stochastic Processes and Their Applications, 125(3), 1032–1057. https://doi.org/10.1016/j.spa.2014.10.002
Černý, J., & Wassmer, T. (2015). Randomly trapped random walks on Zd. Stochastic Processes and Their Applications, 125(3), 1032–1057. https://doi.org/10.1016/j.spa.2014.10.002
Černý, J., & Teixeira, A. (2013). Critical window for the vacant set left by random walk on random regular graphs. Random Structures and Algorithms, 43(3), 313–337. https://doi.org/10.1002/rsa.20425
Černý, J., & Teixeira, A. (2013). Critical window for the vacant set left by random walk on random regular graphs. Random Structures and Algorithms, 43(3), 313–337. https://doi.org/10.1002/rsa.20425
Birkner, M., Černý, J., Depperschmidt, A., & Gantert, N. (2013). Directed random walk on the backbone of an oriented percolation cluster. Electronic Journal of Probability, 18. https://doi.org/10.1214/EJP.v18-2302
Birkner, M., Černý, J., Depperschmidt, A., & Gantert, N. (2013). Directed random walk on the backbone of an oriented percolation cluster. Electronic Journal of Probability, 18. https://doi.org/10.1214/EJP.v18-2302
Auffinger, Antonio, Ben Arous, Gérard, & Černý, Jiří. (2013). Random matrices and complexity of spin glasses. Communications on Pure and Applied Mathematics, 66(2), 165–201. https://doi.org/10.1002/cpa.21422
Auffinger, Antonio, Ben Arous, Gérard, & Černý, Jiří. (2013). Random matrices and complexity of spin glasses. Communications on Pure and Applied Mathematics, 66(2), 165–201. https://doi.org/10.1002/cpa.21422
Černý, Jiří, & Popov, Serguei. (2012). On the internal distance in the interlacement set. Electronic Journal of Probability, 17. https://doi.org/10.1214/EJP.v17-1936
Černý, Jiří, & Popov, Serguei. (2012). On the internal distance in the interlacement set. Electronic Journal of Probability, 17. https://doi.org/10.1214/EJP.v17-1936
Černý, Jiří, & Teixeira, Augusto. (2012). From random walk trajectories to random interlacements. Ensaios Matemáticos, 23.
Černý, Jiří, & Teixeira, Augusto. (2012). From random walk trajectories to random interlacements. Ensaios Matemáticos, 23.
Černý, Jiří, Teixeira, Augusto, & Windisch, David. (2011). Giant vacant component left by a random walk in a random d-regular graph. Annales de L’institut Henri Poincare (B) Probability and Statistics, 47(4), 929–968. https://doi.org/10.1214/10-AIHP407
Černý, Jiří, Teixeira, Augusto, & Windisch, David. (2011). Giant vacant component left by a random walk in a random d-regular graph. Annales de L’institut Henri Poincare (B) Probability and Statistics, 47(4), 929–968. https://doi.org/10.1214/10-AIHP407
Barlow, M. T., & Černý, J. (2011). Convergence to fractional kinetics for random walks associated with unbounded conductances. Probability Theory and Related Fields, 149(3-4), 639–673. https://doi.org/10.1007/s00440-009-0257-z
Barlow, M. T., & Černý, J. (2011). Convergence to fractional kinetics for random walks associated with unbounded conductances. Probability Theory and Related Fields, 149(3-4), 639–673. https://doi.org/10.1007/s00440-009-0257-z
Barlow, M. T., & Černý, J. (2011). Erratum to: Convergence to fractional kinetics for random walks associated with unbounded conductances, (Probab. Theory Relat. Fields, 10.1007/s00440-009-0257-z). Probability Theory and Related Fields, 149(3-4), 675–677. https://doi.org/10.1007/s00440-011-0344-9
Barlow, M. T., & Černý, J. (2011). Erratum to: Convergence to fractional kinetics for random walks associated with unbounded conductances, (Probab. Theory Relat. Fields, 10.1007/s00440-009-0257-z). Probability Theory and Related Fields, 149(3-4), 675–677. https://doi.org/10.1007/s00440-011-0344-9
Černý, J. (2011). On two-dimensional random walk among heavy-tailed conductances. Electronic Journal of Probability, 16, 293–313. https://doi.org/10.1214/EJP.v16-849
Černý, J. (2011). On two-dimensional random walk among heavy-tailed conductances. Electronic Journal of Probability, 16, 293–313. https://doi.org/10.1214/EJP.v16-849
Černý, J. (2009). Another View on Aging in the REM. In Progress in Probability (Vol. 62, pp. 85–101). Birkhauser. https://doi.org/10.1007/978-3-7643-9891-0_3
Černý, J. (2009). Another View on Aging in the REM. In Progress in Probability (Vol. 62, pp. 85–101). Birkhauser. https://doi.org/10.1007/978-3-7643-9891-0_3
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of the REM for dynamics of mean-field spin glasses. Communications in Mathematical Physics, 282(3), 663–695. https://doi.org/10.1007/s00220-008-0565-7
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of the REM for dynamics of mean-field spin glasses. Communications in Mathematical Physics, 282(3), 663–695. https://doi.org/10.1007/s00220-008-0565-7
Černý, J., & Gayrard, V. (2008). Hitting time of large subsets of the hypercube. Random Structures and Algorithms, 33(2), 252–267. https://doi.org/10.1002/rsa.20217
Černý, J., & Gayrard, V. (2008). Hitting time of large subsets of the hypercube. Random Structures and Algorithms, 33(2), 252–267. https://doi.org/10.1002/rsa.20217
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of random energy model-like ageing in mean field spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2008(4). https://doi.org/10.1088/1742-5468/2008/04/L04003
Ben Arous, Gérard, Bovier, Anton, & Černý, Jiří. (2008). Universality of random energy model-like ageing in mean field spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2008(4). https://doi.org/10.1088/1742-5468/2008/04/L04003
Ben Arous, G., & Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Communications on Pure and Applied Mathematics, 61(3), 289–329. https://doi.org/10.1002/cpa.20177
Ben Arous, G., & Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Communications on Pure and Applied Mathematics, 61(3), 289–329. https://doi.org/10.1002/cpa.20177
Ben Arous, Gérard, & Černý, Jiří. (2007). Scaling limit for trap models on ℤd. Annals of Probability, 35(6), 2356–2384. https://doi.org/10.1214/009117907000000024
Ben Arous, Gérard, & Černý, Jiří. (2007). Scaling limit for trap models on ℤd. Annals of Probability, 35(6), 2356–2384. https://doi.org/10.1214/009117907000000024
Černý, J. (2007). Moments and distribution of the local time of a two-dimensional random walk. Stochastic Processes and Their Applications, 117(2), 262–270. https://doi.org/10.1016/j.spa.2006.08.003
Černý, J. (2007). Moments and distribution of the local time of a two-dimensional random walk. Stochastic Processes and Their Applications, 117(2), 262–270. https://doi.org/10.1016/j.spa.2006.08.003
Bovier, A., Černý, J., & Hryniv, O. (2006). The opinion game: Stock price evolution from microscopic market modeling. International Journal of Theoretical and Applied Finance, 9(1), 91–111. https://doi.org/10.1142/S0219024906003421
Bovier, A., Černý, J., & Hryniv, O. (2006). The opinion game: Stock price evolution from microscopic market modeling. International Journal of Theoretical and Applied Finance, 9(1), 91–111. https://doi.org/10.1142/S0219024906003421
Ben Arous, Gérard, & Černý, Jiří. (2006). Course 8 Dynamics of trap models. In Les Houches Summer School Proceedings (Vol. 83, pp. 331–394). Elsevier. https://doi.org/10.1016/S0924-8099(06)80045-4
Ben Arous, Gérard, & Černý, Jiří. (2006). Course 8 Dynamics of trap models. In Les Houches Summer School Proceedings (Vol. 83, pp. 331–394). Elsevier. https://doi.org/10.1016/S0924-8099(06)80045-4
Ben Arous, Gérard, Černý, Jiří, & Mountford, Thomas. (2006). Aging in two-dimensional Bouchaud’s model. Probability Theory and Related Fields, 134(1), 1–43. https://doi.org/10.1007/s00440-004-0408-1
Ben Arous, Gérard, Černý, Jiří, & Mountford, Thomas. (2006). Aging in two-dimensional Bouchaud’s model. Probability Theory and Related Fields, 134(1), 1–43. https://doi.org/10.1007/s00440-004-0408-1
Černý, J. (2006). The behaviour of aging functions in one-dimensional Bouchaud’s trap model. Communications in Mathematical Physics, 261(1), 195–224. https://doi.org/10.1007/s00220-005-1447-x
Černý, J. (2006). The behaviour of aging functions in one-dimensional Bouchaud’s trap model. Communications in Mathematical Physics, 261(1), 195–224. https://doi.org/10.1007/s00220-005-1447-x
Arous, G. B., & Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one [Journal-article]. The Annals of Applied Probability, 15(2). https://doi.org/10.1214/105051605000000124
Arous, G. B., & Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one [Journal-article]. The Annals of Applied Probability, 15(2). https://doi.org/10.1214/105051605000000124
Černý, J. (2004). Critical path analysis for continuum percolation. Annales de L’institut Henri Poincare (B) Probability and Statistics, 40(6), 661–675. https://doi.org/10.1016/j.anihpb.2004.05.001
Černý, J. (2004). Critical path analysis for continuum percolation. Annales de L’institut Henri Poincare (B) Probability and Statistics, 40(6), 661–675. https://doi.org/10.1016/j.anihpb.2004.05.001
Čerý, J., & Kotecký, R. (2003). Interfaces for Random Cluster Models. Journal of Statistical Physics, 111(1-2), 73–106. https://doi.org/10.1023/A:1022248822844
Čerý, J., & Kotecký, R. (2003). Interfaces for Random Cluster Models. Journal of Statistical Physics, 111(1-2), 73–106. https://doi.org/10.1023/A:1022248822844