Publications
118 found
Show per page
Weegen, Moritz, Poggio, Martino, & Physical Review Letters, 133(22). https://doi.org/10.1103/physrevlett.133.223201
. (2024). Coupling Trapped Ions to a Nanomechanical Oscillator [Journal-article].
Weegen, Moritz, Poggio, Martino, & Physical Review Letters, 133(22). https://doi.org/10.1103/physrevlett.133.223201
. (2024). Coupling Trapped Ions to a Nanomechanical Oscillator [Journal-article].
Paliwal, Prerna, Popov, Mikhail, Sunil Kumar, Nanditha, & Chimia, 78(10), 654–658. https://doi.org/10.2533/chimia.2024.654
. (2024). Exploring and Controlling Chemistry Using Quantum Logic [Journal-article].
Paliwal, Prerna, Popov, Mikhail, Sunil Kumar, Nanditha, & Chimia, 78(10), 654–658. https://doi.org/10.2533/chimia.2024.654
. (2024). Exploring and Controlling Chemistry Using Quantum Logic [Journal-article].
Ploenes, L., Straňák, P., Mishra, A., Liu, X., Pérez-Ríos, J., & Nature Chemistry, 16, 1876–1881. https://doi.org/10.1038/s41557-024-01590-1
(2024). Collisional alignment and molecular rotation control the chemi-ionization of individual conformers of hydroquinone with metastable neon [Journal-article].
Ploenes, L., Straňák, P., Mishra, A., Liu, X., Pérez-Ríos, J., & Nature Chemistry, 16, 1876–1881. https://doi.org/10.1038/s41557-024-01590-1
(2024). Collisional alignment and molecular rotation control the chemi-ionization of individual conformers of hydroquinone with metastable neon [Journal-article].
Deiß, M., Willitsch, S., & Hecker Denschlag, J. (2024). Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nature Physics, 20(5), 713–721. https://doi.org/10.1038/s41567-024-02440-0
Deiß, M., Willitsch, S., & Hecker Denschlag, J. (2024). Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nature Physics, 20(5), 713–721. https://doi.org/10.1038/s41567-024-02440-0
Xu, L., Toscano, J., & Willitsch, S. (2024). Trapping and Sympathetic Cooling of Conformationally Selected Molecular Ions. Physical Review Letters, 132(8). https://doi.org/10.1103/physrevlett.132.083001
Xu, L., Toscano, J., & Willitsch, S. (2024). Trapping and Sympathetic Cooling of Conformationally Selected Molecular Ions. Physical Review Letters, 132(8). https://doi.org/10.1103/physrevlett.132.083001
Mishra, A., Kim, J., Kim, S. K., & Willitsch, S. (2024). Isomeric and rotational effects in the chemi-ionisation of 1,2-dibromoethene with metastable neon atoms. Faraday Discussions. https://doi.org/10.1039/d3fd00172e
Mishra, A., Kim, J., Kim, S. K., & Willitsch, S. (2024). Isomeric and rotational effects in the chemi-ionisation of 1,2-dibromoethene with metastable neon atoms. Faraday Discussions. https://doi.org/10.1039/d3fd00172e
Ploenes, L., Straňák, P., Mishra, A., Liu, X., Pérez-Ríos, J., & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2401.11916
(2024). Collisional alignment and molecular rotation control chemi-ionization of individual conformers. In
Ploenes, L., Straňák, P., Mishra, A., Liu, X., Pérez-Ríos, J., & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2401.11916
(2024). Collisional alignment and molecular rotation control chemi-ionization of individual conformers. In
Mangeng, Christian, Yin, Yanning, Karl, Richard, & Physical Review Research, 5(4). https://doi.org/10.1103/physrevresearch.5.043180
. (2023). Experimental implementation of laser cooling of trapped ions in strongly inhomogeneous magnetic fields [Journal-article].
Mangeng, Christian, Yin, Yanning, Karl, Richard, & Physical Review Research, 5(4). https://doi.org/10.1103/physrevresearch.5.043180
. (2023). Experimental implementation of laser cooling of trapped ions in strongly inhomogeneous magnetic fields [Journal-article].
Karl, R., Yin, Y., & Willitsch, S. (2023). Laser cooling of trapped ions in strongly inhomogeneous magnetic fields. Molecular Physics, null. https://doi.org/10.1080/00268976.2023.2199099
Karl, R., Yin, Y., & Willitsch, S. (2023). Laser cooling of trapped ions in strongly inhomogeneous magnetic fields. Molecular Physics, null. https://doi.org/10.1080/00268976.2023.2199099
Kilaj, Ardita, Kaser, Silvan, Wang, Jia, Straňák, Patrik, Schwilk, Max, Xu, Lei, von Lilienfeld, O. Anatole, Küpper, Jochen, Meuwly, Markus, & Physical Chemistry Chemical Physics, 25(20), 13933–13945. https://doi.org/10.1039/d3cp01416a
. (2023). Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions.
Kilaj, Ardita, Kaser, Silvan, Wang, Jia, Straňák, Patrik, Schwilk, Max, Xu, Lei, von Lilienfeld, O. Anatole, Küpper, Jochen, Meuwly, Markus, & Physical Chemistry Chemical Physics, 25(20), 13933–13945. https://doi.org/10.1039/d3cp01416a
. (2023). Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions.
Shlykov, A., Roguski, M., & Willitsch, S. (2023). Optimized Strategies for the Quantum-State Preparation of Single Trapped Nitrogen Molecular Ions. Advanced Quantum Technologies, null. https://doi.org/10.1002/qute.202300268
Shlykov, A., Roguski, M., & Willitsch, S. (2023). Optimized Strategies for the Quantum-State Preparation of Single Trapped Nitrogen Molecular Ions. Advanced Quantum Technologies, null. https://doi.org/10.1002/qute.202300268
Sinhal, Mudit, & Photonic Quantum Technologies: Science and Applications (Vol. 1, pp. 305–332). wiley. https://doi.org/10.1002/9783527837427.ch13
. (2023). Molecular-Ion Quantum Technologies. In
Sinhal, Mudit, & Photonic Quantum Technologies: Science and Applications (Vol. 1, pp. 305–332). wiley. https://doi.org/10.1002/9783527837427.ch13
. (2023). Molecular-Ion Quantum Technologies. In
Voute, A., Dörfler, A., Wiesenfeld, L., Dulieu, O., Gatti, F., Peláez, D., & Willitsch, S. (2023). Charge transfer of polyatomic molecules in ion-atom hybrid traps: Stereodynamics in the millikelvin regime. Physical Review Research, 5. https://doi.org/10.1103/physrevresearch.5.l032021
Voute, A., Dörfler, A., Wiesenfeld, L., Dulieu, O., Gatti, F., Peláez, D., & Willitsch, S. (2023). Charge transfer of polyatomic molecules in ion-atom hybrid traps: Stereodynamics in the millikelvin regime. Physical Review Research, 5. https://doi.org/10.1103/physrevresearch.5.l032021
Weegen, Moritz, Poggio, Martino, & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2312.00576
. (2023). Coupling trapped ions to a nanomechanical oscillator. In
Weegen, Moritz, Poggio, Martino, & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2312.00576
. (2023). Coupling trapped ions to a nanomechanical oscillator. In
Bertrand, Mathieu, Shlykov, Aleksandr, Shahmohamadi, Mehran, Beck, Mattias, Photonics, 9(8), 589. https://doi.org/10.3390/photonics9080589
, & Faist, Jérôme. (2022). High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy.
Bertrand, Mathieu, Shlykov, Aleksandr, Shahmohamadi, Mehran, Beck, Mattias, Photonics, 9(8), 589. https://doi.org/10.3390/photonics9080589
, & Faist, Jérôme. (2022). High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy.
Husmann, D., Faist, J., Mauchle, F., Merkt, F., Willitsch, S., & Morel, J. (2022). Swiss Fiber Network for Dissemination of Optical Frequencies in the L-band of a Telecommunication Network. null.
Husmann, D., Faist, J., Mauchle, F., Merkt, F., Willitsch, S., & Morel, J. (2022). Swiss Fiber Network for Dissemination of Optical Frequencies in the L-band of a Telecommunication Network. null.
Perrin, A., Orphal, J., Huet, T., de Natale, P., Merkt, F., Schlemmer, S., Quack, M., & Willitsch, S. (2022). Editorial. Molecular Physics, 120. https://doi.org/10.1080/00268976.2022.2101246
Perrin, A., Orphal, J., Huet, T., de Natale, P., Merkt, F., Schlemmer, S., Quack, M., & Willitsch, S. (2022). Editorial. Molecular Physics, 120. https://doi.org/10.1080/00268976.2022.2101246
Sinhal, Mudit, Johnson, Anatoly, & Molecular Physics, 121(17-18), e2144519. https://doi.org/10.1080/00268976.2022.2144519
. (2022). Frequency stabilisation and SI tracing of mid-infrared quantum-cascade lasers for precision molecular spectroscopy.
Sinhal, Mudit, Johnson, Anatoly, & Molecular Physics, 121(17-18), e2144519. https://doi.org/10.1080/00268976.2022.2144519
. (2022). Frequency stabilisation and SI tracing of mid-infrared quantum-cascade lasers for precision molecular spectroscopy.
Sinhal, Mudit, & Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2204.08814
. (2022). Molecular-ion quantum technologies. In
Sinhal, Mudit, & Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2204.08814
. (2022). Molecular-ion quantum technologies. In
Xing, Xiaodong, da Silva, Humberto Jr., Vexiau, Romain, Bouloufa-Maafa, Nadia, Physical Review A, 106(6), 62809. https://doi.org/10.1103/physreva.106.062809
, & Dulieu, Olivier. (2022). Ion-loss events in a hybrid trap of cold Rb-Ca+ : Photodissociation, blackbody radiation, and nonradiative charge exchange.
Xing, Xiaodong, da Silva, Humberto Jr., Vexiau, Romain, Bouloufa-Maafa, Nadia, Physical Review A, 106(6), 62809. https://doi.org/10.1103/physreva.106.062809
, & Dulieu, Olivier. (2022). Ion-loss events in a hybrid trap of cold Rb-Ca+ : Photodissociation, blackbody radiation, and nonradiative charge exchange.
Damjanovic, Tomislav, New Journal of Physics, 23(10), 105007. https://doi.org/10.1088/1367-2630/ac2c2b
, Vanhaecke, Nicolas, Haak, Henrik, Meijer, Gerard, Cromieres, Jean Paul, & Zhang, Dongdong. (2021). A new design for a traveling-wave Zeeman decelerator: II. Experiment.
Damjanovic, Tomislav, New Journal of Physics, 23(10), 105007. https://doi.org/10.1088/1367-2630/ac2c2b
, Vanhaecke, Nicolas, Haak, Henrik, Meijer, Gerard, Cromieres, Jean Paul, & Zhang, Dongdong. (2021). A new design for a traveling-wave Zeeman decelerator: II. Experiment.
Damjanovic, Tomislav, New Journal of Physics, 23(10), 105006. https://doi.org/10.1088/1367-2630/ac2b52
, Vanhaecke, Nicolas, Haak, Henrik, Meijer, Gerard, Cromieres, Jean-Paul, & Zhang, Dongdong. (2021). A new design for a traveling-wave Zeeman decelerator: I. Theory.
Damjanovic, Tomislav, New Journal of Physics, 23(10), 105006. https://doi.org/10.1088/1367-2630/ac2b52
, Vanhaecke, Nicolas, Haak, Henrik, Meijer, Gerard, Cromieres, Jean-Paul, & Zhang, Dongdong. (2021). A new design for a traveling-wave Zeeman decelerator: I. Theory.
Husmann, Dominik, Bernier, Laurent-Guy, Bertrand, Mathieu, Calonico, Davide, Chaloulos, Konstantinos, Clausen, Gloria, Clivati, Cecilia, Faist, Jerome, Heiri, Ernst, Hollenstein, Urs, Johnson, Anatoly, Mauchle, Fabian, Meir, Ziv, Merkt, Frederic, Mura, Alberto, Scalari, Giacomo, Scheidegger, Simon, Schmutz, Hansjurg, Sinhal, Mudit, et al. (2021). SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology. Optics express, 29(16), 24592–24605. https://doi.org/10.1364/oe.427921
Husmann, Dominik, Bernier, Laurent-Guy, Bertrand, Mathieu, Calonico, Davide, Chaloulos, Konstantinos, Clausen, Gloria, Clivati, Cecilia, Faist, Jerome, Heiri, Ernst, Hollenstein, Urs, Johnson, Anatoly, Mauchle, Fabian, Meir, Ziv, Merkt, Frederic, Mura, Alberto, Scalari, Giacomo, Scheidegger, Simon, Schmutz, Hansjurg, Sinhal, Mudit, et al. (2021). SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology. Optics express, 29(16), 24592–24605. https://doi.org/10.1364/oe.427921
Kilaj, Ardita, Wang, Jia, Stranak, Patrik, Schwilk, Max, Rivero, Uxia, Xu, Lei, von Lilienfeld, O. Anatole, Kupper, Jochen, & Nature Communications, 12(1), 6047. https://doi.org/10.1038/s41467-021-26309-5
. (2021). Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions.
Kilaj, Ardita, Wang, Jia, Stranak, Patrik, Schwilk, Max, Rivero, Uxia, Xu, Lei, von Lilienfeld, O. Anatole, Kupper, Jochen, & Nature Communications, 12(1), 6047. https://doi.org/10.1038/s41467-021-26309-5
. (2021). Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions.
Ploenes, Ludger, Stranak, Patrik, Gao, Hong, Kuepper, J., & Molecular Physics, 119(17-18), e1965234. https://doi.org/10.1080/00268976.2021.1965234
. (2021). A novel crossed-molecular-beam experiment for investigating reactions of state- and conformationally selected strong-field-seeking molecules.
Ploenes, Ludger, Stranak, Patrik, Gao, Hong, Kuepper, J., & Molecular Physics, 119(17-18), e1965234. https://doi.org/10.1080/00268976.2021.1965234
. (2021). A novel crossed-molecular-beam experiment for investigating reactions of state- and conformationally selected strong-field-seeking molecules.
Rivero, Uxia, Turan, Haydar Taylan, Meuwly, Markus, & Molecular Physics, 119(1-2), e1825852. https://doi.org/10.1080/00268976.2020.1825852
. (2021). Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride.
Rivero, Uxia, Turan, Haydar Taylan, Meuwly, Markus, & Molecular Physics, 119(1-2), e1825852. https://doi.org/10.1080/00268976.2020.1825852
. (2021). Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride.
Sinhal, Mudit, Meir, Ziv, & Chimia, 75(4), 291–295. https://doi.org/10.2533/chimia.2021.291
. (2021). Non-destructive State Detection and Spectroscopy of Single Molecules.
Sinhal, Mudit, Meir, Ziv, & Chimia, 75(4), 291–295. https://doi.org/10.2533/chimia.2021.291
. (2021). Non-destructive State Detection and Spectroscopy of Single Molecules.
Stranak, Patrik, Ploenes, Ludger, Hofsaess, Simon, Dulitz, Katrin, Stienkemeier, Frank, & Review of Scientific Instruments, 92(10), 103203. https://doi.org/10.1063/5.0065498
. (2021). Development and characterization of high-repetition-rate sources for supersonic beams of fluorine radicals.
Stranak, Patrik, Ploenes, Ludger, Hofsaess, Simon, Dulitz, Katrin, Stienkemeier, Frank, & Review of Scientific Instruments, 92(10), 103203. https://doi.org/10.1063/5.0065498
. (2021). Development and characterization of high-repetition-rate sources for supersonic beams of fluorine radicals.
Chimia, 75(6), 557–558. https://doi.org/10.2533/chimia.2021.557
. (2021). Fundamental Research in Chemistry and the SCS: Past, Present, Future.
Chimia, 75(6), 557–558. https://doi.org/10.2533/chimia.2021.557
. (2021). Fundamental Research in Chemistry and the SCS: Past, Present, Future.
Damjanovic, T., Vanhaecke, N., Cromieres, J., Haak, H., Meijer, G., Journal of Physics: Conference Series, 1412. https://doi.org/10.1088/1742-6596/1412/12/122014
, & Zhang, D. (2020). A traveling wave Zeeman decelerator.
Damjanovic, T., Vanhaecke, N., Cromieres, J., Haak, H., Meijer, G., Journal of Physics: Conference Series, 1412. https://doi.org/10.1088/1742-6596/1412/12/122014
, & Zhang, D. (2020). A traveling wave Zeeman decelerator.
Doerfler, A. D., Yurtsever, E., Villarreal, P., Gonzalez-Lezana, T., Gianturco, F. A., & Physical Review A, 101(1), 12706. https://doi.org/10.1103/physreva.101.012706
(2020). Rotational-state-changing collisions between N-2(+) and Rb at low energies.
Doerfler, A. D., Yurtsever, E., Villarreal, P., Gonzalez-Lezana, T., Gianturco, F. A., & Physical Review A, 101(1), 12706. https://doi.org/10.1103/physreva.101.012706
(2020). Rotational-state-changing collisions between N-2(+) and Rb at low energies.
Kilaj, Ardita, Gao, Hong, Tahchieva, Diana, Ramakrishnan, Raghunathan, Bachmann, Daniel, Gillingham, Dennis, von Lilienfeld, O. Anatole, Kuepper, Jochen, & Physical Chemistry Chemical Physics, 22(24), 13431–13439. https://doi.org/10.1039/d0cp01396j
. (2020). Quantum-chemistry-aided identification, synthesis and experimental validation of model systems for conformationally controlled reaction studies: separation of the conformers of 2,3-dibromobuta-1,3-diene in the gas phase.
Kilaj, Ardita, Gao, Hong, Tahchieva, Diana, Ramakrishnan, Raghunathan, Bachmann, Daniel, Gillingham, Dennis, von Lilienfeld, O. Anatole, Kuepper, Jochen, & Physical Chemistry Chemical Physics, 22(24), 13431–13439. https://doi.org/10.1039/d0cp01396j
. (2020). Quantum-chemistry-aided identification, synthesis and experimental validation of model systems for conformationally controlled reaction studies: separation of the conformers of 2,3-dibromobuta-1,3-diene in the gas phase.
Meir, Ziv, Sinhal, Mudit, Safronova, Marianna S., & Physical Review A, 101(1), 12509. https://doi.org/10.1103/physreva.101.012509
. (2020). Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the P-2(3/2) state in Ca-40(+).
Meir, Ziv, Sinhal, Mudit, Safronova, Marianna S., & Physical Review A, 101(1), 12509. https://doi.org/10.1103/physreva.101.012509
. (2020). Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the P-2(3/2) state in Ca-40(+).
Najafian, Kaveh, Meir, Ziv, Sinhal, Mudit, & Nature Communications, 11(1), 4470. https://doi.org/10.1038/s41467-020-18170-9
. (2020). Identification of molecular quantum states using phase-sensitive forces.
Najafian, Kaveh, Meir, Ziv, Sinhal, Mudit, & Nature Communications, 11(1), 4470. https://doi.org/10.1038/s41467-020-18170-9
. (2020). Identification of molecular quantum states using phase-sensitive forces.
Najafian, Kaveh, Meir, Ziv, & Physical Chemistry Chemical Physics, 22(40), 23083–23098. https://doi.org/10.1039/d0cp03906c
. (2020). From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N-2(+).
Najafian, Kaveh, Meir, Ziv, & Physical Chemistry Chemical Physics, 22(40), 23083–23098. https://doi.org/10.1039/d0cp03906c
. (2020). From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N-2(+).
Sinhal, Mudit, Meir, Ziv, Najafian, Kaveh, Hegi, Gregor, & Science, 367(6483), 1213–1218. https://doi.org/10.1126/science.aaz9837
. (2020). Quantum-nondemolition state detection and spectroscopy of single trapped molecules.
Sinhal, Mudit, Meir, Ziv, Najafian, Kaveh, Hegi, Gregor, & Science, 367(6483), 1213–1218. https://doi.org/10.1126/science.aaz9837
. (2020). Quantum-nondemolition state detection and spectroscopy of single trapped molecules.
Sinhal, M., Meir, Z., Najafian, K., Hegi, G., & Willitsch, S. (2020). Quantum-nondemolition state detection and spectroscopy of single trapped molecules. Science, 367, 1213–1218. https://doi.org/10.1126/science.aaw1666
Sinhal, M., Meir, Z., Najafian, K., Hegi, G., & Willitsch, S. (2020). Quantum-nondemolition state detection and spectroscopy of single trapped molecules. Science, 367, 1213–1218. https://doi.org/10.1126/science.aaw1666
Wang, Jia, Kilaj, Ardita, He, Lanhai, Dlugolecki, Karol, The Journal of Physical Chemistry. A, 124(40), 8341–8345. https://doi.org/10.1021/acs.jpca.0c05893
, & Kuepper, Jochen. (2020). Spatial Separation of the Conformers of Methyl Vinyl Ketone.
Wang, Jia, Kilaj, Ardita, He, Lanhai, Dlugolecki, Karol, The Journal of Physical Chemistry. A, 124(40), 8341–8345. https://doi.org/10.1021/acs.jpca.0c05893
, & Kuepper, Jochen. (2020). Spatial Separation of the Conformers of Methyl Vinyl Ketone.
Willitsch, S., Boudon, V., De Natale, P., Huet, T., & Merkt, F. (2020). Editorial. Molecular Physics, 118. https://doi.org/10.1080/00268976.2020.1759289
Willitsch, S., Boudon, V., De Natale, P., Huet, T., & Merkt, F. (2020). Editorial. Molecular Physics, 118. https://doi.org/10.1080/00268976.2020.1759289
Ahmed, M., Asmis, K., Avdonin, I., Beyer, M. K., Bieske, E., Bougueroua, S., Chou, C.-W., Daly, S., Dopfer, O., Ellis-Gibbings, L., Gabelica, V., Gaigeot, M.-P., Gatchell, M., Gerber, B., Johnson, C., Johnson, M., Jordan, K., Krylov, A., Mayer, M., et al. (2019). Controlling internal degrees: General discussion. Faraday Discussions, 217, 138–171. https://doi.org/10.1039/c9fd90032b
Ahmed, M., Asmis, K., Avdonin, I., Beyer, M. K., Bieske, E., Bougueroua, S., Chou, C.-W., Daly, S., Dopfer, O., Ellis-Gibbings, L., Gabelica, V., Gaigeot, M.-P., Gatchell, M., Gerber, B., Johnson, C., Johnson, M., Jordan, K., Krylov, A., Mayer, M., et al. (2019). Controlling internal degrees: General discussion. Faraday Discussions, 217, 138–171. https://doi.org/10.1039/c9fd90032b
Dessent, C., Johnson, M., Gerber, B., Wester, R., Asmis, K., Avdonin, I., Bieske, E., Gatchell, M., Bull, J., Sarre, P., Gaigeot, M.-P., Chou, C.-W., Mabbs, R., Jordan, K., Beyer, M. K., McCaslin, L., Krylov, A., Schlemmer, S., McCoy, A. B., et al. (2019). Exotic systems: General discussion. Faraday Discussions, 217, 601–622. https://doi.org/10.1039/c9fd90035g
Dessent, C., Johnson, M., Gerber, B., Wester, R., Asmis, K., Avdonin, I., Bieske, E., Gatchell, M., Bull, J., Sarre, P., Gaigeot, M.-P., Chou, C.-W., Mabbs, R., Jordan, K., Beyer, M. K., McCaslin, L., Krylov, A., Schlemmer, S., McCoy, A. B., et al. (2019). Exotic systems: General discussion. Faraday Discussions, 217, 601–622. https://doi.org/10.1039/c9fd90035g
Dörfler, Alexander D., Eberle, Pascal, Koner, Debasish, Tomza, Michał, Meuwly, Markus, & Nature Communications, 10(1), 5429. https://doi.org/10.1038/s41467-019-13218-x
. (2019). Long-range versus short-range effects in cold molecular ion-neutral collisions.
Dörfler, Alexander D., Eberle, Pascal, Koner, Debasish, Tomza, Michał, Meuwly, Markus, & Nature Communications, 10(1), 5429. https://doi.org/10.1038/s41467-019-13218-x
. (2019). Long-range versus short-range effects in cold molecular ion-neutral collisions.
Fountas, P. N., Poggio, M., & New Journal of Physics, 21, 13030. https://doi.org/10.1088/1367-2630/aaf8f5
(2019). Classical and quantum dynamics of a trapped ion coupled to a charged nanowire.
Fountas, P. N., Poggio, M., & New Journal of Physics, 21, 13030. https://doi.org/10.1088/1367-2630/aaf8f5
(2019). Classical and quantum dynamics of a trapped ion coupled to a charged nanowire.
Gianturco, F. A., Dorfler, A. D., Physical Chemistry Chemical Physics, 21(16), 8342–8351. https://doi.org/10.1039/c8cp06761a
, Yurtsever, E., Gonzalez-Lezana, T., & Villarreal, P. (2019). N-2(+)((2)Sigma(g)) and Rb(S-2) in a hybrid trap: modeling ion losses from radiative association paths.
Gianturco, F. A., Dorfler, A. D., Physical Chemistry Chemical Physics, 21(16), 8342–8351. https://doi.org/10.1039/c8cp06761a
, Yurtsever, E., Gonzalez-Lezana, T., & Villarreal, P. (2019). N-2(+)((2)Sigma(g)) and Rb(S-2) in a hybrid trap: modeling ion losses from radiative association paths.
Haas, Dominik, von Planta, Claudio, Kierspel, Thomas, Zhang, Dongdong, & Communications Physics, 2, 101. https://doi.org/10.1038/s42005-019-0199-4
. (2019). Long-term trapping of Stark-decelerated molecules.
Haas, Dominik, von Planta, Claudio, Kierspel, Thomas, Zhang, Dongdong, & Communications Physics, 2, 101. https://doi.org/10.1038/s42005-019-0199-4
. (2019). Long-term trapping of Stark-decelerated molecules.
Meir, Ziv, Hegi, Gregor, Najafian, Kaveh, Sinhal, Mudit, & Faraday Discussions, 217, 561–583. https://doi.org/10.1039/c8fd00195b
. (2019). State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions.
Meir, Ziv, Hegi, Gregor, Najafian, Kaveh, Sinhal, Mudit, & Faraday Discussions, 217, 561–583. https://doi.org/10.1039/c8fd00195b
. (2019). State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions.
Rivero, Uxia, Unke, Oliver T., Meuwly, Markus, & Journal of Chemical Physics, 151(10), 104301. https://doi.org/10.1063/1.5114981
. (2019). Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations.
Rivero, Uxia, Unke, Oliver T., Meuwly, Markus, & Journal of Chemical Physics, 151(10), 104301. https://doi.org/10.1063/1.5114981
. (2019). Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations.
Rouse, Ian, & Molecular Physics, 117(21), 3120–3131. https://doi.org/10.1080/00268976.2019.1581952
. (2019). The energy distribution of an ion in a radiofrequency trap interacting with a nonuniform neutral buffer gas.
Rouse, Ian, & Molecular Physics, 117(21), 3120–3131. https://doi.org/10.1080/00268976.2019.1581952
. (2019). The energy distribution of an ion in a radiofrequency trap interacting with a nonuniform neutral buffer gas.
Simons, J., Johnson, M., Asmis, K., McCoy, A. B., Daly, S., Wester, R., Rijs, A., Sarre, P., Gaigeot, M.-P., Mabbs, R., Jordan, K., Dessent, C., Neumark, D., Chou, C.-W., Gerber, B., Dopfer, O., Oomens, J., Krylov, A., Schlemmer, S., et al. (2019). Pushing resolution in frequency and time: General discussion. Faraday Discussions, 217, 290–321. https://doi.org/10.1039/c9fd90033k
Simons, J., Johnson, M., Asmis, K., McCoy, A. B., Daly, S., Wester, R., Rijs, A., Sarre, P., Gaigeot, M.-P., Mabbs, R., Jordan, K., Dessent, C., Neumark, D., Chou, C.-W., Gerber, B., Dopfer, O., Oomens, J., Krylov, A., Schlemmer, S., et al. (2019). Pushing resolution in frequency and time: General discussion. Faraday Discussions, 217, 290–321. https://doi.org/10.1039/c9fd90033k
Kilaj, Ardita, Gao, Hong, Rösch, Daniel, Rivero, Uxia, Küpper, Jochen, & Nature Communications, 9(1), 2096. https://doi.org/10.1038/s41467-018-04483-3
. (2018). Observation of different reactivities of para and ortho-water towards trapped diazenylium ions.
Kilaj, Ardita, Gao, Hong, Rösch, Daniel, Rivero, Uxia, Küpper, Jochen, & Nature Communications, 9(1), 2096. https://doi.org/10.1038/s41467-018-04483-3
. (2018). Observation of different reactivities of para and ortho-water towards trapped diazenylium ions.
Meir, Ziv, Zhang, Dongdong, & SPG Mitteilungen, 55, 31–33.
. (2018). Cold molecules: techniques and applications.
Meir, Ziv, Zhang, Dongdong, & SPG Mitteilungen, 55, 31–33.
. (2018). Cold molecules: techniques and applications.
Rouse, I., & Physical Review A, 97(4), 42712. https://doi.org/10.1103/physreva.97.042712
(2018). Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces.
Rouse, I., & Physical Review A, 97(4), 42712. https://doi.org/10.1103/physreva.97.042712
(2018). Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces.
Vander Auwera, Jean, Godefroid, Michel, Halonen, Lauri, Huet, Therese, Merkt, Frederic, De Natale, Paolo, & Molecular Physics, 116(23-24), 3447–3462. https://doi.org/10.1080/00268976.2018.1494881
. (2018). 25th Colloquium on High-Resolution Molecular Spectroscopy: special issue dedicated to Michel Herman.
Vander Auwera, Jean, Godefroid, Michel, Halonen, Lauri, Huet, Therese, Merkt, Frederic, De Natale, Paolo, & Molecular Physics, 116(23-24), 3447–3462. https://doi.org/10.1080/00268976.2018.1494881
. (2018). 25th Colloquium on High-Resolution Molecular Spectroscopy: special issue dedicated to Michel Herman.
Abstracts of Papers of the American Chemical Society, 255, 230. American Chemical Society.
. (2018). Probes of ion-neutral chemical dynamics with cold and controlled molecules.
Abstracts of Papers of the American Chemical Society, 255, 230. American Chemical Society.
. (2018). Probes of ion-neutral chemical dynamics with cold and controlled molecules.
Zhang, D., & Willitsch, S. (2018). CHAPTER 10: Cold Ion Chemistry: Vol. 2018-January (pp. 496–536). https://doi.org/10.1039/9781782626800-00496
Zhang, D., & Willitsch, S. (2018). CHAPTER 10: Cold Ion Chemistry: Vol. 2018-January (pp. 496–536). https://doi.org/10.1039/9781782626800-00496
Haas, Dominik, Scherb, Sebastian, Zhang, Dongdong, & EPJ Techniques and Instrumentation, 4(1). https://doi.org/10.1140/epjti/s40485-017-0041-x
. (2017). Optimizing the density of Stark decelerated radicals at low final velocities: a tutorial review [Journal-article].
Haas, Dominik, Scherb, Sebastian, Zhang, Dongdong, & EPJ Techniques and Instrumentation, 4(1). https://doi.org/10.1140/epjti/s40485-017-0041-x
. (2017). Optimizing the density of Stark decelerated radicals at low final velocities: a tutorial review [Journal-article].
Dulieu, O., & Europhysics News, 48(2), 17–20. https://doi.org/10.1051/epn/2017203
(2017). Ion Coulomb crystals: From quantum technology to chemistry close to the absolute zero point.
Dulieu, O., & Europhysics News, 48(2), 17–20. https://doi.org/10.1051/epn/2017203
(2017). Ion Coulomb crystals: From quantum technology to chemistry close to the absolute zero point.
Mokhberi, A., Schmied, R., & New Journal of Physics, 19, 43023. https://doi.org/10.1088/1367-2630/aa6918
(2017). Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions.
Mokhberi, A., Schmied, R., & New Journal of Physics, 19, 43023. https://doi.org/10.1088/1367-2630/aa6918
(2017). Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions.
Rivero, Uxia, Meuwly, Markus, & Chemical Physics Letters, 683, 598–605. https://doi.org/10.1016/j.cplett.2017.03.063
. (2017). A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride.
Rivero, Uxia, Meuwly, Markus, & Chemical Physics Letters, 683, 598–605. https://doi.org/10.1016/j.cplett.2017.03.063
. (2017). A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride.
Rösch, D., & Willitsch, S. (2017). Physikalische Chemie 2016: Spektroskopie und Chemie mit kalten Ionen. Nachrichten Aus Der Chemie, 65, 326–329. https://doi.org/10.1002/nadc.20174060850
Rösch, D., & Willitsch, S. (2017). Physikalische Chemie 2016: Spektroskopie und Chemie mit kalten Ionen. Nachrichten Aus Der Chemie, 65, 326–329. https://doi.org/10.1002/nadc.20174060850
Rouse, I., & Physical Review Letters, 118(14), 143401. https://doi.org/10.1103/physrevlett.118.143401
(2017). Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas.
Rouse, I., & Physical Review Letters, 118(14), 143401. https://doi.org/10.1103/physrevlett.118.143401
(2017). Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas.
Schlemmer, S., Willitsch, S., & Steimle, T. (2017). Introduction to the special issue on molecular spectroscopy in traps. Journal of Molecular Spectroscopy, 332, 1–2. https://doi.org/10.1016/j.jms.2016.12.005
Schlemmer, S., Willitsch, S., & Steimle, T. (2017). Introduction to the special issue on molecular spectroscopy in traps. Journal of Molecular Spectroscopy, 332, 1–2. https://doi.org/10.1016/j.jms.2016.12.005
Advances in Chemical Physics (Vol. 162, pp. 307–340). Wiley Interscience. https://doi.org/10.1002/9781119324560.ch5
. (2017). Chemistry with Controlled Ions. In Rice, Stuart A.; Dinner, Aaron R. (ed.),
Advances in Chemical Physics (Vol. 162, pp. 307–340). Wiley Interscience. https://doi.org/10.1002/9781119324560.ch5
. (2017). Chemistry with Controlled Ions. In Rice, Stuart A.; Dinner, Aaron R. (ed.),
Hegi, Gregor, 71st International Symposium on Molecular Spectroscopy. https://doi.org/10.15278/isms.2016.wi07
, Sergachev, Ilia, Germann, Matthias, & Najafian, Kaveh. (2016, June 22). Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions .
Hegi, Gregor, 71st International Symposium on Molecular Spectroscopy. https://doi.org/10.15278/isms.2016.wi07
, Sergachev, Ilia, Germann, Matthias, & Najafian, Kaveh. (2016, June 22). Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions .
Eberle, Pascal, Dörfler, Alexander D., von Planta, Claudio, Ravi, Krishnamurthy, & ChemPhysChem, 17(22), 3769–3775. https://doi.org/10.1002/cphc.201600643
. (2016). A Dynamic Ion-Atom Hybrid Trap for High-Resolution Cold-Collision Studies.
Eberle, Pascal, Dörfler, Alexander D., von Planta, Claudio, Ravi, Krishnamurthy, & ChemPhysChem, 17(22), 3769–3775. https://doi.org/10.1002/cphc.201600643
. (2016). A Dynamic Ion-Atom Hybrid Trap for High-Resolution Cold-Collision Studies.
Germann, Matthias, & Molecular Physics, 114(6), 769–773. https://doi.org/10.1080/00268976.2015.1118568
. (2016). Line strengths for fine- and hyperfine-resolved electric-quadrupole rotation-vibration transitions in Hund’s case b molecules.
Germann, Matthias, & Molecular Physics, 114(6), 769–773. https://doi.org/10.1080/00268976.2015.1118568
. (2016). Line strengths for fine- and hyperfine-resolved electric-quadrupole rotation-vibration transitions in Hund’s case b molecules.
Germann, Matthias, & Journal of Chemical Physics, 145(4), 44315. https://doi.org/10.1063/1.4955303
. (2016). Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations.
Germann, Matthias, & Journal of Chemical Physics, 145(4), 44315. https://doi.org/10.1063/1.4955303
. (2016). Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations.
Germann, Matthias, & Journal of Chemical Physics, 145(4), 44314. https://doi.org/10.1063/1.4955301
. (2016). Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.
Germann, Matthias, & Journal of Chemical Physics, 145(4), 44314. https://doi.org/10.1063/1.4955301
. (2016). Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.
Ploenes, Ludger, Haas, Dominik, Zhang, Dongdong, van de Meerakker, Sebastiaan Y. T., & Review of Scientific Instruments, 87(5), 53305. https://doi.org/10.1063/1.4948917
. (2016). Cold and intense OH radical beam sources.
Ploenes, Ludger, Haas, Dominik, Zhang, Dongdong, van de Meerakker, Sebastiaan Y. T., & Review of Scientific Instruments, 87(5), 53305. https://doi.org/10.1063/1.4948917
. (2016). Cold and intense OH radical beam sources.
Rösch, Daniel, Gao, Hong, Kilaj, Ardita, & EPJ Techniques and Instrumentation, 3, 5. https://doi.org/10.1140/epjti/s40485-016-0032-3
. (2016). Design and characterization of a linear quadrupole ion trap for high-resolution Coulomb-crystal time-of-flight mass spectrometry.
Rösch, Daniel, Gao, Hong, Kilaj, Ardita, & EPJ Techniques and Instrumentation, 3, 5. https://doi.org/10.1140/epjti/s40485-016-0032-3
. (2016). Design and characterization of a linear quadrupole ion trap for high-resolution Coulomb-crystal time-of-flight mass spectrometry.
Meuwly, M., & Willitsch, S. (2015). Preface to the special issue dedicated to John P. Maier. Molecular Physics, 113(15-16), 2061–2062. https://doi.org/10.1080/00268976.2015.1062245
Meuwly, M., & Willitsch, S. (2015). Preface to the special issue dedicated to John P. Maier. Molecular Physics, 113(15-16), 2061–2062. https://doi.org/10.1080/00268976.2015.1062245
Dörfler, A., Eberle, P., Da Silva, H., Raoult, M., Dulieu, O., & Willitsch, S. (2015). A dynamic ion-atom hybrid trap for high-resolution cold-collision studies. 635. https://doi.org/10.1088/1742-6596/635/9/092048
Dörfler, A., Eberle, P., Da Silva, H., Raoult, M., Dulieu, O., & Willitsch, S. (2015). A dynamic ion-atom hybrid trap for high-resolution cold-collision studies. 635. https://doi.org/10.1088/1742-6596/635/9/092048
Dulieu, Olivier, & Reflets de la physique, 44-45, 91–94. https://doi.org/10.1051/refdp/20154445091
. (2015). Cristaux coulombiens: De la technologie quantique à la chimie proche du zéro absolu.
Dulieu, Olivier, & Reflets de la physique, 44-45, 91–94. https://doi.org/10.1051/refdp/20154445091
. (2015). Cristaux coulombiens: De la technologie quantique à la chimie proche du zéro absolu.
Eberle, Pascal, Dörfler, Alexander D., von Planta, Claudio, Ravi, Krischnamurthy, Haas, Dominik, Zhang, Dong, Meeraker, Sebastiaan Y. T., & Journal of Physics: Conference Series, 635(1), 12012. https://doi.org/10.1088/1742-6596/635/1/012012
. (2015). Ion-Atom and Ion-Molecule Hybrid Systems: Ion-Neutral Chemistry at Ultralow Energies.
Eberle, Pascal, Dörfler, Alexander D., von Planta, Claudio, Ravi, Krischnamurthy, Haas, Dominik, Zhang, Dong, Meeraker, Sebastiaan Y. T., & Journal of Physics: Conference Series, 635(1), 12012. https://doi.org/10.1088/1742-6596/635/1/012012
. (2015). Ion-Atom and Ion-Molecule Hybrid Systems: Ion-Neutral Chemistry at Ultralow Energies.
Germann, Matthias, Tonga, Xin, & Chimia, 69(4), 213–216. https://doi.org/10.2533/chimia.2015.213
. (2015). Forbidden Vibrational Transitions in Cold Molecular Ions: Experimental Observation and Potential Applications.
Germann, Matthias, Tonga, Xin, & Chimia, 69(4), 213–216. https://doi.org/10.2533/chimia.2015.213
. (2015). Forbidden Vibrational Transitions in Cold Molecular Ions: Experimental Observation and Potential Applications.
Mokhberi, Athar, & New Journal of Physics, 17(4), 45008. https://doi.org/10.1088/1367-2630/17/4/045008
. (2015). Structural and energetic properties of molecular Coulomb crystals in a surface-electrode ion trap.
Mokhberi, Athar, & New Journal of Physics, 17(4), 45008. https://doi.org/10.1088/1367-2630/17/4/045008
. (2015). Structural and energetic properties of molecular Coulomb crystals in a surface-electrode ion trap.
Proceedings of the International School of Physics “Enrico Fermi”, 189, 255–268. https://doi.org/10.3254/978-1-61499-526-5-255
. (2015). Ion-atom hybrid systems.
Proceedings of the International School of Physics “Enrico Fermi”, 189, 255–268. https://doi.org/10.3254/978-1-61499-526-5-255
. (2015). Ion-atom hybrid systems.
Physical Review A, 92(5), 53420. https://doi.org/10.1103/physreva.92.053420
, & Rouse, Ian. (2015). Superstatistical velocity distributions of cold trapped ions in molecular dynamics simulations.
Physical Review A, 92(5), 53420. https://doi.org/10.1103/physreva.92.053420
, & Rouse, Ian. (2015). Superstatistical velocity distributions of cold trapped ions in molecular dynamics simulations.
Germann, Matthias, Tong, Xin, & Nature Physics, 10(11), 820–824. https://doi.org/10.1038/nphys3085
. (2014). Observation of electric-dipole-forbidden infrared transitions in cold molecular ions.
Germann, Matthias, Tong, Xin, & Nature Physics, 10(11), 820–824. https://doi.org/10.1038/nphys3085
. (2014). Observation of electric-dipole-forbidden infrared transitions in cold molecular ions.
Mokhberi, Athar, & Physical Review A, 90(2), 23402. https://doi.org/10.1103/physreva.90.023402
. (2014). Sympathetic cooling of molecular ions in a surface-electrode ion trap.
Mokhberi, Athar, & Physical Review A, 90(2), 23402. https://doi.org/10.1103/physreva.90.023402
. (2014). Sympathetic cooling of molecular ions in a surface-electrode ion trap.
Rösch, Daniel, Journal of Chemical Physics, 140(12), 124202. https://doi.org/10.1063/1.4869100
, Chang, Yuan-Pin, & Küpper, Jochen. (2014). Chemical reactions of conformationally selected 3-aminophenol molecules in a beam with Coulomb-crystallized Ca+ ions.
Rösch, Daniel, Journal of Chemical Physics, 140(12), 124202. https://doi.org/10.1063/1.4869100
, Chang, Yuan-Pin, & Küpper, Jochen. (2014). Chemical reactions of conformationally selected 3-aminophenol molecules in a beam with Coulomb-crystallized Ca+ ions.
Chang, Yuan-Pin, Długołęcki, Karol, Küpper, Jochen, Rösch, Daniel, Wild, Dieter, & Science, 342(6154), 98–101. https://doi.org/10.1126/science.1242271
. (2013). Specific Chemical Reactivities of Spatially Separated 3-Aminophenol Conformers with Cold Ca+ Ions.
Chang, Yuan-Pin, Długołęcki, Karol, Küpper, Jochen, Rösch, Daniel, Wild, Dieter, & Science, 342(6154), 98–101. https://doi.org/10.1126/science.1242271
. (2013). Specific Chemical Reactivities of Spatially Separated 3-Aminophenol Conformers with Cold Ca+ Ions.
Hall, Felix H. J., Aymar, Mireille, Raoult, Maurice, Dulieu, Olivier, & Molecular Physics, 111(12-13), 1683–1690. https://doi.org/10.1080/00268976.2013.770930
. (2013). Light-assisted cold chemical reactions of barium ions with rubidium atoms.
Hall, Felix H. J., Aymar, Mireille, Raoult, Maurice, Dulieu, Olivier, & Molecular Physics, 111(12-13), 1683–1690. https://doi.org/10.1080/00268976.2013.770930
. (2013). Light-assisted cold chemical reactions of barium ions with rubidium atoms.
Hall, Felix H. J., Eberle, Pascal, Hegi, Gregor, Raoult, Maurice, Aymar, Mireille, Dulieu, Olivier, & Molecular Physics, 111(14-15), 2020–2032. https://doi.org/10.1080/00268976.2013.780107
. (2013). Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap.
Hall, Felix H. J., Eberle, Pascal, Hegi, Gregor, Raoult, Maurice, Aymar, Mireille, Dulieu, Olivier, & Molecular Physics, 111(14-15), 2020–2032. https://doi.org/10.1080/00268976.2013.780107
. (2013). Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap.
Nature Physics, 9(8), 461–462. https://doi.org/10.1038/nphys2683
. (2013). Molecular physics: Ultracold ménage à trois.
Nature Physics, 9(8), 461–462. https://doi.org/10.1038/nphys2683
. (2013). Molecular physics: Ultracold ménage à trois.
Mur-Petit, J., Perez-Rios, J., Campos-Martinez, J., Hernandez, M. I., Architecture and Design of Molecule Logic Gates and Atom Circuits Architecture and Design of Molecule Logic Gates and Atom Circuits (pp. 267–277). Springer. https://doi.org/10.1007/978-3-642-33137-4_20
, & Garcia-Ripoll, J. J. (2013). Toward a Molecular Ion Qubit. In
Mur-Petit, J., Perez-Rios, J., Campos-Martinez, J., Hernandez, M. I., Architecture and Design of Molecule Logic Gates and Atom Circuits Architecture and Design of Molecule Logic Gates and Atom Circuits (pp. 267–277). Springer. https://doi.org/10.1007/978-3-642-33137-4_20
, & Garcia-Ripoll, J. J. (2013). Toward a Molecular Ion Qubit. In
Hall, Felix H. J., & Physical Review Letters, 109(23), 233202. https://doi.org/10.1103/physrevlett.109.233202
. (2012). Millikelvin Reactive Collisions between Sympathetically Cooled Molecular Ions and Laser-Cooled Atoms in an Ion-Atom Hybrid Trap.
Hall, Felix H. J., & Physical Review Letters, 109(23), 233202. https://doi.org/10.1103/physrevlett.109.233202
. (2012). Millikelvin Reactive Collisions between Sympathetically Cooled Molecular Ions and Laser-Cooled Atoms in an Ion-Atom Hybrid Trap.
Mur-Petit, Jordi, Jose Garcia-Ripoll, Juan, Perez-Rios, Jesus, Campos-Martinez, Jose, Hernandez, Marta I., & Physical Review. A, Atomic, Molecular, and Optical Physics, 85(2), 22308. https://doi.org/10.1103/physreva.85.022308
. (2012). Temperature-independent quantum logic for molecular spectroscopy.
Mur-Petit, Jordi, Jose Garcia-Ripoll, Juan, Perez-Rios, Jesus, Campos-Martinez, Jose, Hernandez, Marta I., & Physical Review. A, Atomic, Molecular, and Optical Physics, 85(2), 22308. https://doi.org/10.1103/physreva.85.022308
. (2012). Temperature-independent quantum logic for molecular spectroscopy.
Tong, Xin, Nagy, Tibor, Reyes, Juvenal Yosa, Germann, Matthias, Meuwly, Markus, & Chemical Physics Letters, 547, 1–8. https://doi.org/10.1016/j.cplett.2012.06.042
. (2012). State-selected ion-molecule reactions with Coulomb-crystallized molecular ions in traps.
Tong, Xin, Nagy, Tibor, Reyes, Juvenal Yosa, Germann, Matthias, Meuwly, Markus, & Chemical Physics Letters, 547, 1–8. https://doi.org/10.1016/j.cplett.2012.06.042
. (2012). State-selected ion-molecule reactions with Coulomb-crystallized molecular ions in traps.
International Reviews in Physical Chemistry, 31(2), 175–199. https://doi.org/10.1080/0144235x.2012.667221
. (2012). Coulomb-crystallised molecular ions in traps: methods, applications, prospects.
International Reviews in Physical Chemistry, 31(2), 175–199. https://doi.org/10.1080/0144235x.2012.667221
. (2012). Coulomb-crystallised molecular ions in traps: methods, applications, prospects.
Dulieu, Olivier, Krems, Roman, Weidemüller, Matthias, & Physical Chemistry Chemical Physics, 13(42), 18703–18704. https://doi.org/10.1039/c1cp90157e
. (2011). Physics and Chemistry of Cold Molecules.
Dulieu, Olivier, Krems, Roman, Weidemüller, Matthias, & Physical Chemistry Chemical Physics, 13(42), 18703–18704. https://doi.org/10.1039/c1cp90157e
. (2011). Physics and Chemistry of Cold Molecules.
Georgescu, Iulia M., & Physical Chemistry Chemical Physics, 13(42), 18852–18858. https://doi.org/10.1039/c1cp20733d
. (2011). Theoretical characterization of laser- and sympathetically-cooled ions in surface-electrode ion traps.
Georgescu, Iulia M., & Physical Chemistry Chemical Physics, 13(42), 18852–18858. https://doi.org/10.1039/c1cp20733d
. (2011). Theoretical characterization of laser- and sympathetically-cooled ions in surface-electrode ion traps.
Hall, Felix H. J., Aymar, Mireille, Bouloufa-Maafa, Nadia, Dulieu, Olivier, & Physical Review Letters, 107(24), 243202. https://doi.org/10.1103/physrevlett.107.243202
. (2011). Light-Assisted Ion-Neutral Reactive Processes in the Cold Regime: Radiative Molecule Formation versus Charge Exchange.
Hall, Felix H. J., Aymar, Mireille, Bouloufa-Maafa, Nadia, Dulieu, Olivier, & Physical Review Letters, 107(24), 243202. https://doi.org/10.1103/physrevlett.107.243202
. (2011). Light-Assisted Ion-Neutral Reactive Processes in the Cold Regime: Radiative Molecule Formation versus Charge Exchange.
Tong, Xin, Wild, Dieter, & Physical Review A, 83(2), 23415. https://doi.org/10.1103/physreva.83.023415
. (2011). Collisional and radiative effects in the state-selective preparation of translationally cold molecular ions in ion traps.
Tong, Xin, Wild, Dieter, & Physical Review A, 83(2), 23415. https://doi.org/10.1103/physreva.83.023415
. (2011). Collisional and radiative effects in the state-selective preparation of translationally cold molecular ions in ion traps.
Merkt, Frédéric, Hollenstein, Urs, & Handbook of High-resolution Spectroscopies (Vol. 1, p. 1617). Wiley. https://doi.org/10.1002/9780470749593.hrs071
. (2011). High‐resolution Photoelectron Spectroscopy. In Quack, Martin; Merkt, Frederic (Ed.),
Merkt, Frédéric, Hollenstein, Urs, & Handbook of High-resolution Spectroscopies (Vol. 1, p. 1617). Wiley. https://doi.org/10.1002/9780470749593.hrs071
. (2011). High‐resolution Photoelectron Spectroscopy. In Quack, Martin; Merkt, Frederic (Ed.),
Handbook of High-Resolution Spectroscopies (Vol. 1, p. 1691). Wiley. https://doi.org/10.1002/9780470749593.hrs067
. (2011). Experimental Methods in Cation Spectroscopy. In Quack, Martin; Merkt, Frederic (Ed.),
Handbook of High-Resolution Spectroscopies (Vol. 1, p. 1691). Wiley. https://doi.org/10.1002/9780470749593.hrs067
. (2011). Experimental Methods in Cation Spectroscopy. In Quack, Martin; Merkt, Frederic (Ed.),
Maier, John P., & Chimia, 64(12), 855–858. https://doi.org/10.2533/chimia.2010.855
. (2010). Spectroscopy and Chemical Dynamics.
Maier, John P., & Chimia, 64(12), 855–858. https://doi.org/10.2533/chimia.2010.855
. (2010). Spectroscopy and Chemical Dynamics.
Tong, Xin, Winney, Alexander H, & Physical Review Letters, 105(14), 143001. https://doi.org/10.1103/physrevlett.105.143001
. (2010). Sympathetic Cooling of Molecular Ions in Selected Rotational and Vibrational States Produced by Threshold Photoionization.
Tong, Xin, Winney, Alexander H, & Physical Review Letters, 105(14), 143001. https://doi.org/10.1103/physrevlett.105.143001
. (2010). Sympathetic Cooling of Molecular Ions in Selected Rotational and Vibrational States Produced by Threshold Photoionization.
Nachrichten aus der Chemie, 58(9), 872–875. https://doi.org/10.1002/nadc.201074036
. (2010). Nahe am Nullpunkt.
Nachrichten aus der Chemie, 58(9), 872–875. https://doi.org/10.1002/nadc.201074036
. (2010). Nahe am Nullpunkt.
Nature Physics, 6(4), 240–241. https://doi.org/10.1038/nphys1643
. (2010). Molecular physics: very cool molecular ions.
Nature Physics, 6(4), 240–241. https://doi.org/10.1038/nphys1643
. (2010). Molecular physics: very cool molecular ions.