Publications
436 found
Show per page
  Seitz, Sarina, Lehoczky, Gyözö, Wixmerten, Anke, Schuster-Amft, Corina, Miot, Sylvie, Shrestha, Kristin, Schaedelin, Sabine, , & Mumme, Marcus. (2025). Treatment of patellofemoral osteoarthritis with nasal chondrocyte-based engineered cartilage implantation in a randomised, controlled, multicentre phase II clinical trial: protocol for a randomised controlled trial [Journal-article]. BMJ Open, 15(8), e106140. https://doi.org/10.1136/bmjopen-2025-106140
Seitz, Sarina, Lehoczky, Gyözö, Wixmerten, Anke, Schuster-Amft, Corina, Miot, Sylvie, Shrestha, Kristin, Schaedelin, Sabine, , & Mumme, Marcus. (2025). Treatment of patellofemoral osteoarthritis with nasal chondrocyte-based engineered cartilage implantation in a randomised, controlled, multicentre phase II clinical trial: protocol for a randomised controlled trial [Journal-article]. BMJ Open, 15(8), e106140. https://doi.org/10.1136/bmjopen-2025-106140
  Mumme, Marcus, Wixmerten, Anke, Ivkovic, Alan, Peretti Giuseppe M, Yilmaz, Tayfun, Reppenhagen, Stephan, Pullig, Olliver, Miot, Sylvie, Izadpanah, Kaywan, Jakob, Marcel, Mangiavini, Laura, Sosio, Corrado, Vuletić, Filip, Bieri, Oliver, Biguzzi, Stefano, Gahl, Brigitta, Lehoczky, Gyözö, Vukojevic, Rudolf, Häusner, Sebastian, et al. (2025). Clinical relevance of engineered cartilage maturation in a randomized multicenter trial for articular cartilage repair. Science Translational Medicine, 17(788). https://doi.org/10.1126/scitranslmed.ads0848
Mumme, Marcus, Wixmerten, Anke, Ivkovic, Alan, Peretti Giuseppe M, Yilmaz, Tayfun, Reppenhagen, Stephan, Pullig, Olliver, Miot, Sylvie, Izadpanah, Kaywan, Jakob, Marcel, Mangiavini, Laura, Sosio, Corrado, Vuletić, Filip, Bieri, Oliver, Biguzzi, Stefano, Gahl, Brigitta, Lehoczky, Gyözö, Vukojevic, Rudolf, Häusner, Sebastian, et al. (2025). Clinical relevance of engineered cartilage maturation in a randomized multicenter trial for articular cartilage repair. Science Translational Medicine, 17(788). https://doi.org/10.1126/scitranslmed.ads0848
  Kaiser, Benedict, Miot, Sylvie, Wixmerten, Anke, Pullig, Oliver, Eyrich, Matthias, Fulco, Ilario, Vavrina, Josef, Schaefer, Dirk J., , Barbero, Andrea, & Haug, Martin D. (2024). Engineered autologous nasal cartilage for repair of nasal septal perforations: a case series [Journal-article]. International journal of surgery (London, England), 110(10), 6573–6580. https://doi.org/10.1097/js9.0000000000001843
Kaiser, Benedict, Miot, Sylvie, Wixmerten, Anke, Pullig, Oliver, Eyrich, Matthias, Fulco, Ilario, Vavrina, Josef, Schaefer, Dirk J., , Barbero, Andrea, & Haug, Martin D. (2024). Engineered autologous nasal cartilage for repair of nasal septal perforations: a case series [Journal-article]. International journal of surgery (London, England), 110(10), 6573–6580. https://doi.org/10.1097/js9.0000000000001843
  Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, , & Barbero, Andrea. (2024). Engineered human osteoarthritic cartilage organoids [Journal-article]. Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, , & Barbero, Andrea. (2024). Engineered human osteoarthritic cartilage organoids [Journal-article]. Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
  Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, , Barbero, Andrea, & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article]. ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, , Barbero, Andrea, & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article]. ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
  Bonaiti, Elena, Muraro, Manuele G., Robert, Philippe A., Jakscha, Jens, Dirnhofer, Stefan, , & Berger, Christoph T. (2024). Tonsil explants as a human in vitro model to study vaccine responses [Journal-article]. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1425455
Bonaiti, Elena, Muraro, Manuele G., Robert, Philippe A., Jakscha, Jens, Dirnhofer, Stefan, , & Berger, Christoph T. (2024). Tonsil explants as a human in vitro model to study vaccine responses [Journal-article]. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1425455
  Schaller, Romain, Moya, Adrien, Zhang, Gangyu, Chaaban, Mansoor, Paillaud, Robert, Bartoszek, Ewelina M, Schaefer, Dirk J, , Kaempfen, Alexandre, & Scherberich, Arnaud. (2024). Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept [Journal-article]. Journal of Tissue Engineering, 15. https://doi.org/10.1177/20417314241257352
Schaller, Romain, Moya, Adrien, Zhang, Gangyu, Chaaban, Mansoor, Paillaud, Robert, Bartoszek, Ewelina M, Schaefer, Dirk J, , Kaempfen, Alexandre, & Scherberich, Arnaud. (2024). Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept [Journal-article]. Journal of Tissue Engineering, 15. https://doi.org/10.1177/20417314241257352
  Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., , & Scherberich, Arnaud. (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article]. Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., , & Scherberich, Arnaud. (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article]. Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
  Viswanathan S, Blanc KL, Ciccocioppo R, Dagher G, Filiano AJ, Galipeau J, Krampera M, Krieger L, Lalu MM, Nolta J, Rodriguez Pardo VM, Shi Y, Tarte K, Weiss DJ, & . (2023). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue–derived MSCs for research purposes. Cytotherapy, 25(8), 803–807. https://doi.org/10.1016/j.jcyt.2023.04.005
Viswanathan S, Blanc KL, Ciccocioppo R, Dagher G, Filiano AJ, Galipeau J, Krampera M, Krieger L, Lalu MM, Nolta J, Rodriguez Pardo VM, Shi Y, Tarte K, Weiss DJ, & . (2023). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue–derived MSCs for research purposes. Cytotherapy, 25(8), 803–807. https://doi.org/10.1016/j.jcyt.2023.04.005
  Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, & . (2023). Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nature Reviews Rheumatology, 19(7), 403–416. https://doi.org/10.1038/s41584-023-00979-5
Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, & . (2023). Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nature Reviews Rheumatology, 19(7), 403–416. https://doi.org/10.1038/s41584-023-00979-5
  García-García, Andrés, Pigeot, Sébastien, & . (2023). Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity. Bioactive Materials, 24, 174–184. https://doi.org/10.1016/j.bioactmat.2022.12.017
García-García, Andrés, Pigeot, Sébastien, & . (2023). Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity. Bioactive Materials, 24, 174–184. https://doi.org/10.1016/j.bioactmat.2022.12.017
  Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, , Pullig, Oliver, & Barbero, Andrea. (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study. Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, , Pullig, Oliver, & Barbero, Andrea. (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study. Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
  Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, Barbero, Andrea, , & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs. Advanced Healthcare Materials, 12(9). https://doi.org/10.1002/adhm.202202550
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, Barbero, Andrea, , & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs. Advanced Healthcare Materials, 12(9). https://doi.org/10.1002/adhm.202202550
  Dasen, Boris, Pigeot, Sebastien, Born, Gordian Manfred, Verrier, Sophie, Rivero, Olga, Dittrich, Petra S., , & Filippova, Maria. (2023). T-cadherin is a novel regulator of pericyte function during angiogenesis. American Journal of Physiology - Cell Physiology, 324(4), C821–C836. https://doi.org/10.1152/ajpcell.00326.2022
Dasen, Boris, Pigeot, Sebastien, Born, Gordian Manfred, Verrier, Sophie, Rivero, Olga, Dittrich, Petra S., , & Filippova, Maria. (2023). T-cadherin is a novel regulator of pericyte function during angiogenesis. American Journal of Physiology - Cell Physiology, 324(4), C821–C836. https://doi.org/10.1152/ajpcell.00326.2022
  Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., Scherberich, Arnaud, , & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues. Biotechnology Journal, 18(2). https://doi.org/10.1002/biot.202200405
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., Scherberich, Arnaud, , & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues. Biotechnology Journal, 18(2). https://doi.org/10.1002/biot.202200405
  Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, , Schären, Stefan, Barbero, Andrea, Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, , Schären, Stefan, Barbero, Andrea, Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
  Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, , Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & Barbero, Andrea. (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells, 11(24). https://doi.org/10.3390/cells11244034
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, , Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & Barbero, Andrea. (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells, 11(24). https://doi.org/10.3390/cells11244034
  Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, Scherberich A, Pigeot S, & . (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication. Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, Scherberich A, Pigeot S, & . (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication. Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
  Weiss D.J., Filiano A., Galipeau J., Khoury M., Krampera M., Lalu M., Blanc K.L., Nolta J., Phinney D.G., Rocco P.R.M., Shi Y., Tarte K., Viswanathan S., &  (2022). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells Committee editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for coronavirus disease-19: time for a global registry. Cytotherapy, 24(11), 1071–1073. https://doi.org/10.1016/j.jcyt.2022.07.010
Weiss D.J., Filiano A., Galipeau J., Khoury M., Krampera M., Lalu M., Blanc K.L., Nolta J., Phinney D.G., Rocco P.R.M., Shi Y., Tarte K., Viswanathan S., &  (2022). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells Committee editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for coronavirus disease-19: time for a global registry. Cytotherapy, 24(11), 1071–1073. https://doi.org/10.1016/j.jcyt.2022.07.010
  Ding M, Koroma KE, Wendt D, , Martinetti R, Jespersen S, Schrøder HD, & Overgaard S. (2022). Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 110(8), 1862–1875. https://doi.org/10.1002/jbm.b.35044
Ding M, Koroma KE, Wendt D, , Martinetti R, Jespersen S, Schrøder HD, & Overgaard S. (2022). Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 110(8), 1862–1875. https://doi.org/10.1002/jbm.b.35044
  Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, , & Barbero, Andrea. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/ijms23136900
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, , & Barbero, Andrea. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/ijms23136900
  Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, , Sannino A, & Gervaso F. (2022). Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 110(7), 1372–1385. https://doi.org/10.1002/jbm.a.37379
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, , Sannino A, & Gervaso F. (2022). Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 110(7), 1372–1385. https://doi.org/10.1002/jbm.a.37379
  Cheng C, Chaaban M, Born G, , Li Q, Schaefer DJ, Jaquiery C, & Scherberich A. (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
Cheng C, Chaaban M, Born G, , Li Q, Schaefer DJ, Jaquiery C, & Scherberich A. (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
  Huo, Zihe, Bilang, Remo, Supuran, Claudiu T., von der Weid, Nicolas, Bruder, Elisabeth, Holland-Cunz, Stefan, , Muraro, Manuele G., & Gros, Stephanie J. (2022). Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma. International Journal of Molecular Sciences, 23(6). https://doi.org/10.3390/ijms23063128
Huo, Zihe, Bilang, Remo, Supuran, Claudiu T., von der Weid, Nicolas, Bruder, Elisabeth, Holland-Cunz, Stefan, , Muraro, Manuele G., & Gros, Stephanie J. (2022). Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma. International Journal of Molecular Sciences, 23(6). https://doi.org/10.3390/ijms23063128
  Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, , & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, , & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
  Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, , & Scherberich, Arnaud. (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis. Stem Cells Translational Medicine, 11(2), 213–229. https://doi.org/10.1093/stcltm/szab021
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, , & Scherberich, Arnaud. (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis. Stem Cells Translational Medicine, 11(2), 213–229. https://doi.org/10.1093/stcltm/szab021
  , , Cambria, Elena, Occhetta, Paola, Martin, Ivan, Barbero, Andrea, Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
, , Cambria, Elena, Occhetta, Paola, Martin, Ivan, Barbero, Andrea, Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
  Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, , Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & Barbero A. (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates. Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, , Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & Barbero A. (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates. Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
  Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, & . (2021). Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft [Frontiers Media S.A.]. Frontiers in Oncology, 11, 775136. https://doi.org/10.3389/fonc.2021.775136
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, & . (2021). Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft [Frontiers Media S.A.]. Frontiers in Oncology, 11, 775136. https://doi.org/10.3389/fonc.2021.775136
  Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, , Pelttari K, Barbero A, & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions. Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, , Pelttari K, Barbero A, & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions. Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
  Viswanathan S., Ciccocioppo R., Galipeau J., Krampera M., Le Blanc K., , Moniz K., Nolta J., Phinney D.G., Shi Y., Szczepiorkowski Z.M., Tarte K., Weiss D.J., & Ashford P. (2021). Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 23(12), 1060–1063. https://doi.org/10.1016/j.jcyt.2021.04.009
Viswanathan S., Ciccocioppo R., Galipeau J., Krampera M., Le Blanc K., , Moniz K., Nolta J., Phinney D.G., Shi Y., Szczepiorkowski Z.M., Tarte K., Weiss D.J., & Ashford P. (2021). Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 23(12), 1060–1063. https://doi.org/10.1016/j.jcyt.2021.04.009
  Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, , Hess, Christoph, Scherberich, Arnaud, Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination. Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, , Hess, Christoph, Scherberich, Arnaud, Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination. Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
  Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., , Scharen S., Barbero A, Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation. Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., , Scharen S., Barbero A, Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation. Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
  García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, Scherberich, Arnaud, Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & . (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, Scherberich, Arnaud, Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & . (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
  Pigeot, Sébastien, Klein, Thibaut, Gullotta, Fabiana, Dupard, Steven J., Garcia Garcia, Alejandro, García-García, Andres, Prithiviraj, Sujeethkumar, Lorenzo, Pilar, Filippi, Miriam, Jaquiery, Claude, Kouba, Loraine, Asnaghi, M. Adelaide, Raina, Deepak Bushan, Dasen, Boris, Isaksson, Hanna, Önnerfjord, Patrik, Tägil, Magnus, Bondanza, Attilio, , & Bourgine, Paul E. (2021). Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration. Advanced Materials, 33(43). https://doi.org/10.1002/adma.202103737
Pigeot, Sébastien, Klein, Thibaut, Gullotta, Fabiana, Dupard, Steven J., Garcia Garcia, Alejandro, García-García, Andres, Prithiviraj, Sujeethkumar, Lorenzo, Pilar, Filippi, Miriam, Jaquiery, Claude, Kouba, Loraine, Asnaghi, M. Adelaide, Raina, Deepak Bushan, Dasen, Boris, Isaksson, Hanna, Önnerfjord, Patrik, Tägil, Magnus, Bondanza, Attilio, , & Bourgine, Paul E. (2021). Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration. Advanced Materials, 33(43). https://doi.org/10.1002/adma.202103737
  Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., , Barbero A, & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., , Barbero A, & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
  Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, , & Barbero, Andrea. (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/ijms22179581
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, , & Barbero, Andrea. (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/ijms22179581
  Haeusner S., Herbst L., Bittorf P., Schwarz T., Henze C., Mauermann M, Ochs J., Schmitt R., Blache U., Wixmerten A, Miot S, , & Pullig O. (2021). From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.712917
Haeusner S., Herbst L., Bittorf P., Schwarz T., Henze C., Mauermann M, Ochs J., Schmitt R., Blache U., Wixmerten A, Miot S, , & Pullig O. (2021). From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.712917
  Secerovic A., Pusic M., Kostesic P., Vuckovic M., Vukojevic R., Skokic S., Sasi B., Vukasovic Barisic A., Hudetz D, Vnuk D., Maticic D., Urlic I., Mumme M, , & Ivkovic A. (2021). Nasal Chondrocyte–Based Engineered Grafts for the Repair of Articular Cartilage “Kissing” Lesions: A Pilot Large-Animal Study. American Journal of Sports Medicine, 49(8), 2187–2198. https://doi.org/10.1177/03635465211014190
Secerovic A., Pusic M., Kostesic P., Vuckovic M., Vukojevic R., Skokic S., Sasi B., Vukasovic Barisic A., Hudetz D, Vnuk D., Maticic D., Urlic I., Mumme M, , & Ivkovic A. (2021). Nasal Chondrocyte–Based Engineered Grafts for the Repair of Articular Cartilage “Kissing” Lesions: A Pilot Large-Animal Study. American Journal of Sports Medicine, 49(8), 2187–2198. https://doi.org/10.1177/03635465211014190
  Asnaghi M.A., Barthlott T., Gullotta F., Strusi V., Amovilli A, Hafen K, Srivastava G, Oertle P., Toni R., Wendt D., Holländer GA, &  (2021). Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. Advanced Functional Materials, 31(20). https://doi.org/10.1002/adfm.202010747
Asnaghi M.A., Barthlott T., Gullotta F., Strusi V., Amovilli A, Hafen K, Srivastava G, Oertle P., Toni R., Wendt D., Holländer GA, &  (2021). Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. Advanced Functional Materials, 31(20). https://doi.org/10.1002/adfm.202010747
  Galipeau J., Krampera M., Leblanc K., Nolta J.A., Phinney D.G., Shi Y., Tarte K., Viswanathan S., &  (2021). Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 23(5), 368–372. https://doi.org/10.1016/j.jcyt.2020.11.007
Galipeau J., Krampera M., Leblanc K., Nolta J.A., Phinney D.G., Shi Y., Tarte K., Viswanathan S., &  (2021). Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 23(5), 368–372. https://doi.org/10.1016/j.jcyt.2020.11.007
  Gay MHP, Baldomero H, Farge-Bancel D, Robey PG, Rodeo S, Passweg J, Müller-Gerbl M, & . (2021). The survey on cellular and tissue-engineered therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 27(5-6), 336–350. https://doi.org/10.1089/ten.tea.2020.0092
Gay MHP, Baldomero H, Farge-Bancel D, Robey PG, Rodeo S, Passweg J, Müller-Gerbl M, & . (2021). The survey on cellular and tissue-engineered therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 27(5-6), 336–350. https://doi.org/10.1089/ten.tea.2020.0092
  Power L, Acevedo L, Yamashita R., Rubin D., , & Barbero A. (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization. Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
Power L, Acevedo L, Yamashita R., Rubin D., , & Barbero A. (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization. Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
  , Nikolova, Marina, Scherberich, Arnaud, Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
, Nikolova, Marina, Scherberich, Arnaud, Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
  García-García, Andrés, & . (2021). Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing. Molecular and Cellular Oncology, 8(6). https://doi.org/10.1080/23723556.2021.2007030
García-García, Andrés, & . (2021). Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing. Molecular and Cellular Oncology, 8(6). https://doi.org/10.1080/23723556.2021.2007030
  Ziadlou R, Rotman S, Teuschl A., Salzer E, Barbero A, , Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
Ziadlou R, Rotman S, Teuschl A., Salzer E, Barbero A, , Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
  , Bayon Y., Yu T.T.L., & Vertes A.A. (2020). Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.619698
, Bayon Y., Yu T.T.L., & Vertes A.A. (2020). Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.619698
  Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., , Barbero A, & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model. Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., , Barbero A, & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model. Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
  Gu Y, Schwarz B, Forget A, , , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
Gu Y, Schwarz B, Forget A, , , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
  Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, , & Scherberich A. (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, , & Scherberich A. (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
  Khoury M, Rocco PRM, Phinney DG, Krampera M, , Viswanathan S, Nolta JA, LeBlanc K, Galipeau J, & Weiss DJ. (2020). Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 22(11), 602–605. https://doi.org/10.1016/j.jcyt.2020.04.089
Khoury M, Rocco PRM, Phinney DG, Krampera M, , Viswanathan S, Nolta JA, LeBlanc K, Galipeau J, & Weiss DJ. (2020). Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 22(11), 602–605. https://doi.org/10.1016/j.jcyt.2020.04.089
  Power LJ, Fasolato C, Barbero A, Wendt DJ, Wixmerten A, , & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
Power LJ, Fasolato C, Barbero A, Wendt DJ, Wixmerten A, , & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
  Pigeot S., Bourgine PE, Claude J., Scotti C, Papadimitropoulos A, Todorov A., Epple C., Peretti G.M., & . (2020). Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage. International Journal of Molecular Sciences, 21(19), 1–14. https://doi.org/10.3390/ijms21197233
Pigeot S., Bourgine PE, Claude J., Scotti C, Papadimitropoulos A, Todorov A., Epple C., Peretti G.M., & . (2020). Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage. International Journal of Molecular Sciences, 21(19), 1–14. https://doi.org/10.3390/ijms21197233
  Ziadlou R, Barbero A, , Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
Ziadlou R, Barbero A, , Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
  Mumme M, Wixmerten A, & . (2020). Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032 (Patent Nos. 21–22). Swiss Medical Weekly, 150(21-22), Article 21–22. https://doi.org/10.4414/smw.2020.20240
Mumme M, Wixmerten A, & . (2020). Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032 (Patent Nos. 21–22). Swiss Medical Weekly, 150(21-22), Article 21–22. https://doi.org/10.4414/smw.2020.20240
  Chabannon C, Ciccocioppo R, & . (2020). Welcome to ISCT 2020 Paris Virtual (Patent No. 5). Cytotherapy, 22(5), Article 5. https://doi.org/10.1016/j.jcyt.2020.04.096
Chabannon C, Ciccocioppo R, & . (2020). Welcome to ISCT 2020 Paris Virtual (Patent No. 5). Cytotherapy, 22(5), Article 5. https://doi.org/10.1016/j.jcyt.2020.04.096
  Asnaghi M.A., Power L., Barbero A, Haug M, Koppl R., Wendt D, &  (2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
Asnaghi M.A., Power L., Barbero A, Haug M, Koppl R., Wendt D, &  (2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
  Horton ER, Vallmajo-Martin Q, , Snedeker JG, Ehrbar M, & Blache U. (2020). Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Advanced Healthcare Materials, 9(7), e1901669. https://doi.org/10.1002/adhm.201901669
Horton ER, Vallmajo-Martin Q, , Snedeker JG, Ehrbar M, & Blache U. (2020). Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Advanced Healthcare Materials, 9(7), e1901669. https://doi.org/10.1002/adhm.201901669
  Pagella P, Miran S, Neto E, , Lamghari M, & Mitsiadis TA. (2020). Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB Journal, 34(4), 5499–5511. https://doi.org/10.1096/fj.201902482r
Pagella P, Miran S, Neto E, , Lamghari M, & Mitsiadis TA. (2020). Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB Journal, 34(4), 5499–5511. https://doi.org/10.1096/fj.201902482r
  Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, , & Scherberich A. (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, , & Scherberich A. (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
  Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, , & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/ch-199236
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, , & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/ch-199236
  Lehoczky, Gyözö, Wolf, Francine, Mumme, Marcus, Gehmert, Sebastian, Miot, Sylvie, Haug, Martin, Jakob, Marcel, , & Barbero, Andrea. (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/ch-199236
Lehoczky, Gyözö, Wolf, Francine, Mumme, Marcus, Gehmert, Sebastian, Miot, Sylvie, Haug, Martin, Jakob, Marcel, , & Barbero, Andrea. (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/ch-199236
  Mumme, Marcus, Wixmerten, Anke, Steinwachs, Matthias, & . (2020). Expanded cells, bone marrow, adipose tissue: what is (not) allowed in Switzerland: Focus: cartilage regeneration and arthrosis. Arthroskopie, 33, 89–93. https://doi.org/10.1007/s00142-020-00346-6
Mumme, Marcus, Wixmerten, Anke, Steinwachs, Matthias, & . (2020). Expanded cells, bone marrow, adipose tissue: what is (not) allowed in Switzerland: Focus: cartilage regeneration and arthrosis. Arthroskopie, 33, 89–93. https://doi.org/10.1007/s00142-020-00346-6
  59.	Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Martin I, & . (2019). Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system. Advanced Biosystems, 3(4), e1800300.
59.	Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Martin I, & . (2019). Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system. Advanced Biosystems, 3(4), e1800300.
  Wixmerten, Anke, Miot, Sylvie, & . (2019). Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs). In Reis, Rui (ed.), Encyclopedia of Tissue Engineering and Regenerative Medicine (Vol. 1, pp. 57–70). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.11119-5
Wixmerten, Anke, Miot, Sylvie, & . (2019). Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs). In Reis, Rui (ed.), Encyclopedia of Tissue Engineering and Regenerative Medicine (Vol. 1, pp. 57–70). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.11119-5
  Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, , & Scherberich A. (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, , & Scherberich A. (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
  Ziadlou R, Barbero A, Stoddart MJ, Wirth M, Li Z, , Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules. International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
Ziadlou R, Barbero A, Stoddart MJ, Wirth M, Li Z, , Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules. International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
  Vukasovic A, Asnaghi MA, Kostesic P, Quasnichka H, Cozzolino C, Pusic M, Hails L, Trainor N, Krause C, Figallo E, Filardo G, Kon E, Wixmerten A, Maticic D, Pellegrini G, Kafienah W, Hudetz D, Smith T, , et al. (2019). Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies. Cell Proliferation, 52(6), e12653. https://doi.org/10.1111/cpr.12653
Vukasovic A, Asnaghi MA, Kostesic P, Quasnichka H, Cozzolino C, Pusic M, Hails L, Trainor N, Krause C, Figallo E, Filardo G, Kon E, Wixmerten A, Maticic D, Pellegrini G, Kafienah W, Hudetz D, Smith T, , et al. (2019). Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies. Cell Proliferation, 52(6), e12653. https://doi.org/10.1111/cpr.12653
  Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, , Scherberich A, & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution. Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/SAP.0000000000001857
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, , Scherberich A, & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution. Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/SAP.0000000000001857
  Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, , Nolta J, Phinney DG, & Sensebe L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002
Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, , Nolta J, Phinney DG, & Sensebe L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002
  Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, , & Schroeder T. (2019). Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience, 19, 504–513. https://doi.org/10.1016/j.isci.2019.08.006
Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, , & Schroeder T. (2019). Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience, 19, 504–513. https://doi.org/10.1016/j.isci.2019.08.006
  García-García, Andrés, & . (2019). Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing. Frontiers in Immunology, 10, 2256. https://doi.org/10.3389/fimmu.2019.02256
García-García, Andrés, & . (2019). Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing. Frontiers in Immunology, 10, 2256. https://doi.org/10.3389/fimmu.2019.02256
  Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, , Barbero, Andrea, & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article]. Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, , Barbero, Andrea, & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article]. Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
  Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., , Manz M.G., & Takizawa H. (2019). Erratum to “Engineered humanized bone organs maintain human hematopoiesis in vivo”: (Experimental Hematology (2018) 61 (45–51.e5), (S0301472X18300389), (10.1016/j.exphem.2018.01.004)). Experimental Hematology, 72, 72. https://doi.org/10.1016/j.exphem.2019.01.007
Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., , Manz M.G., & Takizawa H. (2019). Erratum to “Engineered humanized bone organs maintain human hematopoiesis in vivo”: (Experimental Hematology (2018) 61 (45–51.e5), (S0301472X18300389), (10.1016/j.exphem.2018.01.004)). Experimental Hematology, 72, 72. https://doi.org/10.1016/j.exphem.2019.01.007
  Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, , & Iezzi G. (2019). Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System. Advanced Biosystems, 3(4), e1800300. https://doi.org/10.1002/adbi.201800300
Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, , & Iezzi G. (2019). Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System. Advanced Biosystems, 3(4), e1800300. https://doi.org/10.1002/adbi.201800300
  Mumme M, Wixmerten A, Miot S., Barbero A., Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, &  (2019). Tissue engineering for paediatric patients. Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
Mumme M, Wixmerten A, Miot S., Barbero A., Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, &  (2019). Tissue engineering for paediatric patients. Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
  Epple C, Haumer A, Ismail T, Lunger A, Scherberich A, Schaefer DJ, & . (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
Epple C, Haumer A, Ismail T, Lunger A, Scherberich A, Schaefer DJ, & . (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
  Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A., &  (2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A., &  (2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
  Blache U, Horton ER, Xia T, Schoof EM, Blicher LH, Schönenberger A, Snedeker JG, , Erler JT, & Ehrbar M. (2019). Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments. Life Science Alliance, 2(3). https://doi.org/10.26508/lsa.201900304
Blache U, Horton ER, Xia T, Schoof EM, Blicher LH, Schönenberger A, Snedeker JG, , Erler JT, & Ehrbar M. (2019). Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments. Life Science Alliance, 2(3). https://doi.org/10.26508/lsa.201900304
  Gay M.H.P., Mehrkens A., Rittmann M., Haug M., Barbero A., , & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc. European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ECM.V037A13
Gay M.H.P., Mehrkens A., Rittmann M., Haug M., Barbero A., , & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc. European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ECM.V037A13
  , Galipeau J., Kessler C., Blanc K.L., & Dazzi F. (2019). Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 11(480). https://doi.org/10.1126/scitranslmed.aat2189
, Galipeau J., Kessler C., Blanc K.L., & Dazzi F. (2019). Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 11(480). https://doi.org/10.1126/scitranslmed.aat2189
  , Malda, Jos, & Rivron, Nicolas C. (2019). Organs by design: can bioprinting meet self-organisation? Current opinion in organ transplantation, 24(5), 562–567. https://doi.org/10.1097/mot.0000000000000679
, Malda, Jos, & Rivron, Nicolas C. (2019). Organs by design: can bioprinting meet self-organisation? Current opinion in organ transplantation, 24(5), 562–567. https://doi.org/10.1097/mot.0000000000000679
  Power, Laura, Wixmerten, Anke, Wendt, David, Barbero, Andrea, & . (2019). Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10881. https://doi.org/10.1117/12.2507951
Power, Laura, Wixmerten, Anke, Wendt, David, Barbero, Andrea, & . (2019). Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10881. https://doi.org/10.1117/12.2507951
  Devaud YR, Avilla-Royo E, Trachsel C, Grossmann J, , Lutolf MP, & Ehrbar M. (2018). Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels. Advanced Healthcare Materials, 7(21), e1800534. https://doi.org/10.1002/adhm.201800534
Devaud YR, Avilla-Royo E, Trachsel C, Grossmann J, , Lutolf MP, & Ehrbar M. (2018). Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels. Advanced Healthcare Materials, 7(21), e1800534. https://doi.org/10.1002/adhm.201800534
  Piuzzi NS, Dominici M, Long M, Pascual-Garrido C, Rodeo S, Huard J, Guicheux J, McFarland R, Goodrich LR, Maddens S, Robey PG, Bauer TW, Barrett J, Barry F, Karli D, Chu CR, Weiss DJ, , Jorgensen C, & Muschler GF. (2018). Proceedings of the signature series symposium “cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies—promise, facts and fantasy,” international society for cellular therapies, montreal, canada, may 2, 2018. Cytotherapy, 20(11), 1381–1400. https://doi.org/10.1016/j.jcyt.2018.09.001
Piuzzi NS, Dominici M, Long M, Pascual-Garrido C, Rodeo S, Huard J, Guicheux J, McFarland R, Goodrich LR, Maddens S, Robey PG, Bauer TW, Barrett J, Barry F, Karli D, Chu CR, Weiss DJ, , Jorgensen C, & Muschler GF. (2018). Proceedings of the signature series symposium “cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies—promise, facts and fantasy,” international society for cellular therapies, montreal, canada, may 2, 2018. Cytotherapy, 20(11), 1381–1400. https://doi.org/10.1016/j.jcyt.2018.09.001
  Gullotta F., Izzo D., Scalera F., Palazzo B., , Sannino A., & Gervaso F. (2018). Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 86, 294–304. https://doi.org/10.1016/j.jmbbm.2018.06.040
Gullotta F., Izzo D., Scalera F., Palazzo B., , Sannino A., & Gervaso F. (2018). Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 86, 294–304. https://doi.org/10.1016/j.jmbbm.2018.06.040
  Guerrero J, Pigeot S, Müller J, Schaefer DJ, , & Scherberich A. (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Acta Biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
Guerrero J, Pigeot S, Müller J, Schaefer DJ, , & Scherberich A. (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Acta Biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
  Lee JY, Matthias N, Pothiawala A, Ang BK, Lee M, Li J, Sun D, Pigeot S, , Huard J, Huang Y, & Nakayama N. (2018). Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage. Stem Cell Reports, 11(2), 440–453. https://doi.org/10.1016/j.stemcr.2018.06.021
Lee JY, Matthias N, Pothiawala A, Ang BK, Lee M, Li J, Sun D, Pigeot S, , Huard J, Huang Y, & Nakayama N. (2018). Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage. Stem Cell Reports, 11(2), 440–453. https://doi.org/10.1016/j.stemcr.2018.06.021
  Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., , , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., , , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
  Sarem M., Heizmann M., Barbero A., , & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
Sarem M., Heizmann M., Barbero A., , & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
  Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., , Knuesel I., & Scherberich A. (2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis. Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., , Knuesel I., & Scherberich A. (2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis. Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
  Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, & . (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, & . (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
  Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L, Kokkaliaris KD, Coutu DL, Lengerke C, Skoda R, Schroeder T, & . (2018). In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences of the United States of America, 115(25), E5688–E5695. https://doi.org/10.1073/pnas.1805440115
Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L, Kokkaliaris KD, Coutu DL, Lengerke C, Skoda R, Schroeder T, & . (2018). In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences of the United States of America, 115(25), E5688–E5695. https://doi.org/10.1073/pnas.1805440115
  Asnaghi MA, Duhr R, Quasnichka H, Hollander AP, Kafienah W, , & Wendt D. (2018). Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid. Journal of Tissue Engineering and Regenerative Medicine, 12(6), 1402–1411. https://doi.org/10.1002/term.2671
Asnaghi MA, Duhr R, Quasnichka H, Hollander AP, Kafienah W, , & Wendt D. (2018). Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid. Journal of Tissue Engineering and Regenerative Medicine, 12(6), 1402–1411. https://doi.org/10.1002/term.2671
  Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, , & Scherberich A. (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, , & Scherberich A. (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
  Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., , Manz M.G., & Takizawa H. (2018). Engineered humanized bone organs maintain human hematopoiesis in vivo. Experimental Hematology, 61, 45–51. https://doi.org/10.1016/j.exphem.2018.01.004
Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., , Manz M.G., & Takizawa H. (2018). Engineered humanized bone organs maintain human hematopoiesis in vivo. Experimental Hematology, 61, 45–51. https://doi.org/10.1016/j.exphem.2018.01.004
  Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., Barbero A., &  (2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., Barbero A., &  (2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
  Haumer A., Bourgine P.E., Occhetta P., Born G., Tasso R., &  (2018). Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 129, 285–294. https://doi.org/10.1016/j.addr.2018.01.010
Haumer A., Bourgine P.E., Occhetta P., Born G., Tasso R., &  (2018). Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 129, 285–294. https://doi.org/10.1016/j.addr.2018.01.010
  Menzi N, Osinga R, Todorov A, Schaefer DJ, , & Scherberich A. (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
Menzi N, Osinga R, Todorov A, Schaefer DJ, , & Scherberich A. (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
  Loeffler D., Wang W., Hopf A., Hilsenbeck O., Bourgine P.E., Rudolf F., , & Schroeder T. (2018). Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating. Blood, 131(13), 1425–1429. https://doi.org/10.1182/blood-2017-07-794131
Loeffler D., Wang W., Hopf A., Hilsenbeck O., Bourgine P.E., Rudolf F., , & Schroeder T. (2018). Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating. Blood, 131(13), 1425–1429. https://doi.org/10.1182/blood-2017-07-794131