Publications
434 found
Show per page
Kaiser, Benedict, Miot, Sylvie, Wixmerten, Anke, Pullig, Oliver, Eyrich, Matthias, Fulco, Ilario, Vavrina, Josef, Schaefer, Dirk J., International Journal of Surgery, 110(10), 6573–6580. https://doi.org/10.1097/js9.0000000000001843
, Barbero, Andrea, & Haug, Martin D. (2024). Engineered autologous nasal cartilage for repair of nasal septal perforations: a case series [Journal-article].
Kaiser, Benedict, Miot, Sylvie, Wixmerten, Anke, Pullig, Oliver, Eyrich, Matthias, Fulco, Ilario, Vavrina, Josef, Schaefer, Dirk J., International Journal of Surgery, 110(10), 6573–6580. https://doi.org/10.1097/js9.0000000000001843
, Barbero, Andrea, & Haug, Martin D. (2024). Engineered autologous nasal cartilage for repair of nasal septal perforations: a case series [Journal-article].
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
, & Barbero, Andrea. (2024). Engineered human osteoarthritic cartilage organoids [Journal-article].
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
, & Barbero, Andrea. (2024). Engineered human osteoarthritic cartilage organoids [Journal-article].
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
, Barbero, Andrea, & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article].
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
, Barbero, Andrea, & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article].
Schaller, Romain, Moya, Adrien, Zhang, Gangyu, Chaaban, Mansoor, Paillaud, Robert, Bartoszek, Ewelina M, Schaefer, Dirk J, Journal of Tissue Engineering, 15. https://doi.org/10.1177/20417314241257352
, Kaempfen, Alexandre, & Scherberich, Arnaud. (2024). Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept [Journal-article].
Schaller, Romain, Moya, Adrien, Zhang, Gangyu, Chaaban, Mansoor, Paillaud, Robert, Bartoszek, Ewelina M, Schaefer, Dirk J, Journal of Tissue Engineering, 15. https://doi.org/10.1177/20417314241257352
, Kaempfen, Alexandre, & Scherberich, Arnaud. (2024). Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept [Journal-article].
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
, & Scherberich, Arnaud. (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article].
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
, & Scherberich, Arnaud. (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article].
Viswanathan S, Blanc KL, Ciccocioppo R, Dagher G, Filiano AJ, Galipeau J, Krampera M, Krieger L, Lalu MM, Nolta J, Rodriguez Pardo VM, Shi Y, Tarte K, Weiss DJ, & Cytotherapy, 25(8), 803–807. https://doi.org/10.1016/j.jcyt.2023.04.005
. (2023). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue-derived MSCs for research purposes.
Viswanathan S, Blanc KL, Ciccocioppo R, Dagher G, Filiano AJ, Galipeau J, Krampera M, Krieger L, Lalu MM, Nolta J, Rodriguez Pardo VM, Shi Y, Tarte K, Weiss DJ, & Cytotherapy, 25(8), 803–807. https://doi.org/10.1016/j.jcyt.2023.04.005
. (2023). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue-derived MSCs for research purposes.
Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, & Nature Reviews. Rheumatology, 19(7), 403–416. https://doi.org/10.1038/s41584-023-00979-5
. (2023). Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies.
Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, & Nature Reviews. Rheumatology, 19(7), 403–416. https://doi.org/10.1038/s41584-023-00979-5
. (2023). Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies.
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., Scherberich, Arnaud, Biotechnology Journal, 18. https://doi.org/10.1002/biot.202200405
, & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues.
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., Scherberich, Arnaud, Biotechnology Journal, 18. https://doi.org/10.1002/biot.202200405
, & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues.
Dasen, Boris, Pigeot, Sebastien, Born, Gordian Manfred, Verrier, Sophie, Rivero, Olga, Dittrich, Petra S., American Journal of Physiology - Cell Physiology, 324, C821–C836. https://doi.org/10.1152/ajpcell.00326.2022
, & Filippova, Maria. (2023). T-cadherin is a novel regulator of pericyte function during angiogenesis.
Dasen, Boris, Pigeot, Sebastien, Born, Gordian Manfred, Verrier, Sophie, Rivero, Olga, Dittrich, Petra S., American Journal of Physiology - Cell Physiology, 324, C821–C836. https://doi.org/10.1152/ajpcell.00326.2022
, & Filippova, Maria. (2023). T-cadherin is a novel regulator of pericyte function during angiogenesis.
García-García, Andrés, Pigeot, Sébastien, & Bioactive Materials, 24, 174–184. https://doi.org/10.1016/j.bioactmat.2022.12.017
. (2023). Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity.
García-García, Andrés, Pigeot, Sébastien, & Bioactive Materials, 24, 174–184. https://doi.org/10.1016/j.bioactmat.2022.12.017
. (2023). Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity.
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, Barbero, Andrea, Advanced Healthcare Materials, 12. https://doi.org/10.1002/adhm.202202550
, & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs.
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, Barbero, Andrea, Advanced Healthcare Materials, 12. https://doi.org/10.1002/adhm.202202550
, & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs.
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
, Schären, Stefan, Barbero, Andrea, Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc.
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
, Schären, Stefan, Barbero, Andrea, Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc.
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
, Pullig, Oliver, & Barbero, Andrea. (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study.
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
, Pullig, Oliver, & Barbero, Andrea. (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study.
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, Scherberich A, Pigeot S, & Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
. (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, Scherberich A, Pigeot S, & Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
. (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.
Weiss D.J., Filiano A., Galipeau J., Khoury M., Krampera M., Lalu M., Blanc K.L., Nolta J., Phinney D.G., Rocco P.R.M., Shi Y., Tarte K., Viswanathan S., & Cytotherapy, 24(11), 1071–1073. https://doi.org/10.1016/j.jcyt.2022.07.010
(2022). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells Committee editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for coronavirus disease-19: time for a global registry.
Weiss D.J., Filiano A., Galipeau J., Khoury M., Krampera M., Lalu M., Blanc K.L., Nolta J., Phinney D.G., Rocco P.R.M., Shi Y., Tarte K., Viswanathan S., & Cytotherapy, 24(11), 1071–1073. https://doi.org/10.1016/j.jcyt.2022.07.010
(2022). An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells Committee editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for coronavirus disease-19: time for a global registry.
Ding M, Koroma KE, Wendt D, Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 110(8), 1862–1875. https://doi.org/10.1002/jbm.b.35044
, Martinetti R, Jespersen S, Schrøder HD, & Overgaard S. (2022). Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep.
Ding M, Koroma KE, Wendt D, Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 110(8), 1862–1875. https://doi.org/10.1002/jbm.b.35044
, Martinetti R, Jespersen S, Schrøder HD, & Overgaard S. (2022). Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep.
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Journal of Biomedical Materials Research. Part A, 110(7), 1372–1385. https://doi.org/10.1002/jbm.a.37379
, Sannino A, & Gervaso F. (2022). Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization.
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Journal of Biomedical Materials Research. Part A, 110(7), 1372–1385. https://doi.org/10.1002/jbm.a.37379
, Sannino A, & Gervaso F. (2022). Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization.
Huo Z, Bilang R, Supuran CT, von der Weid N, Bruder E, Holland-Cunz S, International Journal of Molecular Sciences, 23(6). https://doi.org/10.3390/ijms23063128
, Muraro MG, & Gros SJ. (2022). Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma.
Huo Z, Bilang R, Supuran CT, von der Weid N, Bruder E, Holland-Cunz S, International Journal of Molecular Sciences, 23(6). https://doi.org/10.3390/ijms23063128
, Muraro MG, & Gros SJ. (2022). Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma.
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
, & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc.
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
, & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc.
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
, Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & Barbero A. (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
, Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & Barbero A. (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, Cells, 11. https://doi.org/10.3390/cells11244034
, Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & Barbero, Andrea. (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies.
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, Cells, 11. https://doi.org/10.3390/cells11244034
, Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & Barbero, Andrea. (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies.
Cheng C, Chaaban M, Born G, Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
, Li Q, Schaefer DJ, Jaquiery C, & Scherberich A. (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.
Cheng C, Chaaban M, Born G, Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
, Li Q, Schaefer DJ, Jaquiery C, & Scherberich A. (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, Stem Cells Translational Medicine, 11, 213–229. https://doi.org/10.1093/stcltm/szab021
, & Scherberich, Arnaud. (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis.
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, Stem Cells Translational Medicine, 11, 213–229. https://doi.org/10.1093/stcltm/szab021
, & Scherberich, Arnaud. (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis.
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23136900
, & Barbero, Andrea. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy.
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23136900
, & Barbero, Andrea. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy.
Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
, , Cambria, Elena, Occhetta, Paola, Martin, Ivan, Barbero, Andrea, Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective.
Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
, , Cambria, Elena, Occhetta, Paola, Martin, Ivan, Barbero, Andrea, Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective.
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
, Pelttari K, Barbero A, & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions.
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
, Pelttari K, Barbero A, & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions.
Viswanathan S., Ciccocioppo R., Galipeau J., Krampera M., Le Blanc K., Cytotherapy, 23(12), 1060–1063. https://doi.org/10.1016/j.jcyt.2021.04.009
, Moniz K., Nolta J., Phinney D.G., Shi Y., Szczepiorkowski Z.M., Tarte K., Weiss D.J., & Ashford P. (2021). Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells.
Viswanathan S., Ciccocioppo R., Galipeau J., Krampera M., Le Blanc K., Cytotherapy, 23(12), 1060–1063. https://doi.org/10.1016/j.jcyt.2021.04.009
, Moniz K., Nolta J., Phinney D.G., Shi Y., Szczepiorkowski Z.M., Tarte K., Weiss D.J., & Ashford P. (2021). Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells.
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
, Hess, Christoph, Scherberich, Arnaud, Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination.
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
, Hess, Christoph, Scherberich, Arnaud, Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination.
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
, Scharen S., Barbero A, Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation.
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
, Scharen S., Barbero A, Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation.
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, Scherberich, Arnaud, Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
. (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches.
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, Scherberich, Arnaud, Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
. (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches.
Pigeot, Sébastien, Klein, Thibaut, Gullotta, Fabiana, Dupard, Steven J., Garcia Garcia, Alejandro, García-García, Andres, Prithiviraj, Sujeethkumar, Lorenzo, Pilar, Filippi, Miriam, Jaquiery, Claude, Kouba, Loraine, Asnaghi, M. Adelaide, Raina, Deepak Bushan, Dasen, Boris, Isaksson, Hanna, Önnerfjord, Patrik, Tägil, Magnus, Bondanza, Attilio, Advanced Materials, 33(43). https://doi.org/10.1002/adma.202103737
, & Bourgine, Paul E. (2021). Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration.
Pigeot, Sébastien, Klein, Thibaut, Gullotta, Fabiana, Dupard, Steven J., Garcia Garcia, Alejandro, García-García, Andres, Prithiviraj, Sujeethkumar, Lorenzo, Pilar, Filippi, Miriam, Jaquiery, Claude, Kouba, Loraine, Asnaghi, M. Adelaide, Raina, Deepak Bushan, Dasen, Boris, Isaksson, Hanna, Önnerfjord, Patrik, Tägil, Magnus, Bondanza, Attilio, Advanced Materials, 33(43). https://doi.org/10.1002/adma.202103737
, & Bourgine, Paul E. (2021). Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration.
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
, Barbero A, & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects.
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
, Barbero A, & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects.
Haeusner S., Herbst L., Bittorf P., Schwarz T., Henze C., Mauermann M, Ochs J., Schmitt R., Blache U., Wixmerten A, Miot S, Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.712917
, & Pullig O. (2021). From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product.
Haeusner S., Herbst L., Bittorf P., Schwarz T., Henze C., Mauermann M, Ochs J., Schmitt R., Blache U., Wixmerten A, Miot S, Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.712917
, & Pullig O. (2021). From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product.
Secerovic A., Pusic M., Kostesic P., Vuckovic M., Vukojevic R., Skokic S., Sasi B., Vukasovic Barisic A., Hudetz D, Vnuk D., Maticic D., Urlic I., Mumme M, American Journal of Sports Medicine, 49(8), 2187–2198. https://doi.org/10.1177/03635465211014190
, & Ivkovic A. (2021). Nasal Chondrocyte–Based Engineered Grafts for the Repair of Articular Cartilage “Kissing” Lesions: A Pilot Large-Animal Study.
Secerovic A., Pusic M., Kostesic P., Vuckovic M., Vukojevic R., Skokic S., Sasi B., Vukasovic Barisic A., Hudetz D, Vnuk D., Maticic D., Urlic I., Mumme M, American Journal of Sports Medicine, 49(8), 2187–2198. https://doi.org/10.1177/03635465211014190
, & Ivkovic A. (2021). Nasal Chondrocyte–Based Engineered Grafts for the Repair of Articular Cartilage “Kissing” Lesions: A Pilot Large-Animal Study.
Asnaghi M.A., Barthlott T., Gullotta F., Strusi V., Amovilli A, Hafen K, Srivastava G, Oertle P., Toni R., Wendt D., Holländer GA, & Advanced Functional Materials, 31(20). https://doi.org/10.1002/adfm.202010747
(2021). Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells.
Asnaghi M.A., Barthlott T., Gullotta F., Strusi V., Amovilli A, Hafen K, Srivastava G, Oertle P., Toni R., Wendt D., Holländer GA, & Advanced Functional Materials, 31(20). https://doi.org/10.1002/adfm.202010747
(2021). Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells.
Galipeau J., Krampera M., Leblanc K., Nolta J.A., Phinney D.G., Shi Y., Tarte K., Viswanathan S., & Cytotherapy, 23(5), 368–372. https://doi.org/10.1016/j.jcyt.2020.11.007
(2021). Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition.
Galipeau J., Krampera M., Leblanc K., Nolta J.A., Phinney D.G., Shi Y., Tarte K., Viswanathan S., & Cytotherapy, 23(5), 368–372. https://doi.org/10.1016/j.jcyt.2020.11.007
(2021). Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition.
Gay MHP, Baldomero H, Farge-Bancel D, Robey PG, Rodeo S, Passweg J, Müller-Gerbl M, & Tissue Engineering - Part A, 27(5-6), 336–350. https://doi.org/10.1089/ten.tea.2020.0092
. (2021). The survey on cellular and tissue-engineered therapies in Europe in 2016 and 2017.
Gay MHP, Baldomero H, Farge-Bancel D, Robey PG, Rodeo S, Passweg J, Müller-Gerbl M, & Tissue Engineering - Part A, 27(5-6), 336–350. https://doi.org/10.1089/ten.tea.2020.0092
. (2021). The survey on cellular and tissue-engineered therapies in Europe in 2016 and 2017.
Power L, Acevedo L, Yamashita R., Rubin D., Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
, & Barbero A. (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization.
Power L, Acevedo L, Yamashita R., Rubin D., Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
, & Barbero A. (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization.
Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
, Nikolova, Marina, Scherberich, Arnaud, Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells.
Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
, Nikolova, Marina, Scherberich, Arnaud, Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells.
García-García, Andrés, & Molecular and Cellular Oncology, 8. https://doi.org/10.1080/23723556.2021.2007030
. (2021). Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing.
García-García, Andrés, & Molecular and Cellular Oncology, 8. https://doi.org/10.1080/23723556.2021.2007030
. (2021). Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing.
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, & Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. 11, 775136. https://doi.org/10.3389/fonc.2021.775136
. (2021).
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, & Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. 11, 775136. https://doi.org/10.3389/fonc.2021.775136
. (2021).
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22179581
, & Barbero, Andrea. (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells.
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22179581
, & Barbero, Andrea. (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells.
Ziadlou R, Rotman S, Teuschl A., Salzer E, Barbero A, Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
, Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.
Ziadlou R, Rotman S, Teuschl A., Salzer E, Barbero A, Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
, Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.
Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.619698
, Bayon Y., Yu T.T.L., & Vertes A.A. (2020). Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products.
Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.619698
, Bayon Y., Yu T.T.L., & Vertes A.A. (2020). Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products.
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
, Barbero A, & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model.
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
, Barbero A, & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model.
Gu Y, Schwarz B, Forget A, Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
, , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness.
Gu Y, Schwarz B, Forget A, Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
, , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness.
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
, & Scherberich A. (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
, & Scherberich A. (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.
Khoury M, Rocco PRM, Phinney DG, Krampera M, Cytotherapy, 22(11), 602–605. https://doi.org/10.1016/j.jcyt.2020.04.089
, Viswanathan S, Nolta JA, LeBlanc K, Galipeau J, & Weiss DJ. (2020). Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential.
Khoury M, Rocco PRM, Phinney DG, Krampera M, Cytotherapy, 22(11), 602–605. https://doi.org/10.1016/j.jcyt.2020.04.089
, Viswanathan S, Nolta JA, LeBlanc K, Galipeau J, & Weiss DJ. (2020). Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential.
Power LJ, Fasolato C, Barbero A, Wendt DJ, Wixmerten A, Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
, & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays.
Power LJ, Fasolato C, Barbero A, Wendt DJ, Wixmerten A, Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
, & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays.
Pigeot S., Bourgine PE, Claude J., Scotti C, Papadimitropoulos A, Todorov A., Epple C., Peretti G.M., & International Journal of Molecular Sciences, 21(19), 1–14. https://doi.org/10.3390/ijms21197233
. (2020). Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage.
Pigeot S., Bourgine PE, Claude J., Scotti C, Papadimitropoulos A, Todorov A., Epple C., Peretti G.M., & International Journal of Molecular Sciences, 21(19), 1–14. https://doi.org/10.3390/ijms21197233
. (2020). Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage.
Ziadlou R, Barbero A, Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
, Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes.
Ziadlou R, Barbero A, Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
, Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes.
Mumme M, Wixmerten A, & Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032 (Patent No. 21–22). 150(21-22), Article 21–22. https://doi.org/10.4414/smw.2020.20240
. (2020).
Mumme M, Wixmerten A, & Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032 (Patent No. 21–22). 150(21-22), Article 21–22. https://doi.org/10.4414/smw.2020.20240
. (2020).
Chabannon C, Ciccocioppo R, & Welcome to ISCT 2020 Paris Virtual (Patent No. 5). 22(5), Article 5. https://doi.org/10.1016/j.jcyt.2020.04.096
. (2020).
Chabannon C, Ciccocioppo R, & Welcome to ISCT 2020 Paris Virtual (Patent No. 5). 22(5), Article 5. https://doi.org/10.1016/j.jcyt.2020.04.096
. (2020).
Asnaghi M.A., Power L., Barbero A, Haug M, Koppl R., Wendt D, & Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
(2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage.
Asnaghi M.A., Power L., Barbero A, Haug M, Koppl R., Wendt D, & Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
(2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage.
Horton ER, Vallmajo-Martin Q, Advanced Healthcare Materials, 9(7), e1901669. https://doi.org/10.1002/adhm.201901669
, Snedeker JG, Ehrbar M, & Blache U. (2020). Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2.
Horton ER, Vallmajo-Martin Q, Advanced Healthcare Materials, 9(7), e1901669. https://doi.org/10.1002/adhm.201901669
, Snedeker JG, Ehrbar M, & Blache U. (2020). Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2.
Pagella P, Miran S, Neto E, FASEB Journal, 34(4), 5499–5511. https://doi.org/10.1096/fj.201902482R
, Lamghari M, & Mitsiadis TA. (2020). Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth.
Pagella P, Miran S, Neto E, FASEB Journal, 34(4), 5499–5511. https://doi.org/10.1096/fj.201902482R
, Lamghari M, & Mitsiadis TA. (2020). Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth.
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
, & Scherberich A. (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
, & Scherberich A. (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/CH-199236
, & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts.
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/CH-199236
, & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts.
Mumme, Marcus, Wixmerten, Anke, Steinwachs, Matthias, & Arthroskopie, 33, 89–93. https://doi.org/10.1007/s00142-020-00346-6
. (2020). Expanded cells, bone marrow, adipose tissue: what is (not) allowed in Switzerland: Focus: cartilage regeneration and arthrosis.
Mumme, Marcus, Wixmerten, Anke, Steinwachs, Matthias, & Arthroskopie, 33, 89–93. https://doi.org/10.1007/s00142-020-00346-6
. (2020). Expanded cells, bone marrow, adipose tissue: what is (not) allowed in Switzerland: Focus: cartilage regeneration and arthrosis.
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
, & Scherberich A. (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
, & Scherberich A. (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.
Ziadlou R, Barbero A, Stoddart MJ, Wirth M, Li Z, International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
, Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules.
Ziadlou R, Barbero A, Stoddart MJ, Wirth M, Li Z, International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
, Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules.
Vukasovic A, Asnaghi MA, Kostesic P, Quasnichka H, Cozzolino C, Pusic M, Hails L, Trainor N, Krause C, Figallo E, Filardo G, Kon E, Wixmerten A, Maticic D, Pellegrini G, Kafienah W, Hudetz D, Smith T, Cell Proliferation, 52(6), e12653. https://doi.org/10.1111/cpr.12653
, et al. (2019). Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies.
Vukasovic A, Asnaghi MA, Kostesic P, Quasnichka H, Cozzolino C, Pusic M, Hails L, Trainor N, Krause C, Figallo E, Filardo G, Kon E, Wixmerten A, Maticic D, Pellegrini G, Kafienah W, Hudetz D, Smith T, Cell Proliferation, 52(6), e12653. https://doi.org/10.1111/cpr.12653
, et al. (2019). Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies.
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/sap.0000000000001857
, Scherberich A, & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution.
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/sap.0000000000001857
, Scherberich A, & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution.
Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002
, Nolta J, Phinney DG, & Sensebe L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.
Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002
, Nolta J, Phinney DG, & Sensebe L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.
Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, iScience, 19, 504–513. https://doi.org/10.1016/j.isci.2019.08.006
, & Schroeder T. (2019). Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs.
Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, iScience, 19, 504–513. https://doi.org/10.1016/j.isci.2019.08.006
, & Schroeder T. (2019). Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs.
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
, Barbero, Andrea, & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article].
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
, Barbero, Andrea, & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article].
Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., Experimental Hematology, 72, 72. https://doi.org/10.1016/j.exphem.2019.01.007
, Manz M.G., & Takizawa H. (2019). Erratum to “Engineered humanized bone organs maintain human hematopoiesis in vivo”: (Experimental Hematology (2018) 61 (45–51.e5), (S0301472X18300389), (10.1016/j.exphem.2018.01.004)).
Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., Experimental Hematology, 72, 72. https://doi.org/10.1016/j.exphem.2019.01.007
, Manz M.G., & Takizawa H. (2019). Erratum to “Engineered humanized bone organs maintain human hematopoiesis in vivo”: (Experimental Hematology (2018) 61 (45–51.e5), (S0301472X18300389), (10.1016/j.exphem.2018.01.004)).
Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Advanced Biosystems, 3(4), e1800300. https://doi.org/10.1002/adbi.201800300
, & Iezzi G. (2019). Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System.
Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Advanced Biosystems, 3(4), e1800300. https://doi.org/10.1002/adbi.201800300
, & Iezzi G. (2019). Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System.
Mumme M, Wixmerten A, Miot S., Barbero A., Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, & Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
(2019). Tissue engineering for paediatric patients.
Mumme M, Wixmerten A, Miot S., Barbero A., Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, & Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
(2019). Tissue engineering for paediatric patients.
Epple C, Haumer A, Ismail T, Lunger A, Scherberich A, Schaefer DJ, & Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
. (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction.
Epple C, Haumer A, Ismail T, Lunger A, Scherberich A, Schaefer DJ, & Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
. (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction.
Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A., & Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
(2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.
Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A., & Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
(2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.
Blache U, Horton ER, Xia T, Schoof EM, Blicher LH, Schönenberger A, Snedeker JG, Life Science Alliance, 2(3). https://doi.org/10.26508/lsa.201900304
, Erler JT, & Ehrbar M. (2019). Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments.
Blache U, Horton ER, Xia T, Schoof EM, Blicher LH, Schönenberger A, Snedeker JG, Life Science Alliance, 2(3). https://doi.org/10.26508/lsa.201900304
, Erler JT, & Ehrbar M. (2019). Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments.
García-García, Andrés, & Frontiers in Immunology, 10, 2256. https://doi.org/10.3389/fimmu.2019.02256
. (2019). Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing.
García-García, Andrés, & Frontiers in Immunology, 10, 2256. https://doi.org/10.3389/fimmu.2019.02256
. (2019). Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing.
Gay M.H.P., Mehrkens A, Rittmann M., Haug M, Barbero A., European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ecm.v037a13
, & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc.
Gay M.H.P., Mehrkens A, Rittmann M., Haug M, Barbero A., European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ecm.v037a13
, & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc.
Science Translational Medicine, 11(480). https://doi.org/10.1126/scitranslmed.aat2189
, Galipeau J., Kessler C., Blanc K.L., & Dazzi F. (2019). Challenges for mesenchymal stromal cell therapies.
Science Translational Medicine, 11(480). https://doi.org/10.1126/scitranslmed.aat2189
, Galipeau J., Kessler C., Blanc K.L., & Dazzi F. (2019). Challenges for mesenchymal stromal cell therapies.
Current opinion in organ transplantation, 24(5), 562–567. https://doi.org/10.1097/mot.0000000000000679
, Malda, Jos, & Rivron, Nicolas C. (2019). Organs by design: can bioprinting meet self-organisation?
Current opinion in organ transplantation, 24(5), 562–567. https://doi.org/10.1097/mot.0000000000000679
, Malda, Jos, & Rivron, Nicolas C. (2019). Organs by design: can bioprinting meet self-organisation?
Power, Laura, Wixmerten, Anke, Wendt, David, Barbero, Andrea, & Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. 10881. https://doi.org/10.1117/12.2507951
. (2019).
Power, Laura, Wixmerten, Anke, Wendt, David, Barbero, Andrea, & Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. 10881. https://doi.org/10.1117/12.2507951
. (2019).
59. Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Martin I, & Advanced Biosystems, 3(4), e1800300.
. (2019). Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system.
59. Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Martin I, & Advanced Biosystems, 3(4), e1800300.
. (2019). Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system.
Wixmerten, Anke, Miot, Sylvie, & Encyclopedia of Tissue Engineering and Regenerative Medicine (Vol. 1, pp. 57–70). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.11119-5
. (2019). Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs). In Reis, Rui (ed.),
Wixmerten, Anke, Miot, Sylvie, & Encyclopedia of Tissue Engineering and Regenerative Medicine (Vol. 1, pp. 57–70). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.11119-5
. (2019). Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs). In Reis, Rui (ed.),
Devaud YR, Avilla-Royo E, Trachsel C, Grossmann J, Advanced healthcare materials, 7(21), e1800534. https://doi.org/10.1002/adhm.201800534
, Lutolf MP, & Ehrbar M. (2018). Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels.
Devaud YR, Avilla-Royo E, Trachsel C, Grossmann J, Advanced healthcare materials, 7(21), e1800534. https://doi.org/10.1002/adhm.201800534
, Lutolf MP, & Ehrbar M. (2018). Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels.
Piuzzi NS, Dominici M, Long M, Pascual-Garrido C, Rodeo S, Huard J, Guicheux J, McFarland R, Goodrich LR, Maddens S, Robey PG, Bauer TW, Barrett J, Barry F, Karli D, Chu CR, Weiss DJ, Cytotherapy, 20(11), 1381–1400. https://doi.org/10.1016/j.jcyt.2018.09.001
, Jorgensen C, & Muschler GF. (2018). Proceedings of the signature series symposium “cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies-promise, facts and fantasy,” international society for cellular therapies, montreal, canada, may 2, 2018.
Piuzzi NS, Dominici M, Long M, Pascual-Garrido C, Rodeo S, Huard J, Guicheux J, McFarland R, Goodrich LR, Maddens S, Robey PG, Bauer TW, Barrett J, Barry F, Karli D, Chu CR, Weiss DJ, Cytotherapy, 20(11), 1381–1400. https://doi.org/10.1016/j.jcyt.2018.09.001
, Jorgensen C, & Muschler GF. (2018). Proceedings of the signature series symposium “cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies-promise, facts and fantasy,” international society for cellular therapies, montreal, canada, may 2, 2018.
Gullotta F., Izzo D., Scalera F., Palazzo B., Journal of the Mechanical Behavior of Biomedical Materials, 86, 294–304. https://doi.org/10.1016/j.jmbbm.2018.06.040
, Sannino A., & Gervaso F. (2018). Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration.
Gullotta F., Izzo D., Scalera F., Palazzo B., Journal of the Mechanical Behavior of Biomedical Materials, 86, 294–304. https://doi.org/10.1016/j.jmbbm.2018.06.040
, Sannino A., & Gervaso F. (2018). Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration.
Guerrero J, Pigeot S, Müller J, Schaefer DJ, Acta biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
, & Scherberich A. (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
Guerrero J, Pigeot S, Müller J, Schaefer DJ, Acta biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
, & Scherberich A. (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
Lee JY, Matthias N, Pothiawala A, Ang BK, Lee M, Li J, Sun D, Pigeot S, Stem cell reports, 11(2), 440–453. https://doi.org/10.1016/j.stemcr.2018.06.021
, Huard J, Huang Y, & Nakayama N. (2018). Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage.
Lee JY, Matthias N, Pothiawala A, Ang BK, Lee M, Li J, Sun D, Pigeot S, Stem cell reports, 11(2), 440–453. https://doi.org/10.1016/j.stemcr.2018.06.021
, Huard J, Huang Y, & Nakayama N. (2018). Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage.
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
, , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate.
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
, , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate.
Sarem M., Heizmann M., Barbero A., Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
, & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R.
Sarem M., Heizmann M., Barbero A., Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
, & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R.
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
, Knuesel I., & Scherberich A. (2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis.
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
, Knuesel I., & Scherberich A. (2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis.
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, & Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
. (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, & Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
. (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.
Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L, Kokkaliaris KD, Coutu DL, Lengerke C, Skoda R, Schroeder T, & Proceedings of the National Academy of Sciences of the United States of America, 115(25), E5688–E5695. https://doi.org/10.1073/pnas.1805440115
. (2018). In vitro biomimetic engineering of a human hematopoietic niche with functional properties.
Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L, Kokkaliaris KD, Coutu DL, Lengerke C, Skoda R, Schroeder T, & Proceedings of the National Academy of Sciences of the United States of America, 115(25), E5688–E5695. https://doi.org/10.1073/pnas.1805440115
. (2018). In vitro biomimetic engineering of a human hematopoietic niche with functional properties.
Asnaghi MA, Duhr R, Quasnichka H, Hollander AP, Kafienah W, Journal of tissue engineering and regenerative medicine, 12(6), 1402–1411. https://doi.org/10.1002/term.2671
, & Wendt D. (2018). Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid.
Asnaghi MA, Duhr R, Quasnichka H, Hollander AP, Kafienah W, Journal of tissue engineering and regenerative medicine, 12(6), 1402–1411. https://doi.org/10.1002/term.2671
, & Wendt D. (2018). Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid.
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, Acta biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
, & Scherberich A. (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, Acta biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
, & Scherberich A. (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.
Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., Experimental Hematology, 61, 45–51. https://doi.org/10.1016/j.exphem.2018.01.004
, Manz M.G., & Takizawa H. (2018). Engineered humanized bone organs maintain human hematopoiesis in vivo.
Fritsch K., Pigeot S., Feng X., Bourgine P.E., Schroeder T., Experimental Hematology, 61, 45–51. https://doi.org/10.1016/j.exphem.2018.01.004
, Manz M.G., & Takizawa H. (2018). Engineered humanized bone organs maintain human hematopoiesis in vivo.
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., Barbero A., & Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
(2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., Barbero A., & Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
(2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.
Haumer A., Bourgine P.E., Occhetta P., Born G., Tasso R., & Advanced Drug Delivery Reviews, 129, 285–294. https://doi.org/10.1016/j.addr.2018.01.010
(2018). Delivery of cellular factors to regulate bone healing.
Haumer A., Bourgine P.E., Occhetta P., Born G., Tasso R., & Advanced Drug Delivery Reviews, 129, 285–294. https://doi.org/10.1016/j.addr.2018.01.010
(2018). Delivery of cellular factors to regulate bone healing.
Menzi N, Osinga R, Todorov A, Schaefer DJ, Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
, & Scherberich A. (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.
Menzi N, Osinga R, Todorov A, Schaefer DJ, Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
, & Scherberich A. (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.
Loeffler D., Wang W., Hopf A., Hilsenbeck O., Bourgine P.E., Rudolf F., Blood, 131(13), 1425–1429. https://doi.org/10.1182/blood-2017-07-794131
, & Schroeder T. (2018). Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating.
Loeffler D., Wang W., Hopf A., Hilsenbeck O., Bourgine P.E., Rudolf F., Blood, 131(13), 1425–1429. https://doi.org/10.1182/blood-2017-07-794131
, & Schroeder T. (2018). Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating.
Sarem M., Arya N., Heizmann M., Neffe A.T., Barbero A., Gebauer T.P., Acta Biomaterialia, 69, 83–94. https://doi.org/10.1016/j.actbio.2018.01.025
, Lendlein A., & Shastri V.P. (2018). Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.
Sarem M., Arya N., Heizmann M., Neffe A.T., Barbero A., Gebauer T.P., Acta Biomaterialia, 69, 83–94. https://doi.org/10.1016/j.actbio.2018.01.025
, Lendlein A., & Shastri V.P. (2018). Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.
Bourgine PE, Cell stem cell, 22(3), 298–301. https://doi.org/10.1016/j.stem.2018.01.002
, & Schroeder T. (2018). Engineering Human Bone Marrow Proxies.
Bourgine PE, Cell stem cell, 22(3), 298–301. https://doi.org/10.1016/j.stem.2018.01.002
, & Schroeder T. (2018). Engineering Human Bone Marrow Proxies.
From Tissue Engineering to Regenerative Surgery. 28, 11–12. https://doi.org/10.1016/j.ebiom.2018.01.029
, Jakob M, & Schaefer DJ. (2018).
From Tissue Engineering to Regenerative Surgery. 28, 11–12. https://doi.org/10.1016/j.ebiom.2018.01.029
, Jakob M, & Schaefer DJ. (2018).
Fennema E.M., Tchang L.A.H., Yuan H., van Blitterswijk C.A., Journal of Tissue Engineering and Regenerative Medicine, 12(1), e150–e158. https://doi.org/10.1002/term.2453
, Scherberich A., & de Boer J. (2018). Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study.
Fennema E.M., Tchang L.A.H., Yuan H., van Blitterswijk C.A., Journal of Tissue Engineering and Regenerative Medicine, 12(1), e150–e158. https://doi.org/10.1002/term.2453
, Scherberich A., & de Boer J. (2018). Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study.