UNIverse - Public Research Portal
Profile Photo

Prof. Dr. Ernst Meyer

Department of Physics
Profiles & Affiliations

Projects & Collaborations

69 found
Show per page
Project cover

Optical beam-deflection atomic force microscopy system at low temperature

Research Project  | 2 Project Members

This project aims to develop an advanced optical beam-deflection atomic force microscope (AFM) integrated in a low-temperature cryostat and an ultra-high vacuum system. The system will enable precise study of individual molecules and complex 2D molecular systems. The cryostat, optimized for low helium consumption and long hold times, will support extended experiments, while the vacuum environment will allow in-situ preparation of samples through methods like thermal evaporation and electrospray deposition. The AFM, built at the University of Basel, will include a preamplifier to extend bandwidth and enable faster data acquisition, supporting advanced AFM modes such as multimode AFM. The system will also feature precise positioning of the AFM probe on 2D materials and quantum dot devices, using optical microscopy and large-area scanning. Controlled electrostatic potentials and back-gate voltages will allow for quantum dot confinement and charge density manipulation, facilitating experiments like 2D or 3D force spectroscopy. Molecules will be studied at submolecular resolution, allowing for manipulation and measurement of lateral forces. Examples include investigating molecular knots and nanographene, with a focus on processes like dehydrogenation. Frictional forces on different substrates will also be explored. Finally, high-resolution AFM and Kelvin probe force microscopy (KPFM) will be used to map charge distributions in electron donor-acceptor systems, including those in excited states, offering new insights into molecular interactions and dynamics.

Project cover

NCCR SPIN Spin Qubits in Silicon

Research Project  | 11 Project Members

The main objective of NCCR SPIN is to develop reliable, fast, compact, scalable spin qubits in silicon and germanium. The vision is to control single spins with electrical means. Fast control of individual spins can be achieved with electrical pulses via a spin-orbit interaction. The spin-orbit interaction is either inherent (hole spin) or synthetic (electron spin in a magnetic field gradient). It also allows neighbouring spins to be coupled together electrically via superconducting resonators or floating gates. The specific aim of the first phase of the project is to develop the silicon spin qubits and spin-spin coupling strategies. Beyond fundamental research on the qubits and their architecture, there are further research efforts in many related areas of quantum computing, such as quantum error correction, quantum information, quantum algorithms and software, qubit control electronics and cryo-MOS, NISQ applications and algorithms. The long term goal is fault-tolerant universal quantum computing with a large number of logical qubits. The NCCR SPIN team consists of researchers from the University of Basel , IBM Research - Zurich , ETH Zurich , and EPF Lausanne . The team members are experts from various disciplines, such as quantum physics, materials science, engineering and computer science. In addition to the collaboration between academia and industry, the NCCR SPIN is characterized by very close links between theory and experiment as well as physics, materials science and engineering. The home institution is the University of Basel .