Publications
69 found
Show per page
Kapinos, Larisa E., Kalita, Joanna, Kassianidou, Elena, Rencurel, Chantal, & Journal of Cell Biology, 223(2). https://doi.org/10.1083/jcb.202306094
(2024). Mechanism of exportin retention in the cell nucleus [Journal-article].
Kapinos, Larisa E., Kalita, Joanna, Kassianidou, Elena, Rencurel, Chantal, & Journal of Cell Biology, 223(2). https://doi.org/10.1083/jcb.202306094
(2024). Mechanism of exportin retention in the cell nucleus [Journal-article].
Svirelis, Justas, Adali, Zeynep, Emilsson, Gustav, Medin, Jesper, Andersson, John, Vattikunta, Radhika, Hulander, Mats, Järlebark, Julia, Kolman, Krzysztof, Olsson, Oliver, Sakiyama, Yusuke, Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-40889-4
, & Dahlin, Andreas. (2023). Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates [Journal-article].
Svirelis, Justas, Adali, Zeynep, Emilsson, Gustav, Medin, Jesper, Andersson, John, Vattikunta, Radhika, Hulander, Mats, Järlebark, Julia, Kolman, Krzysztof, Olsson, Oliver, Sakiyama, Yusuke, Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-40889-4
, & Dahlin, Andreas. (2023). Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates [Journal-article].
Diez, Lisa, Kapinos, Larisa E., Protein Aggregation (pp. 95–109). Springer. https://doi.org/10.1007/978-1-0716-2597-2_8
, & Wegmann, Susanne. (2023). Analysis of Tau/Nucleoporin Interactions by Surface Plasmon Resonance Spectroscopy. In Cieplak, Andrzej Stanisław (Ed.),
Diez, Lisa, Kapinos, Larisa E., Protein Aggregation (pp. 95–109). Springer. https://doi.org/10.1007/978-1-0716-2597-2_8
, & Wegmann, Susanne. (2023). Analysis of Tau/Nucleoporin Interactions by Surface Plasmon Resonance Spectroscopy. In Cieplak, Andrzej Stanisław (Ed.),
Kapinos, Larisa E., & The Nuclear Pore Complex (Vol. 2502, pp. 311–328). Springer. https://doi.org/10.1007/978-1-0716-2337-4_21
(2023). Multivalent Interactions with Intrinsically Disordered Proteins Probed by Surface Plasmon Resonance. In Goldberg, Martin W. (Ed.),
Kapinos, Larisa E., & The Nuclear Pore Complex (Vol. 2502, pp. 311–328). Springer. https://doi.org/10.1007/978-1-0716-2337-4_21
(2023). Multivalent Interactions with Intrinsically Disordered Proteins Probed by Surface Plasmon Resonance. In Goldberg, Martin W. (Ed.),
Diez, Lisa, Kapinos, Larisa E., Hochmair, Janine, Huebschmann, Sabrina, Dominguez-Baquero, Alvaro, Vogt, Amelie, Rankovic, Marija, Zweckstetter, Markus, International Journal of Molecular Sciences, 23(7), 3495. https://doi.org/10.3390/ijms23073495
, & Wegmann, Susanne. (2022). Phosphorylation but Not Oligomerization Drives the Accumulation of Tau with Nucleoporin Nup98.
Diez, Lisa, Kapinos, Larisa E., Hochmair, Janine, Huebschmann, Sabrina, Dominguez-Baquero, Alvaro, Vogt, Amelie, Rankovic, Marija, Zweckstetter, Markus, International Journal of Molecular Sciences, 23(7), 3495. https://doi.org/10.3390/ijms23073495
, & Wegmann, Susanne. (2022). Phosphorylation but Not Oligomerization Drives the Accumulation of Tau with Nucleoporin Nup98.
Kalita, Joanna, Kapinos, Larisa E., Zheng, Tiantian, Rencurel, Chantal, Zilman, Anton, & Journal of Cell Biology, 221(3), e202108107. https://doi.org/10.1083/jcb.202108107
(2022). Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage.
Kalita, Joanna, Kapinos, Larisa E., Zheng, Tiantian, Rencurel, Chantal, Zilman, Anton, & Journal of Cell Biology, 221(3), e202108107. https://doi.org/10.1083/jcb.202108107
(2022). Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage.
Tarvirdipour, Shabnam, Skowicki, Michal, Schoenenberger, Cora-Ann, Kapinos, Larisa E., Biomaterials Science, 10(15), 4309–4323. https://doi.org/10.1039/d2bm00826b
, Benenson, Yaakov, & Palivan, Cornelia G. (2022). A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides.
Tarvirdipour, Shabnam, Skowicki, Michal, Schoenenberger, Cora-Ann, Kapinos, Larisa E., Biomaterials Science, 10(15), 4309–4323. https://doi.org/10.1039/d2bm00826b
, Benenson, Yaakov, & Palivan, Cornelia G. (2022). A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides.
Hoogenboom, Bart W., Hough, Loren E., Lemke, Edward A., Physics Reports, 921, 1–53. https://doi.org/10.1016/j.physrep.2021.03.003
, Onck, Patrick R., & Zilman, Anton. (2021). Physics of the nuclear pore complex: Theory, modeling and experiment.
Hoogenboom, Bart W., Hough, Loren E., Lemke, Edward A., Physics Reports, 921, 1–53. https://doi.org/10.1016/j.physrep.2021.03.003
, Onck, Patrick R., & Zilman, Anton. (2021). Physics of the nuclear pore complex: Theory, modeling and experiment.
Kalita, Joanna, Kapinos, Larisa E., & Journal of Cell Science, 134(7), jcs240382. https://doi.org/10.1242/jcs.240382
(2021). On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions.
Kalita, Joanna, Kapinos, Larisa E., & Journal of Cell Science, 134(7), jcs240382. https://doi.org/10.1242/jcs.240382
(2021). On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions.
Sharma, Deepika, Particle & Particle Systems Characterization, 38(2), 2170003. https://doi.org/10.1002/ppsc.202170003
, Pfohl, Thomas, & Ekinci, Yasin. (2021). Optimization of Nanofluidic Devices for Geometry-Induced Electrostatic Trapping.
Sharma, Deepika, Particle & Particle Systems Characterization, 38(2), 2170003. https://doi.org/10.1002/ppsc.202170003
, Pfohl, Thomas, & Ekinci, Yasin. (2021). Optimization of Nanofluidic Devices for Geometry-Induced Electrostatic Trapping.
Sharma, Deepika, Microsystems & Nanoengineering, 7(1), 46. https://doi.org/10.1038/s41378-021-00273-y
, Pfohl, Thomas, & Ekinci, Yasin. (2021). Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping.
Sharma, Deepika, Microsystems & Nanoengineering, 7(1), 46. https://doi.org/10.1038/s41378-021-00273-y
, Pfohl, Thomas, & Ekinci, Yasin. (2021). Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping.
Avsar, Saziye Yorulmaz, Kapinos, Larisa E., Schoenenberger, Cora-Ann, Schertler, Gebhard F. X., Muhle, Jonas, Meger, Benoit, Physical Chemistry Chemical Physics, 22(41), 24086–24096. https://doi.org/10.1039/d0cp01464h
, Ostermaier, Martin K., Lesca, Elena, & Palivan, Cornelia G. (2020). Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding.
Avsar, Saziye Yorulmaz, Kapinos, Larisa E., Schoenenberger, Cora-Ann, Schertler, Gebhard F. X., Muhle, Jonas, Meger, Benoit, Physical Chemistry Chemical Physics, 22(41), 24086–24096. https://doi.org/10.1039/d0cp01464h
, Ostermaier, Martin K., Lesca, Elena, & Palivan, Cornelia G. (2020). Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding.
Barbato, Suncica, Kapinos, Larisa E., Rencurel, Chantal, & Journal of Cell Science, 133(3), aheadofrint. https://doi.org/10.1242/jcs.238121
(2020). Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability.
Barbato, Suncica, Kapinos, Larisa E., Rencurel, Chantal, & Journal of Cell Science, 133(3), aheadofrint. https://doi.org/10.1242/jcs.238121
(2020). Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability.
Santos, José Carlos, Boucher, Dave, Schneider, Larisa Kapinos, Demarco, Benjamin, Dilucca, Marisa, Shkarina, Kateryna, Heilig, Rosalie, Chen, Kaiwen W., Nature Communications, 11(1), 3276. https://doi.org/10.1038/s41467-020-16889-z
, & Broz, Petr. (2020). Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria.
Santos, José Carlos, Boucher, Dave, Schneider, Larisa Kapinos, Demarco, Benjamin, Dilucca, Marisa, Shkarina, Kateryna, Heilig, Rosalie, Chen, Kaiwen W., Nature Communications, 11(1), 3276. https://doi.org/10.1038/s41467-020-16889-z
, & Broz, Petr. (2020). Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria.
Zelmer, Christina, Zweifel, Ludovit P., Kapinos, Larisa E., Craciun, Ioana, Güven, Zekiye P., Palivan, Cornelia G., & Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2770–2778. https://doi.org/10.1073/pnas.1916395117
(2020). Organelle-specific targeting of polymersomes into the cell nucleus.
Zelmer, Christina, Zweifel, Ludovit P., Kapinos, Larisa E., Craciun, Ioana, Güven, Zekiye P., Palivan, Cornelia G., & Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2770–2778. https://doi.org/10.1073/pnas.1916395117
(2020). Organelle-specific targeting of polymersomes into the cell nucleus.
Kassianidou, Elena, Kalita, Joanna, & Experimental Cell Research, 377(1-2), 86–93. https://doi.org/10.1016/j.yexcr.2019.02.009
(2019). The role of nucleocytoplasmic transport in mechanotransduction.
Kassianidou, Elena, Kalita, Joanna, & Experimental Cell Research, 377(1-2), 86–93. https://doi.org/10.1016/j.yexcr.2019.02.009
(2019). The role of nucleocytoplasmic transport in mechanotransduction.
Panatala, Radhakrishnan, Barbato, Suncica, Kozai, Toshiya, Luo, Jinghui, Kapinos, Larisa E., & Biochemistry, 58(6), 484–488. https://doi.org/10.1021/acs.biochem.8b01179
(2019). Nuclear Pore Membrane Proteins Self-Assemble into Nanopores.
Panatala, Radhakrishnan, Barbato, Suncica, Kozai, Toshiya, Luo, Jinghui, Kapinos, Larisa E., & Biochemistry, 58(6), 484–488. https://doi.org/10.1021/acs.biochem.8b01179
(2019). Nuclear Pore Membrane Proteins Self-Assemble into Nanopores.
Eftekharzadeh, Bahareh, Daigle, J. Gavin, Kapinos, Larisa E., Coyne, Alyssa, Schiantarelli, Julia, Carlomagno, Yari, Cook, Casey, Miller, Sean J., Dujardin, Simon, Amaral, Ana S., Grima, Jonathan C., Bennet, Rachel E., Tepper, Katharina, DeTure, Michael, Vanderburgh, Charles R., Corjuc, Bianca T., Devos, Sarah L., Gonzalez, Jose Antonio, Chew, Jeannie, et al. (2018). Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease. Neuron, 99(5), 925–940. https://doi.org/10.1016/j.neuron.2018.07.039
Eftekharzadeh, Bahareh, Daigle, J. Gavin, Kapinos, Larisa E., Coyne, Alyssa, Schiantarelli, Julia, Carlomagno, Yari, Cook, Casey, Miller, Sean J., Dujardin, Simon, Amaral, Ana S., Grima, Jonathan C., Bennet, Rachel E., Tepper, Katharina, DeTure, Michael, Vanderburgh, Charles R., Corjuc, Bianca T., Devos, Sarah L., Gonzalez, Jose Antonio, Chew, Jeannie, et al. (2018). Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease. Neuron, 99(5), 925–940. https://doi.org/10.1016/j.neuron.2018.07.039
Emilsson, Gustav, Sakiyama, Yusuke, Malekian, Bita, Xiong, Kunli, Adali-Kaya, Zeynep, ACS Central Science, 4(8), 1007–1014. https://doi.org/10.1021/acscentsci.8b00268
, & Dahlin, Andreas B. (2018). Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition.
Emilsson, Gustav, Sakiyama, Yusuke, Malekian, Bita, Xiong, Kunli, Adali-Kaya, Zeynep, ACS Central Science, 4(8), 1007–1014. https://doi.org/10.1021/acscentsci.8b00268
, & Dahlin, Andreas B. (2018). Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition.
Emilsson, Gustav, Xiong, Kunli, Sakiyama, Yusuke, Malekian, Bita, Gagnér, Viktor Ahlberg, Schoch, Rafael L., Nanoscale, 10(10), 4663–4669. https://doi.org/10.1039/c7nr09432a
, & Dahlin, Andreas B. (2018). Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins.
Emilsson, Gustav, Xiong, Kunli, Sakiyama, Yusuke, Malekian, Bita, Gagnér, Viktor Ahlberg, Schoch, Rafael L., Nanoscale, 10(10), 4663–4669. https://doi.org/10.1039/c7nr09432a
, & Dahlin, Andreas B. (2018). Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins.
Ganier, Olivier, Schnerch, Dominik, Oertle, Philipp, The EMBO journal, e98576. https://doi.org/10.15252/embj.201798576
, Plodinec, Marija, & Nigg, Erich A. (2018). Structural centrosome aberrations promote non-cell-autonomous invasiveness.
Ganier, Olivier, Schnerch, Dominik, Oertle, Philipp, The EMBO journal, e98576. https://doi.org/10.15252/embj.201798576
, Plodinec, Marija, & Nigg, Erich A. (2018). Structural centrosome aberrations promote non-cell-autonomous invasiveness.
Malekian, Bita, Schoch, Rafael L., Robson, Timothy, Ferrand-Drake del Castillo, Gustav, Xiong, Kunli, Emilsson, Gustav, Kapinos, Larisa E., Frontiers in Chemistry, 6, 637. https://doi.org/10.3389/fchem.2018.00637
, & Dahlin, Andreas B. (2018). Detecting Selective Protein Binding inside Plasmonic Nanopores: Towards a Mimic of the Nuclear Pore Complex.
Malekian, Bita, Schoch, Rafael L., Robson, Timothy, Ferrand-Drake del Castillo, Gustav, Xiong, Kunli, Emilsson, Gustav, Kapinos, Larisa E., Frontiers in Chemistry, 6, 637. https://doi.org/10.3389/fchem.2018.00637
, & Dahlin, Andreas B. (2018). Detecting Selective Protein Binding inside Plasmonic Nanopores: Towards a Mimic of the Nuclear Pore Complex.
Zanetti-Dällenbach, Rosanna, Plodinec, Marija, Oertle, Philipp, Redling, Katharina, Obermann, Ellen C., BioMed Research International, 2018, 3840597. https://doi.org/10.1155/2018/3840597
, & Schoenenberger, Cora-Ann. (2018). Length Scale Matters: Real-Time Elastography versus Nanomechanical Profiling by Atomic Force Microscopy for the Diagnosis of Breast Lesions.
Zanetti-Dällenbach, Rosanna, Plodinec, Marija, Oertle, Philipp, Redling, Katharina, Obermann, Ellen C., BioMed Research International, 2018, 3840597. https://doi.org/10.1155/2018/3840597
, & Schoenenberger, Cora-Ann. (2018). Length Scale Matters: Real-Time Elastography versus Nanomechanical Profiling by Atomic Force Microscopy for the Diagnosis of Breast Lesions.
Benning, Friederike M. C., Sakiyama, Yusuke, Mazur, Adam, Bukhari, Habib S. T., ACS Nano, 11(11), 10852–10859. https://doi.org/10.1021/acsnano.7b04216
, & Maier, Timm. (2017). High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase.
Benning, Friederike M. C., Sakiyama, Yusuke, Mazur, Adam, Bukhari, Habib S. T., ACS Nano, 11(11), 10852–10859. https://doi.org/10.1021/acsnano.7b04216
, & Maier, Timm. (2017). High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase.
Emilsson, Gustav, Schoch, Rafael L., Oertle, Philipp, Xiong, Kunli, Applied Surface Science, 396, 384–392. https://doi.org/10.1016/j.apsusc.2016.10.165
, & Dahlin, Andreas B. (2017). Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes - evaluated with poly(N-isopropylacrylamide).
Emilsson, Gustav, Schoch, Rafael L., Oertle, Philipp, Xiong, Kunli, Applied Surface Science, 396, 384–392. https://doi.org/10.1016/j.apsusc.2016.10.165
, & Dahlin, Andreas B. (2017). Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes - evaluated with poly(N-isopropylacrylamide).
Kapinos, Larisa E., Huang, Binlu, Rencurel, Chantal, & Journal of Cell Biology, 216(11), 3609–3624. https://doi.org/10.1083/jcb.201702092
(2017). Karyopherins regulate nuclear pore complex barrier and transport function.
Kapinos, Larisa E., Huang, Binlu, Rencurel, Chantal, & Journal of Cell Biology, 216(11), 3609–3624. https://doi.org/10.1083/jcb.201702092
(2017). Karyopherins regulate nuclear pore complex barrier and transport function.
Luo, Wangxi, Ruba, Andrew, Takao, Daisuke, Zweifel, Ludovit P., Scientific Reports, 7(1), 15793. https://doi.org/10.1038/s41598-017-16103-z
, Verhey, Kristen J., & Yang, Weidong. (2017). Axonemal Lumen Dominates Cytosolic Protein Diffusion inside the Primary Cilium.
Luo, Wangxi, Ruba, Andrew, Takao, Daisuke, Zweifel, Ludovit P., Scientific Reports, 7(1), 15793. https://doi.org/10.1038/s41598-017-16103-z
, Verhey, Kristen J., & Yang, Weidong. (2017). Axonemal Lumen Dominates Cytosolic Protein Diffusion inside the Primary Cilium.
Sakiyama, Yusuke, Panatala, Radhakrishnan, & Seminars in Cell and Developmental Biology, 68, 27–33. https://doi.org/10.1016/j.semcdb.2017.05.021
(2017). Structural dynamics of the nuclear pore complex.
Sakiyama, Yusuke, Panatala, Radhakrishnan, & Seminars in Cell and Developmental Biology, 68, 27–33. https://doi.org/10.1016/j.semcdb.2017.05.021
(2017). Structural dynamics of the nuclear pore complex.
Schoch, Rafael L., Emilsson, Gustav, Dahlin, Andreas B., & Polymer, 132, 362–367. https://doi.org/10.1016/j.polymer.2017.10.063
(2017). Protein exclusion is preserved by temperature sensitive PEG brushes.
Schoch, Rafael L., Emilsson, Gustav, Dahlin, Andreas B., & Polymer, 132, 362–367. https://doi.org/10.1016/j.polymer.2017.10.063
(2017). Protein exclusion is preserved by temperature sensitive PEG brushes.
Sharma, Deepika, Gerspach, Michael Adrian, Pfohl, Thomas, Microelectronic Engineering, 175, 43–49. https://doi.org/10.1016/j.mee.2017.01.001
, & Ekinci, Yasin. (2017). Single positively charged particle trapping in nanofluidic systems.
Sharma, Deepika, Gerspach, Michael Adrian, Pfohl, Thomas, Microelectronic Engineering, 175, 43–49. https://doi.org/10.1016/j.mee.2017.01.001
, & Ekinci, Yasin. (2017). Single positively charged particle trapping in nanofluidic systems.
Sakiyama, Yusuke, Mazur, Adam, Kapinos, Larisa E., & Nature Nanotechnology, 11(8), 719–723. https://doi.org/10.1038/nnano.2016.62
(2016). Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy.
Sakiyama, Yusuke, Mazur, Adam, Kapinos, Larisa E., & Nature Nanotechnology, 11(8), 719–723. https://doi.org/10.1038/nnano.2016.62
(2016). Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy.
Vovk, Andrei, Gu, Chad, Opferman, Michael G, Kapinos, Larisa E, eLife, 5, e10785. https://doi.org/10.7554/elife.10785.001
, Coalson, Rob D, Jasnow, David, & Zilman, Anton. (2016). Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex.
Vovk, Andrei, Gu, Chad, Opferman, Michael G, Kapinos, Larisa E, eLife, 5, e10785. https://doi.org/10.7554/elife.10785.001
, Coalson, Rob D, Jasnow, David, & Zilman, Anton. (2016). Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex.
Vujica, Suncica, Zelmer, Christina, Panatala, Radhakrishnan, & Chimia, 70(6), 413–417. https://doi.org/10.2533/chimia.2016.413
. (2016). Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.
Vujica, Suncica, Zelmer, Christina, Panatala, Radhakrishnan, & Chimia, 70(6), 413–417. https://doi.org/10.2533/chimia.2016.413
. (2016). Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.
Zweifel, Ludovit P., Shorubalko, Ivan, & ACS nano, 10(2), 1918–1925. https://doi.org/10.1021/acsnano.5b05754
(2016). Helium scanning transmission ion microscopy and electrical characterization of glass nanocapillaries with reproducible tip geometries.
Zweifel, Ludovit P., Shorubalko, Ivan, & ACS nano, 10(2), 1918–1925. https://doi.org/10.1021/acsnano.5b05754
(2016). Helium scanning transmission ion microscopy and electrical characterization of glass nanocapillaries with reproducible tip geometries.
Emilsson, Gustav, Schoch, Rafael L, Feuz, Laurent, Höök, Fredrik, ACS Applied Materials & Interfaces, 7(14), 7505–7515. https://doi.org/10.1021/acsami.5b01590
, & Dahlin, Andreas B. (2015). Strongly Stretched Protein Resistant Poly(ethylene glycol) Brushes Prepared by Grafting-To.
Emilsson, Gustav, Schoch, Rafael L, Feuz, Laurent, Höök, Fredrik, ACS Applied Materials & Interfaces, 7(14), 7505–7515. https://doi.org/10.1021/acsami.5b01590
, & Dahlin, Andreas B. (2015). Strongly Stretched Protein Resistant Poly(ethylene glycol) Brushes Prepared by Grafting-To.
Nucleus (Austin, Tex.), 6(5), 366–372. https://doi.org/10.1080/19491034.2015.1090061
, Huang, Binlu, & Kapinos, Larisa E. (2015). How to operate a nuclear pore complex by Kap-centric control.
Nucleus (Austin, Tex.), 6(5), 366–372. https://doi.org/10.1080/19491034.2015.1090061
, Huang, Binlu, & Kapinos, Larisa E. (2015). How to operate a nuclear pore complex by Kap-centric control.
Plodinec, Marija, & Methods in Molecular Biology, 1293, 231–246. https://doi.org/10.1007/978-1-4939-2519-3_14
(2015). Nanomechanical characterization of living mammary tissues by atomic force microscopy.
Plodinec, Marija, & Methods in Molecular Biology, 1293, 231–246. https://doi.org/10.1007/978-1-4939-2519-3_14
(2015). Nanomechanical characterization of living mammary tissues by atomic force microscopy.
Wagner, Raphael S., Kapinos, Larisa E., Marshall, Neil J., Stewart, Murray, & Biophysical Journal, 108(4), 918–927. https://doi.org/10.1016/j.bpj.2014.12.041
(2015). Promiscuous Binding of Karyopherinβ1 Modulates FG Nucleoporin Barrier Function and Expedites NTF2 Transport Kinetics.
Wagner, Raphael S., Kapinos, Larisa E., Marshall, Neil J., Stewart, Murray, & Biophysical Journal, 108(4), 918–927. https://doi.org/10.1016/j.bpj.2014.12.041
(2015). Promiscuous Binding of Karyopherinβ1 Modulates FG Nucleoporin Barrier Function and Expedites NTF2 Transport Kinetics.
Fuxreiter, Monika, Toth-Petroczy, Agnes, Kraut, Daniel A., Matouschek, Andreas T., Chemical Reviews, 114(13), 6806–6843. https://doi.org/10.1021/cr4007329
, Xue, Bin, Kurgan, Lukasz, & Uversky, Vladimir N. (2014). Disordered Proteinaceous Machines.
Fuxreiter, Monika, Toth-Petroczy, Agnes, Kraut, Daniel A., Matouschek, Andreas T., Chemical Reviews, 114(13), 6806–6843. https://doi.org/10.1021/cr4007329
, Xue, Bin, Kurgan, Lukasz, & Uversky, Vladimir N. (2014). Disordered Proteinaceous Machines.
Kapinos, Larisa E., Schoch, Rafael L., Wagner, Raphael S., Schleicher, Kai D., & Biophysical Journal, 106(8), 1751–1762. https://doi.org/10.1016/j.bpj.2014.02.021
(2014). Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins.
Kapinos, Larisa E., Schoch, Rafael L., Wagner, Raphael S., Schleicher, Kai D., & Biophysical Journal, 106(8), 1751–1762. https://doi.org/10.1016/j.bpj.2014.02.021
(2014). Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins.
Schleicher, Kai D, Dettmer, Simon L, Kapinos, Larisa E, Pagliara, Stefano, Keyser, Ulrich F, Jeney, Sylvia, & Nature Nanotechnology, 9(7), 525–530. https://doi.org/10.1038/nnano.2014.103
. (2014). Selective transport control on molecular velcro made from intrinsically disordered proteins.
Schleicher, Kai D, Dettmer, Simon L, Kapinos, Larisa E, Pagliara, Stefano, Keyser, Ulrich F, Jeney, Sylvia, & Nature Nanotechnology, 9(7), 525–530. https://doi.org/10.1038/nnano.2014.103
. (2014). Selective transport control on molecular velcro made from intrinsically disordered proteins.
Halfter, Willi, Monnier, Christophe, Müller, David, Oertle, Philipp, Uechi, Guy, Balasubramani, Manimalha, Safi, Farhad, PLoS ONE, 8(7), e67660. https://doi.org/10.1371/journal.pone.0067660
, Loparic, Marko, & Henrich, Paul Bernhard. (2013). The Bi-Functional Organization of Human Basement Membranes.
Halfter, Willi, Monnier, Christophe, Müller, David, Oertle, Philipp, Uechi, Guy, Balasubramani, Manimalha, Safi, Farhad, PLoS ONE, 8(7), e67660. https://doi.org/10.1371/journal.pone.0067660
, Loparic, Marko, & Henrich, Paul Bernhard. (2013). The Bi-Functional Organization of Human Basement Membranes.
Schoch, Rafael L, & Langmuir, 29(12), 4068–4076. https://doi.org/10.1021/la3049289
. (2013). Non-interacting molecules as innate structural probes in surface plasmon resonance.
Schoch, Rafael L, & Langmuir, 29(12), 4068–4076. https://doi.org/10.1021/la3049289
. (2013). Non-interacting molecules as innate structural probes in surface plasmon resonance.
Henrich, Paul B., Monnier, Christophe A., Halfter, Willi, Haritoglou, Christos, Strauss, Rupert W., Investigative ophthalmology & visual science, 53(6), 2561–2570. https://doi.org/10.1167/iovs.11-8502
, & Loparic, Marko. (2012). Nanoscale topographic and biomechanical studies of the human internal limiting membrane.
Henrich, Paul B., Monnier, Christophe A., Halfter, Willi, Haritoglou, Christos, Strauss, Rupert W., Investigative ophthalmology & visual science, 53(6), 2561–2570. https://doi.org/10.1167/iovs.11-8502
, & Loparic, Marko. (2012). Nanoscale topographic and biomechanical studies of the human internal limiting membrane.
Journal of Structural Biology, 177(1), 1–2. https://doi.org/10.1016/j.jsb.2011.12.011
, & Herrmann, Harald. (2012). From structural architecture to cellular organization : celebrating the scientific contributions of Ueli Aebi on the occasion of his retirement.
Journal of Structural Biology, 177(1), 1–2. https://doi.org/10.1016/j.jsb.2011.12.011
, & Herrmann, Harald. (2012). From structural architecture to cellular organization : celebrating the scientific contributions of Ueli Aebi on the occasion of his retirement.
Plodinec, Marija, Loparic, Marko, Monnier, Christophe A, Obermann, Ellen C, Zanetti-Dallenbach, Rosanna, Oertle, Philipp, Hyotyla, Janne T, Aebi, Ueli, Bentires-Alj, Mohamed, Nature Nanotechnology, 7(11), 757–765. https://doi.org/10.1038/nnano.2012.167
, & Schoenenberger, Cora-Ann. (2012). The nanomechanical signature of breast cancer.
Plodinec, Marija, Loparic, Marko, Monnier, Christophe A, Obermann, Ellen C, Zanetti-Dallenbach, Rosanna, Oertle, Philipp, Hyotyla, Janne T, Aebi, Ueli, Bentires-Alj, Mohamed, Nature Nanotechnology, 7(11), 757–765. https://doi.org/10.1038/nnano.2012.167
, & Schoenenberger, Cora-Ann. (2012). The nanomechanical signature of breast cancer.
Schoch, Rafael L., Kapinos, Larisa E., & Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16911–16916. https://doi.org/10.1073/pnas.1208440109
(2012). Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes.
Schoch, Rafael L., Kapinos, Larisa E., & Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16911–16916. https://doi.org/10.1073/pnas.1208440109
(2012). Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes.
Hyotyla, J. T., & Supramolecular chemistry. From molecules to nanomaterials: Vol. Vol. 2: Techniques (pp. 659–668). Wiley-Blackwell. https://doi.org/10.1002/9780470661345.smc043
(2012). Atomic force microscopy. In
Hyotyla, J. T., & Supramolecular chemistry. From molecules to nanomaterials: Vol. Vol. 2: Techniques (pp. 659–668). Wiley-Blackwell. https://doi.org/10.1002/9780470661345.smc043
(2012). Atomic force microscopy. In
Hyotyla, Janne T, Deng, Jie, & ACS Nano, 5(6), 5180–5187. https://doi.org/10.1021/nn201327y
. (2011). Synthetic Protein Targeting by the Intrinsic Biorecognition Functionality of Poly(ethylene glycol) Using PEG Antibodies as Biohybrid Molecular Adaptors.
Hyotyla, Janne T, Deng, Jie, & ACS Nano, 5(6), 5180–5187. https://doi.org/10.1021/nn201327y
. (2011). Synthetic Protein Targeting by the Intrinsic Biorecognition Functionality of Poly(ethylene glycol) Using PEG Antibodies as Biohybrid Molecular Adaptors.
Kowalczyk, Stefan W, Kapinos, Larisa, Blosser, Timothy R, Magalhães, Tomás, van Nies, Pauline, Nature Nanotechnology, 6(7), 433–438. https://doi.org/10.1038/nnano.2011.88
, & Dekker, Cees. (2011). Single-molecule transport across an individual biomimetic nuclear pore complex.
Kowalczyk, Stefan W, Kapinos, Larisa, Blosser, Timothy R, Magalhães, Tomás, van Nies, Pauline, Nature Nanotechnology, 6(7), 433–438. https://doi.org/10.1038/nnano.2011.88
, & Dekker, Cees. (2011). Single-molecule transport across an individual biomimetic nuclear pore complex.
Backmann, Natalija, Kappeler, Natascha, Braun, Thomas, Huber, François, Lang, Hans-Peter, Gerber, Christoph, & Beilstein Journal of Nanotechnology, 1, 3–13. https://doi.org/10.3762/bjnano.1.2
(2010). Sensing surface PEGylation with microcantilevers.
Backmann, Natalija, Kappeler, Natascha, Braun, Thomas, Huber, François, Lang, Hans-Peter, Gerber, Christoph, & Beilstein Journal of Nanotechnology, 1, 3–13. https://doi.org/10.3762/bjnano.1.2
(2010). Sensing surface PEGylation with microcantilevers.
Peleg, O., & Biological Chemistry, 391(7), 719–730. https://doi.org/10.1515/bc.2010.092
(2010). Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex.
Peleg, O., & Biological Chemistry, 391(7), 719–730. https://doi.org/10.1515/bc.2010.092
(2010). Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex.
Elad, Nadav, Maimon, Tal, Frenkiel-Krispin, Daphna, Current Opinion in Structural Biology, 19(2), 226–232. https://doi.org/10.1016/j.sbi.2009.02.009
, & Medalia, Ohad. (2009). Structural analysis of the nuclear pore complex by integrated approaches.
Elad, Nadav, Maimon, Tal, Frenkiel-Krispin, Daphna, Current Opinion in Structural Biology, 19(2), 226–232. https://doi.org/10.1016/j.sbi.2009.02.009
, & Medalia, Ohad. (2009). Structural analysis of the nuclear pore complex by integrated approaches.
ACS Nano, 3(10), 2911–2918. https://doi.org/10.1021/nn900152m
, & Deng, Jie. (2009). Interaction forces and reversible collapse of a polymer brush-gated nanopore.
ACS Nano, 3(10), 2911–2918. https://doi.org/10.1021/nn900152m
, & Deng, Jie. (2009). Interaction forces and reversible collapse of a polymer brush-gated nanopore.
Histochemistry and Cell Biology, 129(2), 105–116. https://doi.org/10.1007/s00418-007-0371-x
, Aebi, Ueli, & Fahrenkrog, Birthe. (2008). Towards reconciling structure and function in the nuclear pore complex.
Histochemistry and Cell Biology, 129(2), 105–116. https://doi.org/10.1007/s00418-007-0371-x
, Aebi, Ueli, & Fahrenkrog, Birthe. (2008). Towards reconciling structure and function in the nuclear pore complex.
Structure: With Folding and Design, 15(8), 889–891. https://doi.org/10.1016/j.str.2007.07.005
. (2007). Gate-crashing the nuclear pore complex.
Structure: With Folding and Design, 15(8), 889–891. https://doi.org/10.1016/j.str.2007.07.005
. (2007). Gate-crashing the nuclear pore complex.
Science, 318(5850), 640–643. https://doi.org/10.1126/science.1145980
, Fahrenkrog, Birthe, Köser, Joachim, Schwarz-Herion, Kyrill, Deng, Jie, & Aebi, Ueli. (2007). Nanomechanical basis of selective gating by the nuclear pore complex.
Science, 318(5850), 640–643. https://doi.org/10.1126/science.1145980
, Fahrenkrog, Birthe, Köser, Joachim, Schwarz-Herion, Kyrill, Deng, Jie, & Aebi, Ueli. (2007). Nanomechanical basis of selective gating by the nuclear pore complex.
Journal of Structural Biology, 159(2), 277–289. https://doi.org/10.1016/j.jsb.2007.01.018
, Köser, Joachim, Huang, Ning-Ping, Schwarz-Herion, Kyrill, & Aebi, Ueli. (2007). Nanomechanical interactions of phenylalanine-glycine nucleoporins studied by single molecule force-volume spectroscopy.
Journal of Structural Biology, 159(2), 277–289. https://doi.org/10.1016/j.jsb.2007.01.018
, Köser, Joachim, Huang, Ning-Ping, Schwarz-Herion, Kyrill, & Aebi, Ueli. (2007). Nanomechanical interactions of phenylalanine-glycine nucleoporins studied by single molecule force-volume spectroscopy.
Chromosoma, 115(1), 15–26. https://doi.org/10.1007/s00412-005-0037-1
, Aebi, Ueli, & Stoffler, Daniel. (2006). From the trap to the basket : getting to the bottom of the nuclear pore complex.
Chromosoma, 115(1), 15–26. https://doi.org/10.1007/s00412-005-0037-1
, Aebi, Ueli, & Stoffler, Daniel. (2006). From the trap to the basket : getting to the bottom of the nuclear pore complex.
Current Opinion in Cell Biology, 18(3), 342–347. https://doi.org/10.1016/j.ceb.2006.03.006
, & Fahrenkrog, Birthe. (2006). The nuclear pore complex up close.
Current Opinion in Cell Biology, 18(3), 342–347. https://doi.org/10.1016/j.ceb.2006.03.006
, & Fahrenkrog, Birthe. (2006). The nuclear pore complex up close.
Proceedings of the National Academy of Sciences of the United States of America, 103(25), 9512–9517. https://doi.org/10.1073/pnas.0603521103
, Huang, Ning-Ping, Köser, Joachim, Deng, Jie, Lau, K. H. Aaron, Schwarz-Herion, Kyrill, Fahrenkrog, Birthe, & Aebi, Ueli. (2006). Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport.
Proceedings of the National Academy of Sciences of the United States of America, 103(25), 9512–9517. https://doi.org/10.1073/pnas.0603521103
, Huang, Ning-Ping, Köser, Joachim, Deng, Jie, Lau, K. H. Aaron, Schwarz-Herion, Kyrill, Fahrenkrog, Birthe, & Aebi, Ueli. (2006). Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport.
Structure: With Folding and Design, 13(12), 1741–1743. https://doi.org/10.1016/j.str.2005.11.002
, & Aebi, Ueli. (2005). In silico access to the nuclear pore complex.
Structure: With Folding and Design, 13(12), 1741–1743. https://doi.org/10.1016/j.str.2005.11.002
, & Aebi, Ueli. (2005). In silico access to the nuclear pore complex.
Langmuir, 20(12), 4916–4919. https://doi.org/10.1021/la036200g
, & O’Shea, S. J. (2004). Discrete solvation layering in confined binary liquids.
Langmuir, 20(12), 4916–4919. https://doi.org/10.1021/la036200g
, & O’Shea, S. J. (2004). Discrete solvation layering in confined binary liquids.
Langmuir, 18(16), 6116–6124. https://doi.org/10.1021/la011789+
, Li, S. F. Y., & O’Shea, S. J. (2002). Solvation forces using sample-modulation atomic force microscopy.
Langmuir, 18(16), 6116–6124. https://doi.org/10.1021/la011789+
, Li, S. F. Y., & O’Shea, S. J. (2002). Solvation forces using sample-modulation atomic force microscopy.
Physical Review Letters, 88(24), 246101. https://doi.org/10.1103/physrevlett.88.246101
, & O’Shea, S. J. (2002). Solvation forces in branched molecular liquids.
Physical Review Letters, 88(24), 246101. https://doi.org/10.1103/physrevlett.88.246101
, & O’Shea, S. J. (2002). Solvation forces in branched molecular liquids.
Loh, K. P., Xie, X. N., Surface Science, 505(1-3), 93–114. https://doi.org/10.1016/s0039-6028(02)01103-2
, Teo, E. J., Zheng, J. C., & Ando, T. (2002). Surface oxygenation studies on (100)-oriented diamond using an atom beam source and local anodic oxidation.
Loh, K. P., Xie, X. N., Surface Science, 505(1-3), 93–114. https://doi.org/10.1016/s0039-6028(02)01103-2
, Teo, E. J., Zheng, J. C., & Ando, T. (2002). Surface oxygenation studies on (100)-oriented diamond using an atom beam source and local anodic oxidation.
Tripathy, S., Chua, S. J., Ramam, A., Sia, E. K., Pan, J. S., Journal of Applied Physics, 91(5), 3398–3407. https://doi.org/10.1063/1.1446236
, Yu, G., & Shen, Z. X. (2002). Electronic and vibronic properties of Mg-doped GaN: The influence of etching and annealing.
Tripathy, S., Chua, S. J., Ramam, A., Sia, E. K., Pan, J. S., Journal of Applied Physics, 91(5), 3398–3407. https://doi.org/10.1063/1.1446236
, Yu, G., & Shen, Z. X. (2002). Electronic and vibronic properties of Mg-doped GaN: The influence of etching and annealing.
Xie, X. N., Diamond and Related Materials, 10(3-7), 1218–1223. https://doi.org/10.1016/s0925-9635(00)00398-8
, Li, J., Li, S. F. Y., & Loh, K. P. (2001). Atomic hydrogen beam etching of carbon superstructures on 6H-SiC(0001) studied by reflection high-energy electron diffraction.
Xie, X. N., Diamond and Related Materials, 10(3-7), 1218–1223. https://doi.org/10.1016/s0925-9635(00)00398-8
, Li, J., Li, S. F. Y., & Loh, K. P. (2001). Atomic hydrogen beam etching of carbon superstructures on 6H-SiC(0001) studied by reflection high-energy electron diffraction.
Langmuir, 16(17), 7023–7030. https://doi.org/10.1021/la000083x
, Li, J., Li, S. F. Y., Feng, Z., & Valiyaveettil, S. (2000). The formation of two-dimensional supramolecular chiral lamellae by diamide molecules at the solution/graphite interface: A scanning tunneling microscopy study.
Langmuir, 16(17), 7023–7030. https://doi.org/10.1021/la000083x
, Li, J., Li, S. F. Y., Feng, Z., & Valiyaveettil, S. (2000). The formation of two-dimensional supramolecular chiral lamellae by diamide molecules at the solution/graphite interface: A scanning tunneling microscopy study.