Publications
230 found
Show per page
Reimão-Pinto, Madalena M., Castillo-Hair, Sebastian M., Seelig, Georg, & (2025). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis. Developmental Cell, 60(10), 1498–1515. https://doi.org/10.1016/j.devcel.2024.12.038
Reimão-Pinto, Madalena M., Castillo-Hair, Sebastian M., Seelig, Georg, & (2025). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis. Developmental Cell, 60(10), 1498–1515. https://doi.org/10.1016/j.devcel.2024.12.038
McNamara, Harold M., Guyer, Alison M., Jia, Bill Z., Parot, Vicente J., Dobbs, Caleb D., , Cohen, Adam E., & Lord, Nathan D. (2025). Optogenetic control of Nodal signaling patterns. Development (Cambridge), 152(9). https://doi.org/10.1242/dev.204506
McNamara, Harold M., Guyer, Alison M., Jia, Bill Z., Parot, Vicente J., Dobbs, Caleb D., , Cohen, Adam E., & Lord, Nathan D. (2025). Optogenetic control of Nodal signaling patterns. Development (Cambridge), 152(9). https://doi.org/10.1242/dev.204506
Wang, Yiqun, Liu, Jialin, Du, Lucia Y., Wyss, Jannik L., Farrell, Jeffrey A., & (2025). Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish. Developmental Cell, 60(4), 581–598. https://doi.org/10.1016/j.devcel.2024.10.015
Wang, Yiqun, Liu, Jialin, Du, Lucia Y., Wyss, Jannik L., Farrell, Jeffrey A., & (2025). Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish. Developmental Cell, 60(4), 581–598. https://doi.org/10.1016/j.devcel.2024.10.015
Bayer, Emily A, Mango, Susan E, Hobert, Oliver, & . (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
Bayer, Emily A, Mango, Susan E, Hobert, Oliver, & . (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
Askary, Amjad, Chen, Wei, Choi, Junhong, Du, Lucia Y., Elowitz, Michael B., Gagnon, James A., , Seidel, Sophie, Shendure, Jay, Stadler, Tanja, & Tran, Martin. (2024). The lives of cells, recorded [Journal-article]. Nature Reviews Genetics. https://doi.org/10.1038/s41576-024-00788-w
Askary, Amjad, Chen, Wei, Choi, Junhong, Du, Lucia Y., Elowitz, Michael B., Gagnon, James A., , Seidel, Sophie, Shendure, Jay, Stadler, Tanja, & Tran, Martin. (2024). The lives of cells, recorded [Journal-article]. Nature Reviews Genetics. https://doi.org/10.1038/s41576-024-00788-w
Liu, Jialin, Castillo-Hair, Sebastian M., Du, Lucia Y., Wang, Yiqun, Carte, Adam N., Colomer-Rosell, Mariona, Yin, Christopher, Seelig, Georg, & (2024). Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609971
Liu, Jialin, Castillo-Hair, Sebastian M., Du, Lucia Y., Wang, Yiqun, Carte, Adam N., Colomer-Rosell, Mariona, Yin, Christopher, Seelig, Georg, & (2024). Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609971
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, Mango, Susan E., Yu, Guoqiang, Bintu, Bogdan, & (2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, Mango, Susan E., Yu, Guoqiang, Bintu, Bogdan, & (2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
Liberali, Prisca, & (2024). The evolution of developmental biology through conceptual and technological revolutions. Cell, 187(14), 3461–3495. https://doi.org/10.1016/j.cell.2024.05.053
Liberali, Prisca, & (2024). The evolution of developmental biology through conceptual and technological revolutions. Cell, 187(14), 3461–3495. https://doi.org/10.1016/j.cell.2024.05.053
Abitua, Philip B., Stump, Laura M., Aksel, Deniz C., & (2024). Axis formation in annual killifish: Nodal and ß-catenin regulate morphogenesis without Huluwa prepatterning. Science, 384(6700), 1105–1110. https://doi.org/10.1126/science.ado7604
Abitua, Philip B., Stump, Laura M., Aksel, Deniz C., & (2024). Axis formation in annual killifish: Nodal and ß-catenin regulate morphogenesis without Huluwa prepatterning. Science, 384(6700), 1105–1110. https://doi.org/10.1126/science.ado7604
Nichols, Annika L. A., Shafer, Maxwell E. R., Indermaur, Adrian, Rüegg, Attila, Gonzalez-Dominguez, Rita, Malinsky, Milan, Sommer-Trembo, Carolin, Fritschi, Laura, Salzburger, Walter, & (2024). Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.29.596472
Nichols, Annika L. A., Shafer, Maxwell E. R., Indermaur, Adrian, Rüegg, Attila, Gonzalez-Dominguez, Rita, Malinsky, Milan, Sommer-Trembo, Carolin, Fritschi, Laura, Salzburger, Walter, & (2024). Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.29.596472
McNamara, Harold M., Jia, Bill Z., Guyer, Alison, Parot, Vicente J., Dobbs, Caleb, , Cohen, Adam E., & Lord, Nathan D. (2024). Optogenetic control of Nodal signaling patterns. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.04.11.588875
McNamara, Harold M., Jia, Bill Z., Guyer, Alison, Parot, Vicente J., Dobbs, Caleb, , Cohen, Adam E., & Lord, Nathan D. (2024). Optogenetic control of Nodal signaling patterns. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.04.11.588875
Bitsikas, Vassilis, Cubizolles, Fabien, & (2024). A vertebrate family without a functional Hypocretin/Orexin arousal system. Current Biology, 34(7), 1532–1540. https://doi.org/10.1016/j.cub.2024.02.022
Bitsikas, Vassilis, Cubizolles, Fabien, & (2024). A vertebrate family without a functional Hypocretin/Orexin arousal system. Current Biology, 34(7), 1532–1540. https://doi.org/10.1016/j.cub.2024.02.022
Qiu, Chengxiang, Martin, Beth K., Welsh, Ian C., Daza, Riza M., Le, Truc-Mai, Huang, Xingfan, Nichols, Eva K., Taylor, Megan L., Fulton, Olivia, O’Day, Diana R., Gomes, Anne Roshella, Ilcisin, Saskia, Srivatsan, Sanjay, Deng, Xinxian, Disteche, Christine M., Noble, William Stafford, Hamazaki, Nobuhiko, Moens, Cecilia B., Kimelman, David, et al. (2024). A single-cell time-lapse of mouse prenatal development from gastrula to birth. Nature, 626(8001), 1084–1093. https://doi.org/10.1038/s41586-024-07069-w
Qiu, Chengxiang, Martin, Beth K., Welsh, Ian C., Daza, Riza M., Le, Truc-Mai, Huang, Xingfan, Nichols, Eva K., Taylor, Megan L., Fulton, Olivia, O’Day, Diana R., Gomes, Anne Roshella, Ilcisin, Saskia, Srivatsan, Sanjay, Deng, Xinxian, Disteche, Christine M., Noble, William Stafford, Hamazaki, Nobuhiko, Moens, Cecilia B., Kimelman, David, et al. (2024). A single-cell time-lapse of mouse prenatal development from gastrula to birth. Nature, 626(8001), 1084–1093. https://doi.org/10.1038/s41586-024-07069-w
Wang, Yiqun, Liu, Jialin, Du, Lucia Y, Wyss, Jannik L, Farrell, Jeffrey A, & . (2023). Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.29.573643
Wang, Yiqun, Liu, Jialin, Du, Lucia Y, Wyss, Jannik L, Farrell, Jeffrey A, & . (2023). Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.29.573643
Reimão-Pinto, M. M., Castillo-Hair, S. M., Seelig, G., & Schier, A. F. (2023). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.11.23.568470
Reimão-Pinto, M. M., Castillo-Hair, S. M., Seelig, G., & Schier, A. F. (2023). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.11.23.568470
Shafer, M. E. R., Nichols, A. L. A., Schier, A. F., & Salzburger, W. (2023). Frequent transitions from night-to-day activity after mass extinctions [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.10.27.564421
Shafer, M. E. R., Nichols, A. L. A., Schier, A. F., & Salzburger, W. (2023). Frequent transitions from night-to-day activity after mass extinctions [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.10.27.564421
Qiu, C., Martin, B. K., Welsh, I. C., Daza, R. M., Le, T.-M., Huang, X., Nichols, E. K., Taylor, M. L., Fulton, O., O’Day, D. R., Gomes, A. R., Ilcisin, S., Srivatsan, S., Deng, X., Disteche, C. M., Noble, W. S., Hamazaki, N., Moens, C. B., Kimelman, D., et al. (2023). A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.04.05.535726
Qiu, C., Martin, B. K., Welsh, I. C., Daza, R. M., Le, T.-M., Huang, X., Nichols, E. K., Taylor, M. L., Fulton, O., O’Day, D. R., Gomes, A. R., Ilcisin, S., Srivatsan, S., Deng, X., Disteche, C. M., Noble, W. S., Hamazaki, N., Moens, C. B., Kimelman, D., et al. (2023). A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.04.05.535726
P. Dingal, P. C. D., Carte, A. N., Montague, T. G., Lim Suan, M. B., & Schier, A. F. (2023). Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1 [Journal-article]. Proceedings of the National Academy of Sciences of the United States of America, 120(43). https://doi.org/10.1073/pnas.2307203120
P. Dingal, P. C. D., Carte, A. N., Montague, T. G., Lim Suan, M. B., & Schier, A. F. (2023). Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1 [Journal-article]. Proceedings of the National Academy of Sciences of the United States of America, 120(43). https://doi.org/10.1073/pnas.2307203120
Sfeir, Agnel, Fishell, Gord, , Dustin, Michael L., Gan, Wen-Biao, Joyner, Alexandra, Lehmann, Ruth, Ron, David, Roth, David, Talbot, William S., Yelon, Deborah, & Zychlinsky, Arturo. (2022). Basic science under threat: Lessons from the Skirball Institute. Cell, 185(5), 755–758. https://doi.org/10.1016/j.cell.2022.02.008
Sfeir, Agnel, Fishell, Gord, , Dustin, Michael L., Gan, Wen-Biao, Joyner, Alexandra, Lehmann, Ruth, Ron, David, Roth, David, Talbot, William S., Yelon, Deborah, & Zychlinsky, Arturo. (2022). Basic science under threat: Lessons from the Skirball Institute. Cell, 185(5), 755–758. https://doi.org/10.1016/j.cell.2022.02.008
Shafer, Maxwell Eric Robert, Sawh, Ahilya N., & (2022). Gene family evolution underlies cell type diversification in the hypothalamus of teleosts. Nature ecology & evolution, 6(1), 63–76. https://doi.org/10.1038/s41559-021-01580-3
Shafer, Maxwell Eric Robert, Sawh, Ahilya N., & (2022). Gene family evolution underlies cell type diversification in the hypothalamus of teleosts. Nature ecology & evolution, 6(1), 63–76. https://doi.org/10.1038/s41559-021-01580-3
Abitua, Philipp B., Aksel, Deniz C., & (2021). Axis formation in annual killifish: Nodal coordinates morphogenesis in absence of Huluwa prepatterning. bioRxiv. https://doi.org/10.1101/2021.04.16.440199
Abitua, Philipp B., Aksel, Deniz C., & (2021). Axis formation in annual killifish: Nodal coordinates morphogenesis in absence of Huluwa prepatterning. bioRxiv. https://doi.org/10.1101/2021.04.16.440199
Dingal, P. C. Dave P., Carte, Adam N., Montague, Tessa C., & (2021). Regulation of Vg1 biogenesis during mesendoderm induction. bioRxiv. https://doi.org/10.1101/2021.04.25.441333
Dingal, P. C. Dave P., Carte, Adam N., Montague, Tessa C., & (2021). Regulation of Vg1 biogenesis during mesendoderm induction. bioRxiv. https://doi.org/10.1101/2021.04.25.441333
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & (2021). The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife, 10, 54894. https://doi.org/10.7554/elife.54894
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & (2021). The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife, 10, 54894. https://doi.org/10.7554/elife.54894
Shafer, Maxwell E. R., Sawh, Ahilya N., & (2021). Gene family evolution underlies cell type diversification in the hypothalamus of teleosts. bioRxiv. https://doi.org/10.1101/2020.12.13.414557
Shafer, Maxwell E. R., Sawh, Ahilya N., & (2021). Gene family evolution underlies cell type diversification in the hypothalamus of teleosts. bioRxiv. https://doi.org/10.1101/2020.12.13.414557
Lin, Qian, Manley, Jason, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, , Nöbauer, Tobias, & Vaziri, Alipasha. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell, 180(3), 536–551. https://doi.org/10.1016/j.cell.2019.12.018
Lin, Qian, Manley, Jason, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, , Nöbauer, Tobias, & Vaziri, Alipasha. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell, 180(3), 536–551. https://doi.org/10.1016/j.cell.2019.12.018
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., , & Pan, Y. Albert. (2020). Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. Journal of Neuroscience, 40(1), 143–158. https://doi.org/10.1523/jneurosci.1783-19.2019
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., , & Pan, Y. Albert. (2020). Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. Journal of Neuroscience, 40(1), 143–158. https://doi.org/10.1523/jneurosci.1783-19.2019
Raj, Bushra, Farrell, Jeffrey A., Liu, Jialin, El Kholtei, Jakob, Carte, Adam N., Navajas Acedo, Joaquin, Du, Lucia Y., McKenna, Aaron, Relić, Đorđe, Leslie, Jessica M., & (2020). Emergence of Neuronal Diversity during Vertebrate Brain Development. Neuron, 108(6), 1058–1074. https://doi.org/10.1016/j.neuron.2020.09.023
Raj, Bushra, Farrell, Jeffrey A., Liu, Jialin, El Kholtei, Jakob, Carte, Adam N., Navajas Acedo, Joaquin, Du, Lucia Y., McKenna, Aaron, Relić, Đorđe, Leslie, Jessica M., & (2020). Emergence of Neuronal Diversity during Vertebrate Brain Development. Neuron, 108(6), 1058–1074. https://doi.org/10.1016/j.neuron.2020.09.023
(2020). Single-cell biology: beyond the sum of its parts. Nature Methods, 17(1), 17–20. https://doi.org/10.1038/s41592-019-0693-3
(2020). Single-cell biology: beyond the sum of its parts. Nature Methods, 17(1), 17–20. https://doi.org/10.1038/s41592-019-0693-3
Raj, Bushra, Farrell, Jeffrey A., McKenna, Aaron, Leslie, Jessica L., & (2019). Emergence of neuronal diversity during vertebrate brain development [Posted-content]. bioRxiv. https://doi.org/10.1101/839860
Raj, Bushra, Farrell, Jeffrey A., McKenna, Aaron, Leslie, Jessica L., & (2019). Emergence of neuronal diversity during vertebrate brain development [Posted-content]. bioRxiv. https://doi.org/10.1101/839860
Lin, Qian, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, , Nöbauer, Tobias, & Vaziri, Alipasha. (2019). Cerebellar neurodynamics during motor planning predict decision timing and outcome on single-trial level [Posted-content]. bioRxiv. https://doi.org/10.1101/833889
Lin, Qian, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, , Nöbauer, Tobias, & Vaziri, Alipasha. (2019). Cerebellar neurodynamics during motor planning predict decision timing and outcome on single-trial level [Posted-content]. bioRxiv. https://doi.org/10.1101/833889
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., , & Pan, Y. Albert. (2019). Zebrafish Dscaml1 is Essential for Retinal Patterning and Function of Oculomotor Subcircuits [Posted-content]. bioRxiv. https://doi.org/10.1101/658161
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., , & Pan, Y. Albert. (2019). Zebrafish Dscaml1 is Essential for Retinal Patterning and Function of Oculomotor Subcircuits [Posted-content]. bioRxiv. https://doi.org/10.1101/658161
Goudarzi, Mehdi, Berg, Kathryn, Pieper, Lindsey M., & (2019). Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility. eLife, 8, 8:e40815. https://doi.org/10.7554/elife.40815
Goudarzi, Mehdi, Berg, Kathryn, Pieper, Lindsey M., & (2019). Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility. eLife, 8, 8:e40815. https://doi.org/10.7554/elife.40815
Haesemeyer, Martin, , & Engert, Florian. (2019). Convergent Temperature Representations in Artificial and Biological Neural Networks. Neuron, 103(6), 1123–1134. https://doi.org/10.1016/j.neuron.2019.07.003
Haesemeyer, Martin, , & Engert, Florian. (2019). Convergent Temperature Representations in Artificial and Biological Neural Networks. Neuron, 103(6), 1123–1134. https://doi.org/10.1016/j.neuron.2019.07.003
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & (2019). The pattern of nodal morphogen signaling is shaped by co-receptor expression. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2019.12.30.891101
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & (2019). The pattern of nodal morphogen signaling is shaped by co-receptor expression. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2019.12.30.891101
Randlett, Owen, Haesemeyer, Martin, Forkin, Greg, Shoenhard, Hannah, , Engert, Florian, & Granato, Michael. (2019). Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Current Biology : CB, 29(8), 1337–1345. https://doi.org/10.1016/j.cub.2019.02.039
Randlett, Owen, Haesemeyer, Martin, Forkin, Greg, Shoenhard, Hannah, , Engert, Florian, & Granato, Michael. (2019). Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Current Biology : CB, 29(8), 1337–1345. https://doi.org/10.1016/j.cub.2019.02.039
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Herrera, Kristian J., Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & (2019). Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions. Cell, 177(2), 478–491. https://doi.org/10.1016/j.cell.2019.01.048
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Herrera, Kristian J., Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & (2019). Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions. Cell, 177(2), 478–491. https://doi.org/10.1016/j.cell.2019.01.048
Wee, Caroline L., Nikitchenko, Maxim, Wang, Wei-Chun, Luks-Morgan, Sasha J., Song, Erin, Gagnon, James A., Randlett, Owen, Bianco, Isaac H., Lacoste, Alix M. B., Glushenkova, Elena, Barrios, Joshua P., , Kunes, Samuel, Engert, Florian, & Douglass, Adam D. (2019). Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nature Neuroscience, 22(9), 1477–1492. https://doi.org/10.1038/s41593-019-0452-x
Wee, Caroline L., Nikitchenko, Maxim, Wang, Wei-Chun, Luks-Morgan, Sasha J., Song, Erin, Gagnon, James A., Randlett, Owen, Bianco, Isaac H., Lacoste, Alix M. B., Glushenkova, Elena, Barrios, Joshua P., , Kunes, Samuel, Engert, Florian, & Douglass, Adam D. (2019). Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nature Neuroscience, 22(9), 1477–1492. https://doi.org/10.1038/s41593-019-0452-x
Randlett, O., Haesemeyer, M., Forkin, G., Shoenhard, H., Schier, A. F., Engert, F., & Granato, M. (2018, September 14). Distributed plasticity drives visual habituation learning in larval zebrafish [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/418178
Randlett, O., Haesemeyer, M., Forkin, G., Shoenhard, H., Schier, A. F., Engert, F., & Granato, M. (2018, September 14). Distributed plasticity drives visual habituation learning in larval zebrafish [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/418178
Haesemeyer, M., Schier, A. F., & Engert, F. (2018, August 12). Convergent temperature representations in artificial and biological neural networks [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/390435
Haesemeyer, M., Schier, A. F., & Engert, F. (2018, August 12). Convergent temperature representations in artificial and biological neural networks [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/390435
Goudarzi, M., Berg, K., Pieper, L. M., & Schier, A. F. (2018, July 23). Long non-coding RNAs are largely dispensable for zebrafish embryogenesis, viability and fertility [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/374702
Goudarzi, M., Berg, K., Pieper, L. M., & Schier, A. F. (2018, July 23). Long non-coding RNAs are largely dispensable for zebrafish embryogenesis, viability and fertility [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/374702
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & (2018). Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/360677
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & (2018). Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/360677
Rabani, M., Pieper, L., Chew, G.-L., & Schier, A. F. (2018). Erratum: A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation (Molecular Cell (2017) 68(6) (1083–1094.e5) (S1097276517308730) (10.1016/j.molcel.2017.11.014)). Molecular Cell, 70(3). https://doi.org/10.1016/j.molcel.2018.04.013
Rabani, M., Pieper, L., Chew, G.-L., & Schier, A. F. (2018). Erratum: A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation (Molecular Cell (2017) 68(6) (1083–1094.e5) (S1097276517308730) (10.1016/j.molcel.2017.11.014)). Molecular Cell, 70(3). https://doi.org/10.1016/j.molcel.2018.04.013
Almuedo-Castillo, María, Bläßle, Alexander, Mörsdorf, David, Marcon, Luciano, Soh, Gary H., Rogers, Katherine W., , & Müller, Patrick. (2018). Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nature Cell Biology, 20(9), 1032–1042. https://doi.org/10.1038/s41556-018-0155-7
Almuedo-Castillo, María, Bläßle, Alexander, Mörsdorf, David, Marcon, Luciano, Soh, Gary H., Rogers, Katherine W., , & Müller, Patrick. (2018). Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nature Cell Biology, 20(9), 1032–1042. https://doi.org/10.1038/s41556-018-0155-7
Farrell, Jeffrey A., Wang, Yiqun, Riesenfeld, Samantha J., Shekhar, Karthik, Regev, Aviv, & (2018). Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science (New York, N.Y.), 360(6392), 979–+. https://doi.org/10.1126/science.aar3131
Farrell, Jeffrey A., Wang, Yiqun, Riesenfeld, Samantha J., Shekhar, Karthik, Regev, Aviv, & (2018). Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science (New York, N.Y.), 360(6392), 979–+. https://doi.org/10.1126/science.aar3131
Gagnon, James A., Obbad, Kamal, & (2018). The primary role of zebrafish nanog is in extra-embryonic tissue. Development (Cambridge, England), 145(1), 9. https://doi.org/10.1242/dev.147793
Gagnon, James A., Obbad, Kamal, & (2018). The primary role of zebrafish nanog is in extra-embryonic tissue. Development (Cambridge, England), 145(1), 9. https://doi.org/10.1242/dev.147793
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., , & Engert, Florian. (2018). A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Neuron, 98(4), 817–+. https://doi.org/10.1016/j.neuron.2018.04.013
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., , & Engert, Florian. (2018). A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Neuron, 98(4), 817–+. https://doi.org/10.1016/j.neuron.2018.04.013
Haesemeyer, M., Robson, D. N., Li, J. M., Schier, A. F., & Engert, F. (2018). A Brain Wide Circuit Model of Heat Evoked Swimming Behavior in Larval Zebrafish [Journal-article]. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3155628
Haesemeyer, M., Robson, D. N., Li, J. M., Schier, A. F., & Engert, F. (2018). A Brain Wide Circuit Model of Heat Evoked Swimming Behavior in Larval Zebrafish [Journal-article]. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3155628
Montague, Tessa G., Gagnon, James A., & (2018). Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development (Cambridge, England), 145(24), 9. https://doi.org/10.1242/dev.171090
Montague, Tessa G., Gagnon, James A., & (2018). Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development (Cambridge, England), 145(24), 9. https://doi.org/10.1242/dev.171090
Pandey, Shristi, Shekhar, Karthik, Regev, Aviv, & (2018). Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Current Biology : CB, 28(7), 1052–1065. https://doi.org/10.1016/j.cub.2018.02.040
Pandey, Shristi, Shekhar, Karthik, Regev, Aviv, & (2018). Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Current Biology : CB, 28(7), 1052–1065. https://doi.org/10.1016/j.cub.2018.02.040
Raj, Bushra, Gagnon, James A., & (2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nature Protocols, 13(11), 2685–2713. https://doi.org/10.1038/s41596-018-0058-x
Raj, Bushra, Gagnon, James A., & (2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nature Protocols, 13(11), 2685–2713. https://doi.org/10.1038/s41596-018-0058-x
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & (2018). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nature Biotechnology, 36(5), 442–450. https://doi.org/10.1038/nbt.4103
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & (2018). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nature Biotechnology, 36(5), 442–450. https://doi.org/10.1038/nbt.4103
Rogers, K. W., Lord, N. D., Gagnon, J. A., Pauli, A., Zimmerman, S., Aksel, D. C., Reyon, D., Tsai, S. Q., Joung, J. K., & Schier, A. F. (2017). Nodal patterning without lefty inhibitory feedback is functional but fragile. eLife, 6. https://doi.org/10.7554/elife.28785.001
Rogers, K. W., Lord, N. D., Gagnon, J. A., Pauli, A., Zimmerman, S., Aksel, D. C., Reyon, D., Tsai, S. Q., Joung, J. K., & Schier, A. F. (2017). Nodal patterning without lefty inhibitory feedback is functional but fragile. eLife, 6. https://doi.org/10.7554/elife.28785.001
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & (2017). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/205534
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & (2017). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/205534
Haesemeyer, Martin, Robson, Drew N, Li, Jennifer M, , & Engert, Florian. (2017). A brain wide circuit model of heat evoked swimming behavior in larval zebrafish [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/190447
Haesemeyer, Martin, Robson, Drew N, Li, Jennifer M, , & Engert, Florian. (2017). A brain wide circuit model of heat evoked swimming behavior in larval zebrafish [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/190447
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M.B., Greenwood, Joel S.F., Soucy, Edward, Engert, Florian, & (2017). Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/151548
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M.B., Greenwood, Joel S.F., Soucy, Edward, Engert, Florian, & (2017). Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/151548
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Champion, Andrew Scott, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alex, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, , et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/134882
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Champion, Andrew Scott, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alex, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, , et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/134882
Escamilla, Christine Ochoa, Filonova, Irina, Walker, Angela K., Xuan, Zhong X., Holehonnur, Roopashri, Espinosa, Felipe, Liu, Shunan, Thyme, Summer B., López-García, Isabel A., Mendoza, Dorian B., Usui, Noriyoshi, Ellegood, Jacob, Eisch, Amelia J., Konopka, Genevieve, Lerch, Jason P., , Speed, Haley E., & Powell, Craig M. (2017). Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature, 551(7679), 227–231. https://doi.org/10.1038/nature24470
Escamilla, Christine Ochoa, Filonova, Irina, Walker, Angela K., Xuan, Zhong X., Holehonnur, Roopashri, Espinosa, Felipe, Liu, Shunan, Thyme, Summer B., López-García, Isabel A., Mendoza, Dorian B., Usui, Noriyoshi, Ellegood, Jacob, Eisch, Amelia J., Konopka, Genevieve, Lerch, Jason P., , Speed, Haley E., & Powell, Craig M. (2017). Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature, 551(7679), 227–231. https://doi.org/10.1038/nature24470
Freyer, Laina, Hsu, Chih-Wei, Nowotschin, Sonja, Pauli, Andrea, Ishida, Junji, Kuba, Keiji, Fukamizu, Akiyoshi, , Hoodless, Pamela A., Dickinson, Mary E., & Hadjantonakis, Anna-Katerina. (2017). Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 20(9), 2116–2130. https://doi.org/10.1016/j.celrep.2017.08.014
Freyer, Laina, Hsu, Chih-Wei, Nowotschin, Sonja, Pauli, Andrea, Ishida, Junji, Kuba, Keiji, Fukamizu, Akiyoshi, , Hoodless, Pamela A., Dickinson, Mary E., & Hadjantonakis, Anna-Katerina. (2017). Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 20(9), 2116–2130. https://doi.org/10.1016/j.celrep.2017.08.014
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Scott Champion, Andrew, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alexander David, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, , et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish. Nature, 545(7654), 345–349. https://doi.org/10.1038/nature22356
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Scott Champion, Andrew, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alexander David, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, , et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish. Nature, 545(7654), 345–349. https://doi.org/10.1038/nature22356
Montague, Tessa G., & (2017). Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife, 6, 6:e28183. https://doi.org/10.7554/elife.28183
Montague, Tessa G., & (2017). Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife, 6, 6:e28183. https://doi.org/10.7554/elife.28183
Norris, Megan L., Pauli, Andrea, Gagnon, James A., Lord, Nathan D., Rogers, Katherine W., Mosimann, Christian, Zon, Leonard I., & (2017). Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling. eLife, 6, 6:e22626. https://doi.org/10.7554/elife.22626
Norris, Megan L., Pauli, Andrea, Gagnon, James A., Lord, Nathan D., Rogers, Katherine W., Mosimann, Christian, Zon, Leonard I., & (2017). Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling. eLife, 6, 6:e22626. https://doi.org/10.7554/elife.22626
Rabani, Michal, Pieper, Lindsey, Chew, Guo-Liang, & (2017). A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Molecular Cell, 68(6), 1083–+. https://doi.org/10.1016/j.molcel.2017.11.014
Rabani, Michal, Pieper, Lindsey, Chew, Guo-Liang, & (2017). A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Molecular Cell, 68(6), 1083–+. https://doi.org/10.1016/j.molcel.2017.11.014
Rogers, Katherine W., Lord, Nathan D., Gagnon, James A., Pauli, Andrea, Zimmerman, Steven, Aksel, Deniz C., Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, & (2017). Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife, 6, 6:e28785. https://doi.org/10.7554/elife.28785
Rogers, Katherine W., Lord, Nathan D., Gagnon, James A., Pauli, Andrea, Zimmerman, Steven, Aksel, Deniz C., Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, & (2017). Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife, 6, 6:e28785. https://doi.org/10.7554/elife.28785
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M. B., Greenwood, Joel S. F., Soucy, Edward, Engert, Florian, & (2017). Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools. The Journal of Neuroscience, 37(47), 11353–11365. https://doi.org/10.1523/jneurosci.1711-17.2017
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M. B., Greenwood, Joel S. F., Soucy, Edward, Engert, Florian, & (2017). Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools. The Journal of Neuroscience, 37(47), 11353–11365. https://doi.org/10.1523/jneurosci.1711-17.2017
Gagnon, James A., Obbad, Kamal, & (2016). Zebrafish Nanog is not required in embryonic cells [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/091504
Gagnon, James A., Obbad, Kamal, & (2016). Zebrafish Nanog is not required in embryonic cells [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/091504
Thyme, S. B., & Schier, A. F. (2016). Correction to Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development [Cell Reports, 15, (2016), 707-714] doi: 10.1016/j.celrep.2016.04.089. Cell Reports, 15(7), 1611–1613. https://doi.org/10.1016/j.celrep.2016.04.089
Thyme, S. B., & Schier, A. F. (2016). Correction to Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development [Cell Reports, 15, (2016), 707-714] doi: 10.1016/j.celrep.2016.04.089. Cell Reports, 15(7), 1611–1613. https://doi.org/10.1016/j.celrep.2016.04.089
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., , & Shendure, Jay. (2016). Whole organism lineage tracing by combinatorial and cumulative genome editing [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/052712
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., , & Shendure, Jay. (2016). Whole organism lineage tracing by combinatorial and cumulative genome editing [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/052712
Dunn, Timothy W, Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A, Yang, Chao-Tsung, , Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016, February 22). Author response: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion (Peer-review) [Peer-review, eLife Sciences Publications, Ltd]. https://doi.org/10.7554/elife.12741.032
Dunn, Timothy W, Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A, Yang, Chao-Tsung, , Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016, February 22). Author response: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion (Peer-review) [Peer-review, eLife Sciences Publications, Ltd]. https://doi.org/10.7554/elife.12741.032
Chew, Guo-Liang, Pauli, Andrea, & (2016). Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nature Communications, 7, 11663. https://doi.org/10.1038/ncomms11663
Chew, Guo-Liang, Pauli, Andrea, & (2016). Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nature Communications, 7, 11663. https://doi.org/10.1038/ncomms11663
Chiu, Cindy N., Rihel, Jason, Lee, Daniel A., Singh, Chanpreet, Mosser, Eric A., Chen, Shijia, Sapin, Viveca, Pham, Uyen, Engle, Jae, Niles, Brett J., Montz, Christin J., Chakravarthy, Sridhara, Zimmerman, Steven, Salehi-Ashtiani, Kourosh, Vidal, Marc, , & Prober, David A. (2016). A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron, 89(4), 842–856. https://doi.org/10.1016/j.neuron.2016.01.007
Chiu, Cindy N., Rihel, Jason, Lee, Daniel A., Singh, Chanpreet, Mosser, Eric A., Chen, Shijia, Sapin, Viveca, Pham, Uyen, Engle, Jae, Niles, Brett J., Montz, Christin J., Chakravarthy, Sridhara, Zimmerman, Steven, Salehi-Ashtiani, Kourosh, Vidal, Marc, , & Prober, David A. (2016). A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron, 89(4), 842–856. https://doi.org/10.1016/j.neuron.2016.01.007
Dunn, Timothy W., Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A., Yang, Chao-Tsung, , Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016). Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife, 5, e12741. https://doi.org/10.7554/elife.12741
Dunn, Timothy W., Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A., Yang, Chao-Tsung, , Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016). Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife, 5, e12741. https://doi.org/10.7554/elife.12741
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, , Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2016). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development, 143(10), 1832. https://doi.org/10.1242/dev.138859
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, , Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2016). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development, 143(10), 1832. https://doi.org/10.1242/dev.138859
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., , & Shendure, Jay. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science (New York, N.Y.), 353(6298), aaf7907. https://doi.org/10.1126/science.aaf7907
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., , & Shendure, Jay. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science (New York, N.Y.), 353(6298), aaf7907. https://doi.org/10.1126/science.aaf7907
Thyme, Summer B., Akhmetova, Laila, Montague, Tessa G., Valen, Eivind, & (2016). Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nature Communications, 7, 11750. https://doi.org/10.1038/ncomms11750
Thyme, Summer B., Akhmetova, Laila, Montague, Tessa G., Valen, Eivind, & (2016). Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nature Communications, 7, 11750. https://doi.org/10.1038/ncomms11750
Thyme, Summer B., & (2016). Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development. Cell Reports, 15(4), 707–714. https://doi.org/10.1016/j.celrep.2016.03.072
Thyme, Summer B., & (2016). Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development. Cell Reports, 15(4), 707–714. https://doi.org/10.1016/j.celrep.2016.03.072
Dubrulle, J., Jordan, B. M., Akhmetova, L., Farrell, J. A., Kim, S.-H., Solnica-Krezel, L., & Schier, A. F. (2015). Response to nodal morphogen gradient is determined by the kinetics of target gene induction. eLife, 2015(4). https://doi.org/10.7554/elife.05042
Dubrulle, J., Jordan, B. M., Akhmetova, L., Farrell, J. A., Kim, S.-H., Solnica-Krezel, L., & Schier, A. F. (2015). Response to nodal morphogen gradient is determined by the kinetics of target gene induction. eLife, 2015(4). https://doi.org/10.7554/elife.05042
Dubrulle, Julien, Jordan, Benjamin M., Akhmetova, Laila, Farrell, Jeffrey A., Kim, Seok-Hyung, Solnica-Krezel, Lilianna, & (2015). Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. eLife, 4, e05042. https://doi.org/10.7554/elife.05042
Dubrulle, Julien, Jordan, Benjamin M., Akhmetova, Laila, Farrell, Jeffrey A., Kim, Seok-Hyung, Solnica-Krezel, Lilianna, & (2015). Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. eLife, 4, e05042. https://doi.org/10.7554/elife.05042
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., , & Engert, Florian. (2015). The structure and timescales of heat perception in larval zebrafish. Cell Systems, 1(5), 338–348. https://doi.org/10.1016/j.cels.2015.10.010
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., , & Engert, Florian. (2015). The structure and timescales of heat perception in larval zebrafish. Cell Systems, 1(5), 338–348. https://doi.org/10.1016/j.cels.2015.10.010
Haesemeyer, Martin, & (2015). The study of psychiatric disease genes and drugs in zebrafish. Current Opinion in Neurobiology, 30, 122–130. https://doi.org/10.1016/j.conb.2014.12.002
Haesemeyer, Martin, & (2015). The study of psychiatric disease genes and drugs in zebrafish. Current Opinion in Neurobiology, 30, 122–130. https://doi.org/10.1016/j.conb.2014.12.002
Lacoste, Alix M. B., Schoppik, David, Robson, Drew N., Haesemeyer, Martin, Portugues, Ruben, Li, Jennifer M., Randlett, Owen, Wee, Caroline L., Engert, Florian, & (2015). A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Current Biology : CB, 25(11), 1526–1534. https://doi.org/10.1016/j.cub.2015.04.025
Lacoste, Alix M. B., Schoppik, David, Robson, Drew N., Haesemeyer, Martin, Portugues, Ruben, Li, Jennifer M., Randlett, Owen, Wee, Caroline L., Engert, Florian, & (2015). A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Current Biology : CB, 25(11), 1526–1534. https://doi.org/10.1016/j.cub.2015.04.025
Liu, Justin, Merkle, Florian T., Gandhi, Avni V., Gagnon, James A., Woods, Ian G., Chiu, Cindy N., Shimogori, Tomomi, , & Prober, David A. (2015). Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development, 142(6), 24–1113. https://doi.org/10.1242/dev.117424
Liu, Justin, Merkle, Florian T., Gandhi, Avni V., Gagnon, James A., Woods, Ian G., Chiu, Cindy N., Shimogori, Tomomi, , & Prober, David A. (2015). Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development, 142(6), 24–1113. https://doi.org/10.1242/dev.117424
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, , Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2015). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development, 142(15), 18–2704. https://doi.org/10.1242/dev.119800
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, , Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2015). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development, 142(15), 18–2704. https://doi.org/10.1242/dev.119800
Merkle, Florian T., Maroof, Asif, Wataya, Takafumi, Sasai, Yoshiki, Studer, Lorenz, Eggan, Kevin, & (2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development (Cambridge, England), 142(4), 43–633. https://doi.org/10.1242/dev.117978
Merkle, Florian T., Maroof, Asif, Wataya, Takafumi, Sasai, Yoshiki, Studer, Lorenz, Eggan, Kevin, & (2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development (Cambridge, England), 142(4), 43–633. https://doi.org/10.1242/dev.117978
Merkle, Florian T., Neuhausser, Werner M., Santos, David, Valen, Eivind, Gagnon, James A., Maas, Kristi, Sandoe, Jackson, , & Eggan, Kevin. (2015). Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Reports, 11(6), 875–883. https://doi.org/10.1016/j.celrep.2015.04.007
Merkle, Florian T., Neuhausser, Werner M., Santos, David, Valen, Eivind, Gagnon, James A., Maas, Kristi, Sandoe, Jackson, , & Eggan, Kevin. (2015). Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Reports, 11(6), 875–883. https://doi.org/10.1016/j.celrep.2015.04.007
Mundell, Nathan A., Beier, Kevin T., Pan, Y. Albert, Lapan, Sylvain W., Göz Aytürk, Didem, Berezovskii, Vladimir K., Wark, Abigail R., Drokhlyansky, Eugene, Bielecki, Jan, Born, Richard T., , & Cepko, Constance L. (2015). Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. Journal of Comparative Neurology, 523(11), 63–1639. https://doi.org/10.1002/cne.23761
Mundell, Nathan A., Beier, Kevin T., Pan, Y. Albert, Lapan, Sylvain W., Göz Aytürk, Didem, Berezovskii, Vladimir K., Wark, Abigail R., Drokhlyansky, Eugene, Bielecki, Jan, Born, Richard T., , & Cepko, Constance L. (2015). Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. Journal of Comparative Neurology, 523(11), 63–1639. https://doi.org/10.1002/cne.23761
Pauli, Andrea, Montague, Tessa G., Lennox, Kim A., Behlke, Mark A., & (2015). Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PloS One, 10(10), e0139504. https://doi.org/10.1371/journal.pone.0139504
Pauli, Andrea, Montague, Tessa G., Lennox, Kim A., Behlke, Mark A., & (2015). Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PloS One, 10(10), e0139504. https://doi.org/10.1371/journal.pone.0139504
Pauli, Andrea, Valen, Eivind, & (2015). Identifying (non-)coding RNAs and small peptides: challenges and opportunities. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 37(1), 12–103. https://doi.org/10.1002/bies.201400103
Pauli, Andrea, Valen, Eivind, & (2015). Identifying (non-)coding RNAs and small peptides: challenges and opportunities. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 37(1), 12–103. https://doi.org/10.1002/bies.201400103
Randlett, Owen, Wee, Caroline L., Naumann, Eva A., Nnaemeka, Onyeka, Schoppik, David, Fitzgerald, James E., Portugues, Ruben, Lacoste, Alix M. B., Riegler, Clemens, Engert, Florian, & (2015). Whole-brain activity mapping onto a zebrafish brain atlas. Nature Methods, 12(11), 46–1039. https://doi.org/10.1038/nmeth.3581
Randlett, Owen, Wee, Caroline L., Naumann, Eva A., Nnaemeka, Onyeka, Schoppik, David, Fitzgerald, James E., Portugues, Ruben, Lacoste, Alix M. B., Riegler, Clemens, Engert, Florian, & (2015). Whole-brain activity mapping onto a zebrafish brain atlas. Nature Methods, 12(11), 46–1039. https://doi.org/10.1038/nmeth.3581
Rogers, Katherine W., Blässle, Alexander, , & Müller, Patrick. (2015). Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP). Journal of Visualized Experiments, 95, 52266. https://doi.org/10.3791/52266
Rogers, Katherine W., Blässle, Alexander, , & Müller, Patrick. (2015). Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP). Journal of Visualized Experiments, 95, 52266. https://doi.org/10.3791/52266
Satija, Rahul, Farrell, Jeffrey A., Gennert, David, , & Regev, Aviv. (2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5), 495–502. https://doi.org/10.1038/nbt.3192
Satija, Rahul, Farrell, Jeffrey A., Gennert, David, , & Regev, Aviv. (2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5), 495–502. https://doi.org/10.1038/nbt.3192
Gagnon, James A., Valen, Eivind, Thyme, Summer B., Huang, Peng, Akhmetova, Laila, Pauli, Andrea, Montague, Tessa G., Zimmerman, Steven, Richter, Constance, & (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE, 9(5), e98186. https://doi.org/10.1371/journal.pone.0098186
Gagnon, James A., Valen, Eivind, Thyme, Summer B., Huang, Peng, Akhmetova, Laila, Pauli, Andrea, Montague, Tessa G., Zimmerman, Steven, Richter, Constance, & (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE, 9(5), e98186. https://doi.org/10.1371/journal.pone.0098186
Pauli, Andrea, Norris, Megan L., Valen, Eivind, Chew, Guo-Liang, Gagnon, James A., Zimmerman, Steven, Mitchell, Andrew, Ma, Jiao, Dubrulle, Julien, Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, Saghatelian, Alan, & (2014). Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science, 343(6172), 1248636. https://doi.org/10.1126/science.1248636
Pauli, Andrea, Norris, Megan L., Valen, Eivind, Chew, Guo-Liang, Gagnon, James A., Zimmerman, Steven, Mitchell, Andrew, Ma, Jiao, Dubrulle, Julien, Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, Saghatelian, Alan, & (2014). Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science, 343(6172), 1248636. https://doi.org/10.1126/science.1248636
Rabani, Michal, Raychowdhury, Raktima, Jovanovic, Marko, Rooney, Michael, Stumpo, Deborah J., Pauli, Andrea, Hacohen, Nir, , Blackshear, Perry J., Friedman, Nir, Amit, Ido, & Regev, Aviv. (2014). High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell, 159(7), 710–1698. https://doi.org/10.1016/j.cell.2014.11.015
Rabani, Michal, Raychowdhury, Raktima, Jovanovic, Marko, Rooney, Michael, Stumpo, Deborah J., Pauli, Andrea, Hacohen, Nir, , Blackshear, Perry J., Friedman, Nir, Amit, Ido, & Regev, Aviv. (2014). High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell, 159(7), 710–1698. https://doi.org/10.1016/j.cell.2014.11.015
Richter, Constance, Woods, Ian G., & (2014). Neuropeptidergic control of sleep and wakefulness. Annual Review of Neuroscience, 37, 31–503. https://doi.org/10.1146/annurev-neuro-062111-150447
Richter, Constance, Woods, Ian G., & (2014). Neuropeptidergic control of sleep and wakefulness. Annual Review of Neuroscience, 37, 31–503. https://doi.org/10.1146/annurev-neuro-062111-150447
(2014). Obituary: Walter J. Gehring (1939-2014). Development, 141(17), 91–3289. https://doi.org/10.1242/dev.115402
(2014). Obituary: Walter J. Gehring (1939-2014). Development, 141(17), 91–3289. https://doi.org/10.1242/dev.115402
Woods, Ian G., Schoppik, David, Shi, Veronica J., Zimmerman, Steven, Coleman, Haley A., Greenwood, Joel, Soucy, Edward R., & (2014). Neuropeptidergic signaling partitions arousal behaviors in zebrafish. Journal of Neuroscience, 34(9), 60–3142. https://doi.org/10.1523/jneurosci.3529-13.2014
Woods, Ian G., Schoppik, David, Shi, Veronica J., Zimmerman, Steven, Coleman, Haley A., Greenwood, Joel, Soucy, Edward R., & (2014). Neuropeptidergic signaling partitions arousal behaviors in zebrafish. Journal of Neuroscience, 34(9), 60–3142. https://doi.org/10.1523/jneurosci.3529-13.2014
Zhang, Yong, Vastenhouw, Nadine L., Feng, Jianxing, Fu, Kai, Wang, Chenfei, Ge, Ying, Pauli, Andrea, van Hummelen, Paul, , & Liu, X. Shirley. (2014). Canonical nucleosome organization at promoters forms during genome activation. Genome Research, 24(2), 6–260. https://doi.org/10.1101/gr.157750.113
Zhang, Yong, Vastenhouw, Nadine L., Feng, Jianxing, Fu, Kai, Wang, Chenfei, Ge, Ying, Pauli, Andrea, van Hummelen, Paul, , & Liu, X. Shirley. (2014). Canonical nucleosome organization at promoters forms during genome activation. Genome Research, 24(2), 6–260. https://doi.org/10.1101/gr.157750.113
Chew, Guo-Liang, Pauli, Andrea, Rinn, John L., Regev, Aviv, , & Valen, Eivind. (2013). Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development, 140(13), 34–2828. https://doi.org/10.1242/dev.098343
Chew, Guo-Liang, Pauli, Andrea, Rinn, John L., Regev, Aviv, , & Valen, Eivind. (2013). Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development, 140(13), 34–2828. https://doi.org/10.1242/dev.098343
Levitz, Joshua, Pantoja, Carlos, Gaub, Benjamin, Janovjak, Harald, Reiner, Andreas, Hoagland, Adam, Schoppik, David, Kane, Brian, Stawski, Philipp, , Trauner, Dirk, & Isacoff, Ehud Y. (2013). Optical control of metabotropic glutamate receptors. Nature Neuroscience, 16(4), 16–507. https://doi.org/10.1038/nn.3346
Levitz, Joshua, Pantoja, Carlos, Gaub, Benjamin, Janovjak, Harald, Reiner, Andreas, Hoagland, Adam, Schoppik, David, Kane, Brian, Stawski, Philipp, , Trauner, Dirk, & Isacoff, Ehud Y. (2013). Optical control of metabotropic glutamate receptors. Nature Neuroscience, 16(4), 16–507. https://doi.org/10.1038/nn.3346
Müller, Patrick, Rogers, Katherine W., Yu, Shuizi R., Brand, Michael, & (2013). Morphogen transport. Development (Cambridge, England), 140(8), 1621–1638. https://doi.org/10.1242/dev.083519
Müller, Patrick, Rogers, Katherine W., Yu, Shuizi R., Brand, Michael, & (2013). Morphogen transport. Development (Cambridge, England), 140(8), 1621–1638. https://doi.org/10.1242/dev.083519