Publications
211 found
Show per page
McNamara, Harold M., Guyer, Alison M., Jia, Bill Z., Parot, Vicente J., Dobbs, Caleb D., Development (Cambridge), 152(9). https://doi.org/10.1242/dev.204506
, Cohen, Adam E., & Lord, Nathan D. (2025). Optogenetic control of Nodal signaling patterns.
McNamara, Harold M., Guyer, Alison M., Jia, Bill Z., Parot, Vicente J., Dobbs, Caleb D., Development (Cambridge), 152(9). https://doi.org/10.1242/dev.204506
, Cohen, Adam E., & Lord, Nathan D. (2025). Optogenetic control of Nodal signaling patterns.
Wang, Yiqun, Liu, Jialin, Du, Lucia Y., Wyss, Jannik L., Farrell, Jeffrey A., & Developmental Cell, 60, 581–598. https://doi.org/10.1016/j.devcel.2024.10.015
(2025). Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish.
Wang, Yiqun, Liu, Jialin, Du, Lucia Y., Wyss, Jannik L., Farrell, Jeffrey A., & Developmental Cell, 60, 581–598. https://doi.org/10.1016/j.devcel.2024.10.015
(2025). Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish.
Bayer, Emily A, Mango, Susan E, Hobert, Oliver, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
. (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In
Bayer, Emily A, Mango, Susan E, Hobert, Oliver, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
. (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In
Reimão-Pinto, Madalena M., Castillo-Hair, Sebastian M., Seelig, Georg, & Developmental Cell. https://doi.org/10.1016/j.devcel.2024.12.038
(2025). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis.
Reimão-Pinto, Madalena M., Castillo-Hair, Sebastian M., Seelig, Georg, & Developmental Cell. https://doi.org/10.1016/j.devcel.2024.12.038
(2025). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis.
Askary, Amjad, Chen, Wei, Choi, Junhong, Du, Lucia Y., Elowitz, Michael B., Gagnon, James A., Nature Reviews Genetics. https://doi.org/10.1038/s41576-024-00788-w
, Seidel, Sophie, Shendure, Jay, Stadler, Tanja, & Tran, Martin. (2024). The lives of cells, recorded [Journal-article].
Askary, Amjad, Chen, Wei, Choi, Junhong, Du, Lucia Y., Elowitz, Michael B., Gagnon, James A., Nature Reviews Genetics. https://doi.org/10.1038/s41576-024-00788-w
, Seidel, Sophie, Shendure, Jay, Stadler, Tanja, & Tran, Martin. (2024). The lives of cells, recorded [Journal-article].
Liu, Jialin, Castillo-Hair, Sebastian M., Du, Lucia Y., Wang, Yiqun, Carte, Adam N., Colomer-Rosell, Mariona, Yin, Christopher, Seelig, Georg, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609971
(2024). Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis [Posted-content]. In
Liu, Jialin, Castillo-Hair, Sebastian M., Du, Lucia Y., Wang, Yiqun, Carte, Adam N., Colomer-Rosell, Mariona, Yin, Christopher, Seelig, Georg, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609971
(2024). Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis [Posted-content]. In
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, Mango, Susan E., Yu, Guoqiang, Bintu, Bogdan, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
(2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, Mango, Susan E., Yu, Guoqiang, Bintu, Bogdan, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
(2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In
Liberali, Prisca, & Cell, 187(14), 3461–3495. https://doi.org/10.1016/j.cell.2024.05.053
(2024). The evolution of developmental biology through conceptual and technological revolutions.
Liberali, Prisca, & Cell, 187(14), 3461–3495. https://doi.org/10.1016/j.cell.2024.05.053
(2024). The evolution of developmental biology through conceptual and technological revolutions.
Abitua, Philip B., Stump, Laura M., Aksel, Deniz C., & Science (New York, N.Y.), 384(6700), 1105–1110. https://doi.org/10.1126/science.ado7604
(2024). Axis formation in annual killifish: Nodal and β-catenin regulate morphogenesis without Huluwa prepatterning.
Abitua, Philip B., Stump, Laura M., Aksel, Deniz C., & Science (New York, N.Y.), 384(6700), 1105–1110. https://doi.org/10.1126/science.ado7604
(2024). Axis formation in annual killifish: Nodal and β-catenin regulate morphogenesis without Huluwa prepatterning.
Nichols, Annika L. A., Shafer, Maxwell E. R., Indermaur, Adrian, Rüegg, Attila, Gonzalez-Dominguez, Rita, Malinsky, Milan, Sommer-Trembo, Carolin, Fritschi, Laura, Salzburger, Walter, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.29.596472
(2024). Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes. In
Nichols, Annika L. A., Shafer, Maxwell E. R., Indermaur, Adrian, Rüegg, Attila, Gonzalez-Dominguez, Rita, Malinsky, Milan, Sommer-Trembo, Carolin, Fritschi, Laura, Salzburger, Walter, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.29.596472
(2024). Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes. In
McNamara, Harold M., Jia, Bill Z., Guyer, Alison, Parot, Vicente J., Dobbs, Caleb, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.04.11.588875
, Cohen, Adam E., & Lord, Nathan D. (2024). Optogenetic control of Nodal signaling patterns. In
McNamara, Harold M., Jia, Bill Z., Guyer, Alison, Parot, Vicente J., Dobbs, Caleb, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.04.11.588875
, Cohen, Adam E., & Lord, Nathan D. (2024). Optogenetic control of Nodal signaling patterns. In
Bitsikas, Vassilis, Cubizolles, Fabien, & Current Biology, 34(7), 1532–1540. https://doi.org/10.1016/j.cub.2024.02.022
(2024). A vertebrate family without a functional Hypocretin/Orexin arousal system.
Bitsikas, Vassilis, Cubizolles, Fabien, & Current Biology, 34(7), 1532–1540. https://doi.org/10.1016/j.cub.2024.02.022
(2024). A vertebrate family without a functional Hypocretin/Orexin arousal system.
Qiu, Chengxiang, Martin, Beth K., Welsh, Ian C., Daza, Riza M., Le, Truc-Mai, Huang, Xingfan, Nichols, Eva K., Taylor, Megan L., Fulton, Olivia, O’Day, Diana R., Gomes, Anne Roshella, Ilcisin, Saskia, Srivatsan, Sanjay, Deng, Xinxian, Disteche, Christine M., Noble, William Stafford, Hamazaki, Nobuhiko, Moens, Cecilia B., Kimelman, David, et al. (2024). A single-cell time-lapse of mouse prenatal development from gastrula to birth. Nature, 626(8001), 1084–1093. https://doi.org/10.1038/s41586-024-07069-w
Qiu, Chengxiang, Martin, Beth K., Welsh, Ian C., Daza, Riza M., Le, Truc-Mai, Huang, Xingfan, Nichols, Eva K., Taylor, Megan L., Fulton, Olivia, O’Day, Diana R., Gomes, Anne Roshella, Ilcisin, Saskia, Srivatsan, Sanjay, Deng, Xinxian, Disteche, Christine M., Noble, William Stafford, Hamazaki, Nobuhiko, Moens, Cecilia B., Kimelman, David, et al. (2024). A single-cell time-lapse of mouse prenatal development from gastrula to birth. Nature, 626(8001), 1084–1093. https://doi.org/10.1038/s41586-024-07069-w
Wang, Yiqun, Liu, Jialin, Du, Lucia Y, Wyss, Jannik L, Farrell, Jeffrey A, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.29.573643
. (2023). Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion [Posted-content]. In
Wang, Yiqun, Liu, Jialin, Du, Lucia Y, Wyss, Jannik L, Farrell, Jeffrey A, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.29.573643
. (2023). Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion [Posted-content]. In
Reimão-Pinto, M. M., Castillo-Hair, S. M., Seelig, G., & Schier, A. F. (2023). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.11.23.568470
Reimão-Pinto, M. M., Castillo-Hair, S. M., Seelig, G., & Schier, A. F. (2023). The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.11.23.568470
Shafer, M. E. R., Nichols, A. L. A., Schier, A. F., & Salzburger, W. (2023). Frequent transitions from night-to-day activity after mass extinctions [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.10.27.564421
Shafer, M. E. R., Nichols, A. L. A., Schier, A. F., & Salzburger, W. (2023). Frequent transitions from night-to-day activity after mass extinctions [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.10.27.564421
Qiu, C., Martin, B. K., Welsh, I. C., Daza, R. M., Le, T.-M., Huang, X., Nichols, E. K., Taylor, M. L., Fulton, O., O’Day, D. R., Gomes, A. R., Ilcisin, S., Srivatsan, S., Deng, X., Disteche, C. M., Noble, W. S., Hamazaki, N., Moens, C. B., Kimelman, D., et al. (2023). A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.04.05.535726
Qiu, C., Martin, B. K., Welsh, I. C., Daza, R. M., Le, T.-M., Huang, X., Nichols, E. K., Taylor, M. L., Fulton, O., O’Day, D. R., Gomes, A. R., Ilcisin, S., Srivatsan, S., Deng, X., Disteche, C. M., Noble, W. S., Hamazaki, N., Moens, C. B., Kimelman, D., et al. (2023). A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.04.05.535726
P. Dingal, P. C. D., Carte, A. N., Montague, T. G., Lim Suan, M. B., & Schier, A. F. (2023). Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1 [Journal-article]. Proceedings of the National Academy of Sciences of the United States of America, 120(43). https://doi.org/10.1073/pnas.2307203120
P. Dingal, P. C. D., Carte, A. N., Montague, T. G., Lim Suan, M. B., & Schier, A. F. (2023). Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1 [Journal-article]. Proceedings of the National Academy of Sciences of the United States of America, 120(43). https://doi.org/10.1073/pnas.2307203120
Sfeir, Agnel, Fishell, Gord, Cell, 185(5), 755–758. https://doi.org/10.1016/j.cell.2022.02.008
, Dustin, Michael L., Gan, Wen-Biao, Joyner, Alexandra, Lehmann, Ruth, Ron, David, Roth, David, Talbot, William S., Yelon, Deborah, & Zychlinsky, Arturo. (2022). Basic science under threat: Lessons from the Skirball Institute.
Sfeir, Agnel, Fishell, Gord, Cell, 185(5), 755–758. https://doi.org/10.1016/j.cell.2022.02.008
, Dustin, Michael L., Gan, Wen-Biao, Joyner, Alexandra, Lehmann, Ruth, Ron, David, Roth, David, Talbot, William S., Yelon, Deborah, & Zychlinsky, Arturo. (2022). Basic science under threat: Lessons from the Skirball Institute.
Shafer, Maxwell Eric Robert, Sawh, Ahilya N., & Nature ecology & evolution, 6(1), 63–76. https://doi.org/10.1038/s41559-021-01580-3
(2022). Gene family evolution underlies cell type diversification in the hypothalamus of teleosts.
Shafer, Maxwell Eric Robert, Sawh, Ahilya N., & Nature ecology & evolution, 6(1), 63–76. https://doi.org/10.1038/s41559-021-01580-3
(2022). Gene family evolution underlies cell type diversification in the hypothalamus of teleosts.
Abitua, Philipp B., Aksel, Deniz C., & Axis formation in annual killifish: Nodal coordinates morphogenesis in absence of Huluwa prepatterning. bioRxiv. https://doi.org/10.1101/2021.04.16.440199
(2021).
Abitua, Philipp B., Aksel, Deniz C., & Axis formation in annual killifish: Nodal coordinates morphogenesis in absence of Huluwa prepatterning. bioRxiv. https://doi.org/10.1101/2021.04.16.440199
(2021).
Dingal, P. C. Dave P., Carte, Adam N., Montague, Tessa C., & Regulation of Vg1 biogenesis during mesendoderm induction. bioRxiv. https://doi.org/10.1101/2021.04.25.441333
(2021).
Dingal, P. C. Dave P., Carte, Adam N., Montague, Tessa C., & Regulation of Vg1 biogenesis during mesendoderm induction. bioRxiv. https://doi.org/10.1101/2021.04.25.441333
(2021).
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & eLife, 10, 54894. https://doi.org/10.7554/elife.54894
(2021). The pattern of nodal morphogen signaling is shaped by co-receptor expression.
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & eLife, 10, 54894. https://doi.org/10.7554/elife.54894
(2021). The pattern of nodal morphogen signaling is shaped by co-receptor expression.
Shafer, Maxwell E. R., Sawh, Ahilya N., & Gene family evolution underlies cell type diversification in the hypothalamus of teleosts. bioRxiv. https://doi.org/10.1101/2020.12.13.414557
(2021).
Shafer, Maxwell E. R., Sawh, Ahilya N., & Gene family evolution underlies cell type diversification in the hypothalamus of teleosts. bioRxiv. https://doi.org/10.1101/2020.12.13.414557
(2021).
Lin, Qian, Manley, Jason, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, Cell, 180(3), 536–551. https://doi.org/10.1016/j.cell.2019.12.018
, Nöbauer, Tobias, & Vaziri, Alipasha. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level.
Lin, Qian, Manley, Jason, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, Cell, 180(3), 536–551. https://doi.org/10.1016/j.cell.2019.12.018
, Nöbauer, Tobias, & Vaziri, Alipasha. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level.
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., Journal of Neuroscience, 40(1), 143–158. https://doi.org/10.1523/jneurosci.1783-19.2019
, & Pan, Y. Albert. (2020). Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function.
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., Journal of Neuroscience, 40(1), 143–158. https://doi.org/10.1523/jneurosci.1783-19.2019
, & Pan, Y. Albert. (2020). Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function.
Raj, Bushra, Farrell, Jeffrey A., Liu, Jialin, El Kholtei, Jakob, Carte, Adam N., Navajas Acedo, Joaquin, Du, Lucia Y., McKenna, Aaron, Relić, Đorđe, Leslie, Jessica M., & Neuron, 108(6), 1058–1074. https://doi.org/10.1016/j.neuron.2020.09.023
(2020). Emergence of Neuronal Diversity during Vertebrate Brain Development.
Raj, Bushra, Farrell, Jeffrey A., Liu, Jialin, El Kholtei, Jakob, Carte, Adam N., Navajas Acedo, Joaquin, Du, Lucia Y., McKenna, Aaron, Relić, Đorđe, Leslie, Jessica M., & Neuron, 108(6), 1058–1074. https://doi.org/10.1016/j.neuron.2020.09.023
(2020). Emergence of Neuronal Diversity during Vertebrate Brain Development.
Nature Methods, 17(1), 17–20. https://doi.org/10.1038/s41592-019-0693-3
(2020). Single-cell biology: beyond the sum of its parts.
Nature Methods, 17(1), 17–20. https://doi.org/10.1038/s41592-019-0693-3
(2020). Single-cell biology: beyond the sum of its parts.
Raj, Bushra, Farrell, Jeffrey A., McKenna, Aaron, Leslie, Jessica L., & Emergence of neuronal diversity during vertebrate brain development [Posted-content]. bioRxiv. https://doi.org/10.1101/839860
(2019).
Raj, Bushra, Farrell, Jeffrey A., McKenna, Aaron, Leslie, Jessica L., & Emergence of neuronal diversity during vertebrate brain development [Posted-content]. bioRxiv. https://doi.org/10.1101/839860
(2019).
Lin, Qian, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, Cerebellar neurodynamics during motor planning predict decision timing and outcome on single-trial level [Posted-content]. bioRxiv. https://doi.org/10.1101/833889
, Nöbauer, Tobias, & Vaziri, Alipasha. (2019).
Lin, Qian, Helmreich, Magdalena, Schlumm, Friederike, Li, Jennifer M., Robson, Drew N., Engert, Florian, Cerebellar neurodynamics during motor planning predict decision timing and outcome on single-trial level [Posted-content]. bioRxiv. https://doi.org/10.1101/833889
, Nöbauer, Tobias, & Vaziri, Alipasha. (2019).
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., Zebrafish Dscaml1 is Essential for Retinal Patterning and Function of Oculomotor Subcircuits [Posted-content]. bioRxiv. https://doi.org/10.1101/658161
, & Pan, Y. Albert. (2019).
Ma, Manxiu, Ramirez, Alexandro D., Wang, Tong, Roberts, Rachel L., Harmon, Katherine E., Schoppik, David, Sharma, Avirale, Kuang, Christopher, Goei, Stephanie L., Gagnon, James A., Zimmerman, Steve, Tsai, Shengdar Q., Reyon, Deepak, Joung, J. Keith, Aksay, Emre R. F., Zebrafish Dscaml1 is Essential for Retinal Patterning and Function of Oculomotor Subcircuits [Posted-content]. bioRxiv. https://doi.org/10.1101/658161
, & Pan, Y. Albert. (2019).
Goudarzi, Mehdi, Berg, Kathryn, Pieper, Lindsey M., & eLife, 8, 8:e40815. https://doi.org/10.7554/elife.40815
(2019). Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility.
Goudarzi, Mehdi, Berg, Kathryn, Pieper, Lindsey M., & eLife, 8, 8:e40815. https://doi.org/10.7554/elife.40815
(2019). Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility.
Haesemeyer, Martin, Neuron, 103(6), 1123–1134. https://doi.org/10.1016/j.neuron.2019.07.003
, & Engert, Florian. (2019). Convergent Temperature Representations in Artificial and Biological Neural Networks.
Haesemeyer, Martin, Neuron, 103(6), 1123–1134. https://doi.org/10.1016/j.neuron.2019.07.003
, & Engert, Florian. (2019). Convergent Temperature Representations in Artificial and Biological Neural Networks.
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & The pattern of nodal morphogen signaling is shaped by co-receptor expression. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2019.12.30.891101
(2019).
Lord, Nathan D., Carte, Adam N., Abitua, Philip B., & The pattern of nodal morphogen signaling is shaped by co-receptor expression. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2019.12.30.891101
(2019).
Randlett, Owen, Haesemeyer, Martin, Forkin, Greg, Shoenhard, Hannah, Current Biology : CB, 29(8), 1337–1345. https://doi.org/10.1016/j.cub.2019.02.039
, Engert, Florian, & Granato, Michael. (2019). Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish.
Randlett, Owen, Haesemeyer, Martin, Forkin, Greg, Shoenhard, Hannah, Current Biology : CB, 29(8), 1337–1345. https://doi.org/10.1016/j.cub.2019.02.039
, Engert, Florian, & Granato, Michael. (2019). Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish.
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Herrera, Kristian J., Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & Cell, 177(2), 478–491. https://doi.org/10.1016/j.cell.2019.01.048
(2019). Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions.
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Herrera, Kristian J., Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & Cell, 177(2), 478–491. https://doi.org/10.1016/j.cell.2019.01.048
(2019). Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions.
Wee, Caroline L., Nikitchenko, Maxim, Wang, Wei-Chun, Luks-Morgan, Sasha J., Song, Erin, Gagnon, James A., Randlett, Owen, Bianco, Isaac H., Lacoste, Alix M. B., Glushenkova, Elena, Barrios, Joshua P., Nature Neuroscience, 22(9), 1477–1492. https://doi.org/10.1038/s41593-019-0452-x
, Kunes, Samuel, Engert, Florian, & Douglass, Adam D. (2019). Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets.
Wee, Caroline L., Nikitchenko, Maxim, Wang, Wei-Chun, Luks-Morgan, Sasha J., Song, Erin, Gagnon, James A., Randlett, Owen, Bianco, Isaac H., Lacoste, Alix M. B., Glushenkova, Elena, Barrios, Joshua P., Nature Neuroscience, 22(9), 1477–1492. https://doi.org/10.1038/s41593-019-0452-x
, Kunes, Samuel, Engert, Florian, & Douglass, Adam D. (2019). Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets.
Randlett, O., Haesemeyer, M., Forkin, G., Shoenhard, H., Schier, A. F., Engert, F., & Granato, M. (2018, September 14). Distributed plasticity drives visual habituation learning in larval zebrafish [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/418178
Randlett, O., Haesemeyer, M., Forkin, G., Shoenhard, H., Schier, A. F., Engert, F., & Granato, M. (2018, September 14). Distributed plasticity drives visual habituation learning in larval zebrafish [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/418178
Haesemeyer, M., Schier, A. F., & Engert, F. (2018, August 12). Convergent temperature representations in artificial and biological neural networks [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/390435
Haesemeyer, M., Schier, A. F., & Engert, F. (2018, August 12). Convergent temperature representations in artificial and biological neural networks [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/390435
Goudarzi, M., Berg, K., Pieper, L. M., & Schier, A. F. (2018, July 23). Long non-coding RNAs are largely dispensable for zebrafish embryogenesis, viability and fertility [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/374702
Goudarzi, M., Berg, K., Pieper, L. M., & Schier, A. F. (2018, July 23). Long non-coding RNAs are largely dispensable for zebrafish embryogenesis, viability and fertility [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/374702
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/360677
(2018). Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions [Posted-content]. In
Thyme, Summer B., Pieper, Lindsey M., Li, Eric H., Pandey, Shristi, Wang, Yiqun, Morris, Nathan S., Sha, Carrie, Choi, Joo Won, Soucy, Edward R., Zimmerman, Steve, Randlett, Owen, Greenwood, Joel, McCarroll, Steven A., & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/360677
(2018). Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions [Posted-content]. In
Rabani, M., Pieper, L., Chew, G.-L., & Schier, A. F. (2018). Erratum: A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation (Molecular Cell (2017) 68(6) (1083–1094.e5) (S1097276517308730) (10.1016/j.molcel.2017.11.014)). Molecular Cell, 70(3). https://doi.org/10.1016/j.molcel.2018.04.013
Rabani, M., Pieper, L., Chew, G.-L., & Schier, A. F. (2018). Erratum: A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation (Molecular Cell (2017) 68(6) (1083–1094.e5) (S1097276517308730) (10.1016/j.molcel.2017.11.014)). Molecular Cell, 70(3). https://doi.org/10.1016/j.molcel.2018.04.013
Almuedo-Castillo, María, Bläßle, Alexander, Mörsdorf, David, Marcon, Luciano, Soh, Gary H., Rogers, Katherine W., Nature Cell Biology, 20(9), 1032–1042. https://doi.org/10.1038/s41556-018-0155-7
, & Müller, Patrick. (2018). Scale-invariant patterning by size-dependent inhibition of Nodal signalling.
Almuedo-Castillo, María, Bläßle, Alexander, Mörsdorf, David, Marcon, Luciano, Soh, Gary H., Rogers, Katherine W., Nature Cell Biology, 20(9), 1032–1042. https://doi.org/10.1038/s41556-018-0155-7
, & Müller, Patrick. (2018). Scale-invariant patterning by size-dependent inhibition of Nodal signalling.
Farrell, Jeffrey A., Wang, Yiqun, Riesenfeld, Samantha J., Shekhar, Karthik, Regev, Aviv, & Science (New York, N.Y.), 360(6392), 979–+. https://doi.org/10.1126/science.aar3131
(2018). Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Farrell, Jeffrey A., Wang, Yiqun, Riesenfeld, Samantha J., Shekhar, Karthik, Regev, Aviv, & Science (New York, N.Y.), 360(6392), 979–+. https://doi.org/10.1126/science.aar3131
(2018). Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Gagnon, James A., Obbad, Kamal, & Development (Cambridge, England), 145(1), 9. https://doi.org/10.1242/dev.147793
(2018). The primary role of zebrafish nanog is in extra-embryonic tissue.
Gagnon, James A., Obbad, Kamal, & Development (Cambridge, England), 145(1), 9. https://doi.org/10.1242/dev.147793
(2018). The primary role of zebrafish nanog is in extra-embryonic tissue.
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., Neuron, 98(4), 817–+. https://doi.org/10.1016/j.neuron.2018.04.013
, & Engert, Florian. (2018). A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish.
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., Neuron, 98(4), 817–+. https://doi.org/10.1016/j.neuron.2018.04.013
, & Engert, Florian. (2018). A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish.
Haesemeyer, M., Robson, D. N., Li, J. M., Schier, A. F., & Engert, F. (2018). A Brain Wide Circuit Model of Heat Evoked Swimming Behavior in Larval Zebrafish [Journal-article]. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3155628
Haesemeyer, M., Robson, D. N., Li, J. M., Schier, A. F., & Engert, F. (2018). A Brain Wide Circuit Model of Heat Evoked Swimming Behavior in Larval Zebrafish [Journal-article]. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3155628
Montague, Tessa G., Gagnon, James A., & Development (Cambridge, England), 145(24), 9. https://doi.org/10.1242/dev.171090
(2018). Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse.
Montague, Tessa G., Gagnon, James A., & Development (Cambridge, England), 145(24), 9. https://doi.org/10.1242/dev.171090
(2018). Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse.
Pandey, Shristi, Shekhar, Karthik, Regev, Aviv, & Current Biology : CB, 28(7), 1052–1065. https://doi.org/10.1016/j.cub.2018.02.040
(2018). Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.
Pandey, Shristi, Shekhar, Karthik, Regev, Aviv, & Current Biology : CB, 28(7), 1052–1065. https://doi.org/10.1016/j.cub.2018.02.040
(2018). Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.
Raj, Bushra, Gagnon, James A., & Nature Protocols, 13(11), 2685–2713. https://doi.org/10.1038/s41596-018-0058-x
(2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
Raj, Bushra, Gagnon, James A., & Nature Protocols, 13(11), 2685–2713. https://doi.org/10.1038/s41596-018-0058-x
(2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & Nature Biotechnology, 36(5), 442–450. https://doi.org/10.1038/nbt.4103
(2018). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain.
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & Nature Biotechnology, 36(5), 442–450. https://doi.org/10.1038/nbt.4103
(2018). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain.
Rogers, K. W., Lord, N. D., Gagnon, J. A., Pauli, A., Zimmerman, S., Aksel, D. C., Reyon, D., Tsai, S. Q., Joung, J. K., & Schier, A. F. (2017). Nodal patterning without lefty inhibitory feedback is functional but fragile. eLife, 6. https://doi.org/10.7554/eLife.28785.001
Rogers, K. W., Lord, N. D., Gagnon, J. A., Pauli, A., Zimmerman, S., Aksel, D. C., Reyon, D., Tsai, S. Q., Joung, J. K., & Schier, A. F. (2017). Nodal patterning without lefty inhibitory feedback is functional but fragile. eLife, 6. https://doi.org/10.7554/eLife.28785.001
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/205534
(2017). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT [Posted-content]. In
Raj, Bushra, Wagner, Daniel E., McKenna, Aaron, Pandey, Shristi, Klein, Allon M., Shendure, Jay, Gagnon, James A., & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/205534
(2017). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT [Posted-content]. In
Haesemeyer, Martin, Robson, Drew N, Li, Jennifer M, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/190447
, & Engert, Florian. (2017). A brain wide circuit model of heat evoked swimming behavior in larval zebrafish [Posted-content]. In
Haesemeyer, Martin, Robson, Drew N, Li, Jennifer M, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/190447
, & Engert, Florian. (2017). A brain wide circuit model of heat evoked swimming behavior in larval zebrafish [Posted-content]. In
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M.B., Greenwood, Joel S.F., Soucy, Edward, Engert, Florian, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/151548
(2017). Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools [Posted-content]. In
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M.B., Greenwood, Joel S.F., Soucy, Edward, Engert, Florian, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/151548
(2017). Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools [Posted-content]. In
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Champion, Andrew Scott, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alex, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/134882
, et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish [Posted-content]. In
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Champion, Andrew Scott, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alex, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/134882
, et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish [Posted-content]. In
Escamilla, Christine Ochoa, Filonova, Irina, Walker, Angela K., Xuan, Zhong X., Holehonnur, Roopashri, Espinosa, Felipe, Liu, Shunan, Thyme, Summer B., López-García, Isabel A., Mendoza, Dorian B., Usui, Noriyoshi, Ellegood, Jacob, Eisch, Amelia J., Konopka, Genevieve, Lerch, Jason P., Nature, 551(7679), 227–231. https://doi.org/10.1038/nature24470
, Speed, Haley E., & Powell, Craig M. (2017). Kctd13 deletion reduces synaptic transmission via increased RhoA.
Escamilla, Christine Ochoa, Filonova, Irina, Walker, Angela K., Xuan, Zhong X., Holehonnur, Roopashri, Espinosa, Felipe, Liu, Shunan, Thyme, Summer B., López-García, Isabel A., Mendoza, Dorian B., Usui, Noriyoshi, Ellegood, Jacob, Eisch, Amelia J., Konopka, Genevieve, Lerch, Jason P., Nature, 551(7679), 227–231. https://doi.org/10.1038/nature24470
, Speed, Haley E., & Powell, Craig M. (2017). Kctd13 deletion reduces synaptic transmission via increased RhoA.
Freyer, Laina, Hsu, Chih-Wei, Nowotschin, Sonja, Pauli, Andrea, Ishida, Junji, Kuba, Keiji, Fukamizu, Akiyoshi, Cell Reports, 20(9), 2116–2130. https://doi.org/10.1016/j.celrep.2017.08.014
, Hoodless, Pamela A., Dickinson, Mary E., & Hadjantonakis, Anna-Katerina. (2017). Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives.
Freyer, Laina, Hsu, Chih-Wei, Nowotschin, Sonja, Pauli, Andrea, Ishida, Junji, Kuba, Keiji, Fukamizu, Akiyoshi, Cell Reports, 20(9), 2116–2130. https://doi.org/10.1016/j.celrep.2017.08.014
, Hoodless, Pamela A., Dickinson, Mary E., & Hadjantonakis, Anna-Katerina. (2017). Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives.
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Scott Champion, Andrew, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alexander David, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, Nature, 545(7654), 345–349. https://doi.org/10.1038/nature22356
, et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish.
Hildebrand, David Grant Colburn, Cicconet, Marcelo, Torres, Russel Miguel, Choi, Woohyuk, Quan, Tran Minh, Moon, Jungmin, Wetzel, Arthur Willis, Scott Champion, Andrew, Graham, Brett Jesse, Randlett, Owen, Plummer, George Scott, Portugues, Ruben, Bianco, Isaac Henry, Saalfeld, Stephan, Baden, Alexander David, Lillaney, Kunal, Burns, Randal, Vogelstein, Joshua Tzvi, Nature, 545(7654), 345–349. https://doi.org/10.1038/nature22356
, et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish.
Montague, Tessa G., & eLife, 6, 6:e28183. https://doi.org/10.7554/elife.28183
(2017). Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm.
Montague, Tessa G., & eLife, 6, 6:e28183. https://doi.org/10.7554/elife.28183
(2017). Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm.
Norris, Megan L., Pauli, Andrea, Gagnon, James A., Lord, Nathan D., Rogers, Katherine W., Mosimann, Christian, Zon, Leonard I., & eLife, 6, 6:e22626. https://doi.org/10.7554/elife.22626
(2017). Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling.
Norris, Megan L., Pauli, Andrea, Gagnon, James A., Lord, Nathan D., Rogers, Katherine W., Mosimann, Christian, Zon, Leonard I., & eLife, 6, 6:e22626. https://doi.org/10.7554/elife.22626
(2017). Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling.
Rabani, Michal, Pieper, Lindsey, Chew, Guo-Liang, & Molecular Cell, 68(6), 1083–+. https://doi.org/10.1016/j.molcel.2017.11.014
(2017). A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation.
Rabani, Michal, Pieper, Lindsey, Chew, Guo-Liang, & Molecular Cell, 68(6), 1083–+. https://doi.org/10.1016/j.molcel.2017.11.014
(2017). A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation.
Rogers, Katherine W., Lord, Nathan D., Gagnon, James A., Pauli, Andrea, Zimmerman, Steven, Aksel, Deniz C., Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, & eLife, 6, 6:e28785. https://doi.org/10.7554/elife.28785
(2017). Nodal patterning without Lefty inhibitory feedback is functional but fragile.
Rogers, Katherine W., Lord, Nathan D., Gagnon, James A., Pauli, Andrea, Zimmerman, Steven, Aksel, Deniz C., Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, & eLife, 6, 6:e28785. https://doi.org/10.7554/elife.28785
(2017). Nodal patterning without Lefty inhibitory feedback is functional but fragile.
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M. B., Greenwood, Joel S. F., Soucy, Edward, Engert, Florian, & The Journal of Neuroscience, 37(47), 11353–11365. https://doi.org/10.1523/jneurosci.1711-17.2017
(2017). Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools.
Schoppik, David, Bianco, Isaac H., Prober, David A., Douglass, Adam D., Robson, Drew N., Li, Jennifer M. B., Greenwood, Joel S. F., Soucy, Edward, Engert, Florian, & The Journal of Neuroscience, 37(47), 11353–11365. https://doi.org/10.1523/jneurosci.1711-17.2017
(2017). Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools.
Gagnon, James A., Obbad, Kamal, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/091504
(2016). Zebrafish Nanog is not required in embryonic cells [Posted-content]. In
Gagnon, James A., Obbad, Kamal, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/091504
(2016). Zebrafish Nanog is not required in embryonic cells [Posted-content]. In
Thyme, S. B., & Schier, A. F. (2016). Correction to Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development [Cell Reports, 15, (2016), 707-714] doi: 10.1016/j.celrep.2016.04.089. Cell Reports, 15(7), 1611–1613. https://doi.org/10.1016/j.celrep.2016.04.089
Thyme, S. B., & Schier, A. F. (2016). Correction to Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development [Cell Reports, 15, (2016), 707-714] doi: 10.1016/j.celrep.2016.04.089. Cell Reports, 15(7), 1611–1613. https://doi.org/10.1016/j.celrep.2016.04.089
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/052712
, & Shendure, Jay. (2016). Whole organism lineage tracing by combinatorial and cumulative genome editing [Posted-content]. In
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/052712
, & Shendure, Jay. (2016). Whole organism lineage tracing by combinatorial and cumulative genome editing [Posted-content]. In
Dunn, Timothy W, Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A, Yang, Chao-Tsung, Author response: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion (Peer-review) [Peer-review, eLife Sciences Publications, Ltd]. https://doi.org/10.7554/elife.12741.032
, Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016, February 22).
Dunn, Timothy W, Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A, Yang, Chao-Tsung, Author response: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion (Peer-review) [Peer-review, eLife Sciences Publications, Ltd]. https://doi.org/10.7554/elife.12741.032
, Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016, February 22).
Chew, Guo-Liang, Pauli, Andrea, & Nature Communications, 7, 11663. https://doi.org/10.1038/ncomms11663
(2016). Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish.
Chew, Guo-Liang, Pauli, Andrea, & Nature Communications, 7, 11663. https://doi.org/10.1038/ncomms11663
(2016). Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish.
Chiu, Cindy N., Rihel, Jason, Lee, Daniel A., Singh, Chanpreet, Mosser, Eric A., Chen, Shijia, Sapin, Viveca, Pham, Uyen, Engle, Jae, Niles, Brett J., Montz, Christin J., Chakravarthy, Sridhara, Zimmerman, Steven, Salehi-Ashtiani, Kourosh, Vidal, Marc, Neuron, 89(4), 842–856. https://doi.org/10.1016/j.neuron.2016.01.007
, & Prober, David A. (2016). A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States.
Chiu, Cindy N., Rihel, Jason, Lee, Daniel A., Singh, Chanpreet, Mosser, Eric A., Chen, Shijia, Sapin, Viveca, Pham, Uyen, Engle, Jae, Niles, Brett J., Montz, Christin J., Chakravarthy, Sridhara, Zimmerman, Steven, Salehi-Ashtiani, Kourosh, Vidal, Marc, Neuron, 89(4), 842–856. https://doi.org/10.1016/j.neuron.2016.01.007
, & Prober, David A. (2016). A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States.
Dunn, Timothy W., Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A., Yang, Chao-Tsung, eLife, 5, e12741. https://doi.org/10.7554/elife.12741
, Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016). Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion.
Dunn, Timothy W., Mu, Yu, Narayan, Sujatha, Randlett, Owen, Naumann, Eva A., Yang, Chao-Tsung, eLife, 5, e12741. https://doi.org/10.7554/elife.12741
, Freeman, Jeremy, Engert, Florian, & Ahrens, Misha B. (2016). Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion.
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, Development, 143(10), 1832. https://doi.org/10.1242/dev.138859
, Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2016). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis.
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, Development, 143(10), 1832. https://doi.org/10.1242/dev.138859
, Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2016). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis.
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., Science (New York, N.Y.), 353(6298), aaf7907. https://doi.org/10.1126/science.aaf7907
, & Shendure, Jay. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing.
McKenna, Aaron, Findlay, Gregory M., Gagnon, James A., Horwitz, Marshall S., Science (New York, N.Y.), 353(6298), aaf7907. https://doi.org/10.1126/science.aaf7907
, & Shendure, Jay. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing.
Thyme, Summer B., Akhmetova, Laila, Montague, Tessa G., Valen, Eivind, & Nature Communications, 7, 11750. https://doi.org/10.1038/ncomms11750
(2016). Internal guide RNA interactions interfere with Cas9-mediated cleavage.
Thyme, Summer B., Akhmetova, Laila, Montague, Tessa G., Valen, Eivind, & Nature Communications, 7, 11750. https://doi.org/10.1038/ncomms11750
(2016). Internal guide RNA interactions interfere with Cas9-mediated cleavage.
Thyme, Summer B., & Cell Reports, 15(4), 707–714. https://doi.org/10.1016/j.celrep.2016.03.072
(2016). Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development.
Thyme, Summer B., & Cell Reports, 15(4), 707–714. https://doi.org/10.1016/j.celrep.2016.03.072
(2016). Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development.
Dubrulle, J., Jordan, B. M., Akhmetova, L., Farrell, J. A., Kim, S.-H., Solnica-Krezel, L., & Schier, A. F. (2015). Response to nodal morphogen gradient is determined by the kinetics of target gene induction. eLife, 2015(4). https://doi.org/10.7554/elife.05042
Dubrulle, J., Jordan, B. M., Akhmetova, L., Farrell, J. A., Kim, S.-H., Solnica-Krezel, L., & Schier, A. F. (2015). Response to nodal morphogen gradient is determined by the kinetics of target gene induction. eLife, 2015(4). https://doi.org/10.7554/elife.05042
Dubrulle, Julien, Jordan, Benjamin M., Akhmetova, Laila, Farrell, Jeffrey A., Kim, Seok-Hyung, Solnica-Krezel, Lilianna, & eLife, 4, e05042. https://doi.org/10.7554/elife.05042
(2015). Response to Nodal morphogen gradient is determined by the kinetics of target gene induction.
Dubrulle, Julien, Jordan, Benjamin M., Akhmetova, Laila, Farrell, Jeffrey A., Kim, Seok-Hyung, Solnica-Krezel, Lilianna, & eLife, 4, e05042. https://doi.org/10.7554/elife.05042
(2015). Response to Nodal morphogen gradient is determined by the kinetics of target gene induction.
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., Cell Systems, 1(5), 338–348. https://doi.org/10.1016/j.cels.2015.10.010
, & Engert, Florian. (2015). The structure and timescales of heat perception in larval zebrafish.
Haesemeyer, Martin, Robson, Drew N., Li, Jennifer M., Cell Systems, 1(5), 338–348. https://doi.org/10.1016/j.cels.2015.10.010
, & Engert, Florian. (2015). The structure and timescales of heat perception in larval zebrafish.
Haesemeyer, Martin, & Current Opinion in Neurobiology, 30, 122–130. https://doi.org/10.1016/j.conb.2014.12.002
(2015). The study of psychiatric disease genes and drugs in zebrafish.
Haesemeyer, Martin, & Current Opinion in Neurobiology, 30, 122–130. https://doi.org/10.1016/j.conb.2014.12.002
(2015). The study of psychiatric disease genes and drugs in zebrafish.
Lacoste, Alix M. B., Schoppik, David, Robson, Drew N., Haesemeyer, Martin, Portugues, Ruben, Li, Jennifer M., Randlett, Owen, Wee, Caroline L., Engert, Florian, & Current Biology : CB, 25(11), 1526–1534. https://doi.org/10.1016/j.cub.2015.04.025
(2015). A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.
Lacoste, Alix M. B., Schoppik, David, Robson, Drew N., Haesemeyer, Martin, Portugues, Ruben, Li, Jennifer M., Randlett, Owen, Wee, Caroline L., Engert, Florian, & Current Biology : CB, 25(11), 1526–1534. https://doi.org/10.1016/j.cub.2015.04.025
(2015). A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.
Liu, Justin, Merkle, Florian T., Gandhi, Avni V., Gagnon, James A., Woods, Ian G., Chiu, Cindy N., Shimogori, Tomomi, Development, 142(6), 1113–1124. https://doi.org/10.1242/dev.117424
, & Prober, David A. (2015). Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9.
Liu, Justin, Merkle, Florian T., Gandhi, Avni V., Gagnon, James A., Woods, Ian G., Chiu, Cindy N., Shimogori, Tomomi, Development, 142(6), 1113–1124. https://doi.org/10.1242/dev.117424
, & Prober, David A. (2015). Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9.
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, Development, 142(15), 2704–2718. https://doi.org/10.1242/dev.119800
, Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2015). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis.
Li-Villarreal, Nanbing, Forbes, Meredyth M., Loza, Andrew J., Chen, Jiakun, Ma, Taylur, Helde, Kathryn, Moens, Cecilia B., Shin, Jimann, Sawada, Atsushi, Hindes, Anna E., Dubrulle, Julien, Development, 142(15), 2704–2718. https://doi.org/10.1242/dev.119800
, Longmore, Gregory D., Marlow, Florence L., & Solnica-Krezel, Lilianna. (2015). Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis.
Merkle, Florian T., Maroof, Asif, Wataya, Takafumi, Sasai, Yoshiki, Studer, Lorenz, Eggan, Kevin, & Development (Cambridge, England), 142(4), 633–643. https://doi.org/10.1242/dev.117978
(2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.
Merkle, Florian T., Maroof, Asif, Wataya, Takafumi, Sasai, Yoshiki, Studer, Lorenz, Eggan, Kevin, & Development (Cambridge, England), 142(4), 633–643. https://doi.org/10.1242/dev.117978
(2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.
Merkle, Florian T., Neuhausser, Werner M., Santos, David, Valen, Eivind, Gagnon, James A., Maas, Kristi, Sandoe, Jackson, Cell Reports, 11(6), 875–883. https://doi.org/10.1016/j.celrep.2015.04.007
, & Eggan, Kevin. (2015). Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.
Merkle, Florian T., Neuhausser, Werner M., Santos, David, Valen, Eivind, Gagnon, James A., Maas, Kristi, Sandoe, Jackson, Cell Reports, 11(6), 875–883. https://doi.org/10.1016/j.celrep.2015.04.007
, & Eggan, Kevin. (2015). Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.
Mundell, Nathan A., Beier, Kevin T., Pan, Y. Albert, Lapan, Sylvain W., Göz Aytürk, Didem, Berezovskii, Vladimir K., Wark, Abigail R., Drokhlyansky, Eugene, Bielecki, Jan, Born, Richard T., Journal of Comparative Neurology, 523(11), 1639–1663. https://doi.org/10.1002/cne.23761
, & Cepko, Constance L. (2015). Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms.
Mundell, Nathan A., Beier, Kevin T., Pan, Y. Albert, Lapan, Sylvain W., Göz Aytürk, Didem, Berezovskii, Vladimir K., Wark, Abigail R., Drokhlyansky, Eugene, Bielecki, Jan, Born, Richard T., Journal of Comparative Neurology, 523(11), 1639–1663. https://doi.org/10.1002/cne.23761
, & Cepko, Constance L. (2015). Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms.
Pauli, Andrea, Montague, Tessa G., Lennox, Kim A., Behlke, Mark A., & PloS One, 10(10), e0139504. https://doi.org/10.1371/journal.pone.0139504
(2015). Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.
Pauli, Andrea, Montague, Tessa G., Lennox, Kim A., Behlke, Mark A., & PloS One, 10(10), e0139504. https://doi.org/10.1371/journal.pone.0139504
(2015). Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.
Pauli, Andrea, Valen, Eivind, & BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 37(1), 103–112. https://doi.org/10.1002/bies.201400103
(2015). Identifying (non-)coding RNAs and small peptides: challenges and opportunities.
Pauli, Andrea, Valen, Eivind, & BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 37(1), 103–112. https://doi.org/10.1002/bies.201400103
(2015). Identifying (non-)coding RNAs and small peptides: challenges and opportunities.
Randlett, Owen, Wee, Caroline L., Naumann, Eva A., Nnaemeka, Onyeka, Schoppik, David, Fitzgerald, James E., Portugues, Ruben, Lacoste, Alix M. B., Riegler, Clemens, Engert, Florian, & Nature Methods, 12(11), 1039–1046. https://doi.org/10.1038/nmeth.3581
(2015). Whole-brain activity mapping onto a zebrafish brain atlas.
Randlett, Owen, Wee, Caroline L., Naumann, Eva A., Nnaemeka, Onyeka, Schoppik, David, Fitzgerald, James E., Portugues, Ruben, Lacoste, Alix M. B., Riegler, Clemens, Engert, Florian, & Nature Methods, 12(11), 1039–1046. https://doi.org/10.1038/nmeth.3581
(2015). Whole-brain activity mapping onto a zebrafish brain atlas.
Rogers, Katherine W., Blässle, Alexander, Journal of Visualized Experiments, 95, 52266. https://doi.org/10.3791/52266
, & Müller, Patrick. (2015). Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP).
Rogers, Katherine W., Blässle, Alexander, Journal of Visualized Experiments, 95, 52266. https://doi.org/10.3791/52266
, & Müller, Patrick. (2015). Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP).
Satija, Rahul, Farrell, Jeffrey A., Gennert, David, Nature Biotechnology, 33(5), 495–502. https://doi.org/10.1038/nbt.3192
, & Regev, Aviv. (2015). Spatial reconstruction of single-cell gene expression data.
Satija, Rahul, Farrell, Jeffrey A., Gennert, David, Nature Biotechnology, 33(5), 495–502. https://doi.org/10.1038/nbt.3192
, & Regev, Aviv. (2015). Spatial reconstruction of single-cell gene expression data.
Gagnon, James A., Valen, Eivind, Thyme, Summer B., Huang, Peng, Akhmetova, Laila, Pauli, Andrea, Montague, Tessa G., Zimmerman, Steven, Richter, Constance, & PLoS ONE, 9(5), e98186. https://doi.org/10.1371/journal.pone.0098186
(2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.
Gagnon, James A., Valen, Eivind, Thyme, Summer B., Huang, Peng, Akhmetova, Laila, Pauli, Andrea, Montague, Tessa G., Zimmerman, Steven, Richter, Constance, & PLoS ONE, 9(5), e98186. https://doi.org/10.1371/journal.pone.0098186
(2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.
Pauli, Andrea, Norris, Megan L., Valen, Eivind, Chew, Guo-Liang, Gagnon, James A., Zimmerman, Steven, Mitchell, Andrew, Ma, Jiao, Dubrulle, Julien, Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, Saghatelian, Alan, & Science, 343(6172), 1248636. https://doi.org/10.1126/science.1248636
(2014). Toddler: an embryonic signal that promotes cell movement via Apelin receptors.
Pauli, Andrea, Norris, Megan L., Valen, Eivind, Chew, Guo-Liang, Gagnon, James A., Zimmerman, Steven, Mitchell, Andrew, Ma, Jiao, Dubrulle, Julien, Reyon, Deepak, Tsai, Shengdar Q., Joung, J. Keith, Saghatelian, Alan, & Science, 343(6172), 1248636. https://doi.org/10.1126/science.1248636
(2014). Toddler: an embryonic signal that promotes cell movement via Apelin receptors.
Rabani, Michal, Raychowdhury, Raktima, Jovanovic, Marko, Rooney, Michael, Stumpo, Deborah J., Pauli, Andrea, Hacohen, Nir, Cell, 159(7), 1698–1710. https://doi.org/10.1016/j.cell.2014.11.015
, Blackshear, Perry J., Friedman, Nir, Amit, Ido, & Regev, Aviv. (2014). High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies.
Rabani, Michal, Raychowdhury, Raktima, Jovanovic, Marko, Rooney, Michael, Stumpo, Deborah J., Pauli, Andrea, Hacohen, Nir, Cell, 159(7), 1698–1710. https://doi.org/10.1016/j.cell.2014.11.015
, Blackshear, Perry J., Friedman, Nir, Amit, Ido, & Regev, Aviv. (2014). High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies.
Richter, Constance, Woods, Ian G., & Annual Review of Neuroscience, 37, 503–531. https://doi.org/10.1146/annurev-neuro-062111-150447
(2014). Neuropeptidergic control of sleep and wakefulness.
Richter, Constance, Woods, Ian G., & Annual Review of Neuroscience, 37, 503–531. https://doi.org/10.1146/annurev-neuro-062111-150447
(2014). Neuropeptidergic control of sleep and wakefulness.
Development, 141(17), 3289–3291. https://doi.org/10.1242/dev.115402
(2014). Obituary: Walter J. Gehring (1939-2014).
Development, 141(17), 3289–3291. https://doi.org/10.1242/dev.115402
(2014). Obituary: Walter J. Gehring (1939-2014).
Woods, Ian G., Schoppik, David, Shi, Veronica J., Zimmerman, Steven, Coleman, Haley A., Greenwood, Joel, Soucy, Edward R., & Journal of Neuroscience, 34(9), 3142–3160. https://doi.org/10.1523/jneurosci.3529-13.2014
(2014). Neuropeptidergic signaling partitions arousal behaviors in zebrafish.
Woods, Ian G., Schoppik, David, Shi, Veronica J., Zimmerman, Steven, Coleman, Haley A., Greenwood, Joel, Soucy, Edward R., & Journal of Neuroscience, 34(9), 3142–3160. https://doi.org/10.1523/jneurosci.3529-13.2014
(2014). Neuropeptidergic signaling partitions arousal behaviors in zebrafish.
Zhang, Yong, Vastenhouw, Nadine L., Feng, Jianxing, Fu, Kai, Wang, Chenfei, Ge, Ying, Pauli, Andrea, van Hummelen, Paul, Genome Research, 24(2), 260–266. https://doi.org/10.1101/gr.157750.113
, & Liu, X. Shirley. (2014). Canonical nucleosome organization at promoters forms during genome activation.
Zhang, Yong, Vastenhouw, Nadine L., Feng, Jianxing, Fu, Kai, Wang, Chenfei, Ge, Ying, Pauli, Andrea, van Hummelen, Paul, Genome Research, 24(2), 260–266. https://doi.org/10.1101/gr.157750.113
, & Liu, X. Shirley. (2014). Canonical nucleosome organization at promoters forms during genome activation.
Chew, Guo-Liang, Pauli, Andrea, Rinn, John L., Regev, Aviv, Development, 140(13), 2828–2834. https://doi.org/10.1242/dev.098343
, & Valen, Eivind. (2013). Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs.
Chew, Guo-Liang, Pauli, Andrea, Rinn, John L., Regev, Aviv, Development, 140(13), 2828–2834. https://doi.org/10.1242/dev.098343
, & Valen, Eivind. (2013). Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs.
Levitz, Joshua, Pantoja, Carlos, Gaub, Benjamin, Janovjak, Harald, Reiner, Andreas, Hoagland, Adam, Schoppik, David, Kane, Brian, Stawski, Philipp, Nature Neuroscience, 16(4), 507–516. https://doi.org/10.1038/nn.3346
, Trauner, Dirk, & Isacoff, Ehud Y. (2013). Optical control of metabotropic glutamate receptors.
Levitz, Joshua, Pantoja, Carlos, Gaub, Benjamin, Janovjak, Harald, Reiner, Andreas, Hoagland, Adam, Schoppik, David, Kane, Brian, Stawski, Philipp, Nature Neuroscience, 16(4), 507–516. https://doi.org/10.1038/nn.3346
, Trauner, Dirk, & Isacoff, Ehud Y. (2013). Optical control of metabotropic glutamate receptors.
Müller, Patrick, Rogers, Katherine W., Yu, Shuizi R., Brand, Michael, & Development (Cambridge, England), 140(8), 1621–1638. https://doi.org/10.1242/dev.083519
(2013). Morphogen transport.
Müller, Patrick, Rogers, Katherine W., Yu, Shuizi R., Brand, Michael, & Development (Cambridge, England), 140(8), 1621–1638. https://doi.org/10.1242/dev.083519
(2013). Morphogen transport.