Publications
151 found
Show per page
Salikhanov, I., Roth, V., Gahl, B., Reid, G., Kolb, R., Dimanski, D., Kowol, B., Mawad, B. M., Reuthebuch, O., & Berdajs, D. (2025). Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study [Journal-article]. Biomedicines, 13(8), 2023. https://doi.org/10.3390/biomedicines13082023
Salikhanov, I., Roth, V., Gahl, B., Reid, G., Kolb, R., Dimanski, D., Kowol, B., Mawad, B. M., Reuthebuch, O., & Berdajs, D. (2025). Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study [Journal-article]. Biomedicines, 13(8), 2023. https://doi.org/10.3390/biomedicines13082023
Negri, M.M., Aellen, J., & (2025). Injective flows for star-like manifolds. In arXiv. https://doi.org/10.48550/arXiv.2406.09116
Negri, M.M., Aellen, J., & (2025). Injective flows for star-like manifolds. In arXiv. https://doi.org/10.48550/arXiv.2406.09116
Nagy-Huber, Monika, & . (2024). Physics-informed boundary integral networks (PIBI-Nets): A data-driven approach for solving partial differential equations. Journal of Computational Science, 81. https://doi.org/10.1016/j.jocs.2024.102355
Nagy-Huber, Monika, & . (2024). Physics-informed boundary integral networks (PIBI-Nets): A data-driven approach for solving partial differential equations. Journal of Computational Science, 81. https://doi.org/10.1016/j.jocs.2024.102355
Arend Torres, Fabricio, Negri,Marcello Massimo, Inversi, Marco, Aellen, Jonathan, & . (2024, May 7). Lagrangian Flow Networks for Conservation Laws. The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=Nshk5YpdWE
Arend Torres, Fabricio, Negri,Marcello Massimo, Inversi, Marco, Aellen, Jonathan, & . (2024, May 7). Lagrangian Flow Networks for Conservation Laws. The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=Nshk5YpdWE
Schwendinger, Fabian, Biehler, Ann-Kathrin, Nagy-Huber, Monika, Knaier, Raphael, , Dumitrescu, Daniel, Meyer, F. Joachim, Hager, Alfred, & Schmidt-Trucksäss, Arno. (2024). Using Machine Learning–Based Algorithms to Identify and Quantify Exercise Limitations in Clinical Practice: Are We There Yet? Medicine and Science in Sports and Exercise, 56(2), 159–169. https://doi.org/10.1249/MSS.0000000000003293
Schwendinger, Fabian, Biehler, Ann-Kathrin, Nagy-Huber, Monika, Knaier, Raphael, , Dumitrescu, Daniel, Meyer, F. Joachim, Hager, Alfred, & Schmidt-Trucksäss, Arno. (2024). Using Machine Learning–Based Algorithms to Identify and Quantify Exercise Limitations in Clinical Practice: Are We There Yet? Medicine and Science in Sports and Exercise, 56(2), 159–169. https://doi.org/10.1249/MSS.0000000000003293
Hauke, Daniel J., Wobmann, Michelle, Andreou, Christina, Mackintosh, Amatya J., DE BOCK, Renate, Karvelis, Povilas, Adams, Rick A., Sterzer, Philipp, Borgwardt, Stefan, , & Diaconescu, Andreea O. (2024). Altered Perception of Environmental Volatility During Social Learning in Emerging Psychosis. Computational Psychiatry, 8(1), 1–22. https://doi.org/10.5334/cpsy.95
Hauke, Daniel J., Wobmann, Michelle, Andreou, Christina, Mackintosh, Amatya J., DE BOCK, Renate, Karvelis, Povilas, Adams, Rick A., Sterzer, Philipp, Borgwardt, Stefan, , & Diaconescu, Andreea O. (2024). Altered Perception of Environmental Volatility During Social Learning in Emerging Psychosis. Computational Psychiatry, 8(1), 1–22. https://doi.org/10.5334/cpsy.95
Torres, Fabricio Arend, Negri, Marcello M., Inversi, Marco, Aellen, Jonathan, & . (2024, January 1). LAGRANGIAN FLOW NETWORKS FOR CONSERVATION LAWS. 12th International Conference on Learning Representations, ICLR 2024.
Torres, Fabricio Arend, Negri, Marcello M., Inversi, Marco, Aellen, Jonathan, & . (2024, January 1). LAGRANGIAN FLOW NETWORKS FOR CONSERVATION LAWS. 12th International Conference on Learning Representations, ICLR 2024.
Gschwandtner, Ute, Bogaarts, Guy, , & Fuhr, Peter. (2023). Prediction of cognitive decline in Parkinson’s disease (PD) patients with electroencephalography (EEG) connectivity characterized by time-between-phase-crossing (TBPC). Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32345-6
Gschwandtner, Ute, Bogaarts, Guy, , & Fuhr, Peter. (2023). Prediction of cognitive decline in Parkinson’s disease (PD) patients with electroencephalography (EEG) connectivity characterized by time-between-phase-crossing (TBPC). Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32345-6
Gschwandtner, Ute, Bogaarts, Guy, , & Fuhr, Peter. (2023). Prediction of cognitive decline in Parkinson’s disease (PD) patients with electroencephalography (EEG) connectivity characterized by time-between-phase-crossing (TBPC) [Journal-article]. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32345-6
Gschwandtner, Ute, Bogaarts, Guy, , & Fuhr, Peter. (2023). Prediction of cognitive decline in Parkinson’s disease (PD) patients with electroencephalography (EEG) connectivity characterized by time-between-phase-crossing (TBPC) [Journal-article]. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32345-6
Hauke, Daniel J., Charlton, Colleen E., Schmidt, André, Griffiths, John D., Woods, Scott W., Ford, Judith M., Srihari, Vinod H., , Diaconescu, Andreea O., & Mathalon, Daniel H. (2023). Aberrant Hierarchical Prediction Errors Are Associated With Transition to Psychosis: A Computational Single-Trial Analysis of the Mismatch Negativity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8(12), 1176–1185. https://doi.org/10.1016/j.bpsc.2023.07.011
Hauke, Daniel J., Charlton, Colleen E., Schmidt, André, Griffiths, John D., Woods, Scott W., Ford, Judith M., Srihari, Vinod H., , Diaconescu, Andreea O., & Mathalon, Daniel H. (2023). Aberrant Hierarchical Prediction Errors Are Associated With Transition to Psychosis: A Computational Single-Trial Analysis of the Mismatch Negativity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8(12), 1176–1185. https://doi.org/10.1016/j.bpsc.2023.07.011
Steppan, Martin, Zimmermann, Ronan, Fürer, Lukas, Southward, Matthew, Koenig, Julian, Kaess, Michael, Kleinbub, Johann Roland, , & Schmeck, Klaus. (2023). Machine Learning Facial Emotion Classifiers in Psychotherapy Research: A Proof-of-Concept Study. Psychopathology, 57(3), 159–168. https://doi.org/10.1159/000534811
Steppan, Martin, Zimmermann, Ronan, Fürer, Lukas, Southward, Matthew, Koenig, Julian, Kaess, Michael, Kleinbub, Johann Roland, , & Schmeck, Klaus. (2023). Machine Learning Facial Emotion Classifiers in Psychotherapy Research: A Proof-of-Concept Study. Psychopathology, 57(3), 159–168. https://doi.org/10.1159/000534811
Bedford, Peter, Hauke, Daniel J., Wang, Zheng, , Nagy-Huber, Monika, Holze, Friederike, Ley, Laura, Vizeli, Patrick, Liechti, Matthias E., Borgwardt, Stefan, Müller, Felix, & Diaconescu, Andreea O. (2023). The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity. Neuropsychopharmacology, 48(8), 1175–1183. https://doi.org/10.1038/s41386-023-01574-8
Bedford, Peter, Hauke, Daniel J., Wang, Zheng, , Nagy-Huber, Monika, Holze, Friederike, Ley, Laura, Vizeli, Patrick, Liechti, Matthias E., Borgwardt, Stefan, Müller, Felix, & Diaconescu, Andreea O. (2023). The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity. Neuropsychopharmacology, 48(8), 1175–1183. https://doi.org/10.1038/s41386-023-01574-8
Hauke, D. J., Wobmann, M., Andreou, C., Mackintosh, A., de Bock, R., Karvelis, P., Adams, R. A., Sterzer, P., Borgwardt, S., Roth, V., & Diaconescu, A. O. (2023, February 6). Aberrant perception of environmental volatility during social learning in emerging psychosis [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.02.02.23285371
Hauke, D. J., Wobmann, M., Andreou, C., Mackintosh, A., de Bock, R., Karvelis, P., Adams, R. A., Sterzer, P., Borgwardt, S., Roth, V., & Diaconescu, A. O. (2023, February 6). Aberrant perception of environmental volatility during social learning in emerging psychosis [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.02.02.23285371
Negri, Marcello Massimo, Arend Torres, Fabricio, & . (2023). Conditional Matrix Flows for Gaussian Graphical Models. Advances in Neural Information Processing Systems, 36, 25095–25111. https://proceedings.neurips.cc/paper_files/paper/2023/file/4eef8829319316d0b552328715c836c3-Paper-Conference.pdf
Negri, Marcello Massimo, Arend Torres, Fabricio, & . (2023). Conditional Matrix Flows for Gaussian Graphical Models. Advances in Neural Information Processing Systems, 36, 25095–25111. https://proceedings.neurips.cc/paper_files/paper/2023/file/4eef8829319316d0b552328715c836c3-Paper-Conference.pdf
Hauke, D. J., Charlton, C. E., Schmidt, A., Griffiths, J., Woods, S. W., Ford, J. M., Srihari, V. H., Roth, V., Diaconescu, A. O., & Mathalon, D. H. (2022). Aberrant hierarchical prediction errors are associated with transition to psychosis: A computational single-trial analysis of the mismatch negativity [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.12.20.22283712
Hauke, D. J., Charlton, C. E., Schmidt, A., Griffiths, J., Woods, S. W., Ford, J. M., Srihari, V. H., Roth, V., Diaconescu, A. O., & Mathalon, D. H. (2022). Aberrant hierarchical prediction errors are associated with transition to psychosis: A computational single-trial analysis of the mismatch negativity [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.12.20.22283712
Bedford, P., Hauke, D. J., Wang, Z., Roth, V., Nagy-Huber, M., Holze, F., Ley, L., Vizeli, P., Liechti, M. E., Borgwardt, S., Müller, F., & Diaconescu, A. O. (2022). The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.11.01.514687
Bedford, P., Hauke, D. J., Wang, Z., Roth, V., Nagy-Huber, M., Holze, F., Ley, L., Vizeli, P., Liechti, M. E., Borgwardt, S., Müller, F., & Diaconescu, A. O. (2022). The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.11.01.514687
Arend Torres, Fabricio, Negri, Marcello Massimo, Nagy-Huber, Monika, Samarin, Maxim, & . (2022). Mesh-free eulerian physics-informed neural networks. https://doi.org/10.48550/arxiv.2206.01545
Arend Torres, Fabricio, Negri, Marcello Massimo, Nagy-Huber, Monika, Samarin, Maxim, & . (2022). Mesh-free eulerian physics-informed neural networks. https://doi.org/10.48550/arxiv.2206.01545
Hauke D.J., , Karvelis P., Adams R.A., Moritz S., Borgwardt S., Diaconescu A.O., & Andreou C. (2022). Increased Belief Instability in Psychotic Disorders Predicts Treatment Response to Metacognitive Training. Schizophrenia Bulletin, 48(4), 826–838. https://doi.org/10.1093/schbul/sbac029
Hauke D.J., , Karvelis P., Adams R.A., Moritz S., Borgwardt S., Diaconescu A.O., & Andreou C. (2022). Increased Belief Instability in Psychotic Disorders Predicts Treatment Response to Metacognitive Training. Schizophrenia Bulletin, 48(4), 826–838. https://doi.org/10.1093/schbul/sbac029
Maxim Samarin, , & David Belius. (2022, January 1). Feature Learning and Random Features in Standard Finite-Width Convolutional Neural Networks: An Empirical Study. Uai. https://openreview.net/forum?id=ScIEZdIiqe5
Maxim Samarin, , & David Belius. (2022, January 1). Feature Learning and Random Features in Standard Finite-Width Convolutional Neural Networks: An Empirical Study. Uai. https://openreview.net/forum?id=ScIEZdIiqe5
Nesterov, Vitali, Torres, Fabricio Arend, Nagy-Huber, Monika, Samarin, Maxim, & . (2022). Learning Invariances with Generalised Input-Convex Neural Networks. https://doi.org/10.48550/arxiv.2204.07009
Nesterov, Vitali, Torres, Fabricio Arend, Nagy-Huber, Monika, Samarin, Maxim, & . (2022). Learning Invariances with Generalised Input-Convex Neural Networks. https://doi.org/10.48550/arxiv.2204.07009
Gschwandtner, Ute, Bogaarts, Guy, Chaturvedi, Menorca, Hatz, Florian, Meyer, Antonia, Fuhr, Peter, & . (2021). Dynamic Functional Connectivity of EEG: From Identifying Fingerprints to Gender Differences to a General Blueprint for the Brain’s Functional Organization. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.683633
Gschwandtner, Ute, Bogaarts, Guy, Chaturvedi, Menorca, Hatz, Florian, Meyer, Antonia, Fuhr, Peter, & . (2021). Dynamic Functional Connectivity of EEG: From Identifying Fingerprints to Gender Differences to a General Blueprint for the Brain’s Functional Organization. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.683633
Keller, Sebastian Mathias, Samarin, Maxim, Arend Torres, Fabricio, Wieser, Mario, & . (2021). Learning Extremal Representations with Deep Archetypal Analysis. International Journal of Computer Vision, 129(4), 805–820. https://doi.org/10.1007/s11263-020-01390-3
Keller, Sebastian Mathias, Samarin, Maxim, Arend Torres, Fabricio, Wieser, Mario, & . (2021). Learning Extremal Representations with Deep Archetypal Analysis. International Journal of Computer Vision, 129(4), 805–820. https://doi.org/10.1007/s11263-020-01390-3
Samarin, Maxim, Nesterov, Vitali, Wieser, Mario, Wieczorek, Aleksander, Parbhoo, Sonali, & . (2021). Learning Conditional Invariance Through Cycle Consistency. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13024 LNCS, 376–391. https://doi.org/10.1007/978-3-030-92659-5_24
Samarin, Maxim, Nesterov, Vitali, Wieser, Mario, Wieczorek, Aleksander, Parbhoo, Sonali, & . (2021). Learning Conditional Invariance Through Cycle Consistency. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13024 LNCS, 376–391. https://doi.org/10.1007/978-3-030-92659-5_24
Wu, Mike, Parbhoo, Sonali, Hughes, Michael C., , & Doshi-Velez, Finale. (2021). Optimizing for interpretability in deep neural networks with tree regularization. Journal of Artificial Intelligence Research, 72. https://doi.org/10.1613/jair.1.12558
Wu, Mike, Parbhoo, Sonali, Hughes, Michael C., , & Doshi-Velez, Finale. (2021). Optimizing for interpretability in deep neural networks with tree regularization. Journal of Artificial Intelligence Research, 72. https://doi.org/10.1613/jair.1.12558
Zimmermann, Ronan, Fürer, Lukas, Schenk, Nathalie, Koenig, Julian, , Schlüter-Müller, Susanne, Kaess, Michael, & Schmeck, Klaus. (2021). Silence in the psychotherapy of adolescents with borderline personality pathology. Personality Disorders, 12(2), 160–170. https://doi.org/10.1037/per0000402
Zimmermann, Ronan, Fürer, Lukas, Schenk, Nathalie, Koenig, Julian, , Schlüter-Müller, Susanne, Kaess, Michael, & Schmeck, Klaus. (2021). Silence in the psychotherapy of adolescents with borderline personality pathology. Personality Disorders, 12(2), 160–170. https://doi.org/10.1037/per0000402
Keller, S. M., Gschwandtner, U., Meyer, A., Chaturvedi, M., Fuhr, P., & (2020). FV22 Reduced Tsallis Entropy of EEG in Patients with Parkinsons Disease – A Predictive Marker for Cognitive Decline [Journal-article]. Clinical Neurophysiology, 131(4), e233. https://doi.org/10.1016/j.clinph.2019.12.112
Keller, S. M., Gschwandtner, U., Meyer, A., Chaturvedi, M., Fuhr, P., & (2020). FV22 Reduced Tsallis Entropy of EEG in Patients with Parkinsons Disease – A Predictive Marker for Cognitive Decline [Journal-article]. Clinical Neurophysiology, 131(4), e233. https://doi.org/10.1016/j.clinph.2019.12.112
Samarin, M., Nagy-Huber, M., Zweifel, L., Meusburger, K., Alewell, C., & Roth, V. (2020). Visual Understanding in Semantic Segmentation of Soil Erosion Sites in Swiss Alpine Grasslands [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu2020-17346
Samarin, M., Nagy-Huber, M., Zweifel, L., Meusburger, K., Alewell, C., & Roth, V. (2020). Visual Understanding in Semantic Segmentation of Soil Erosion Sites in Swiss Alpine Grasslands [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu2020-17346
Zweifel, L., Samarin, M., Meusburger, K., Roth, V., & Alewell, C. (2020). Identification of Soil Erosion in Alpine Grasslands on High-Resolution Aerial Images: Switching from Object-based Image Analysis to Deep Learning? [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu2020-2328
Zweifel, L., Samarin, M., Meusburger, K., Roth, V., & Alewell, C. (2020). Identification of Soil Erosion in Alpine Grasslands on High-Resolution Aerial Images: Switching from Object-based Image Analysis to Deep Learning? [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu2020-2328
Keller, Sebastian M., Gschwandtner, Ute, Meyer, Antonia, Chaturvedi, Menorca, , & Fuhr, Peter. (2020). Cognitive decline in Parkinson’s disease is associated with reduced complexity of EEG at baseline. Brain Communications, 2(2), fcaa207. https://doi.org/10.1093/braincomms/fcaa207
Keller, Sebastian M., Gschwandtner, Ute, Meyer, Antonia, Chaturvedi, Menorca, , & Fuhr, Peter. (2020). Cognitive decline in Parkinson’s disease is associated with reduced complexity of EEG at baseline. Brain Communications, 2(2), fcaa207. https://doi.org/10.1093/braincomms/fcaa207
Kozak, Vitalii V., Chaturvedi, Menorca, Gschwandtner, Ute, Hatz, Florian, Meyer, Antonia, , & Fuhr, Peter. (2020). EEG Slowing and Axial Motor Impairment Are Independent Predictors of Cognitive Worsening in a Three-Year Cohort of Patients With Parkinson’s Disease. Frontiers in Aging Neuroscience, 12, 171. https://doi.org/10.3389/fnagi.2020.00171
Kozak, Vitalii V., Chaturvedi, Menorca, Gschwandtner, Ute, Hatz, Florian, Meyer, Antonia, , & Fuhr, Peter. (2020). EEG Slowing and Axial Motor Impairment Are Independent Predictors of Cognitive Worsening in a Three-Year Cohort of Patients With Parkinson’s Disease. Frontiers in Aging Neuroscience, 12, 171. https://doi.org/10.3389/fnagi.2020.00171
Nesterov, Vitali, Wieser, Mario, & . (2020). 3DMolNet: A Generative Network for Molecular Structures. In Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2010.06477
Nesterov, Vitali, Wieser, Mario, & . (2020). 3DMolNet: A Generative Network for Molecular Structures. In Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2010.06477
Parbhoo, Sonali, Wieser, Mario, , & Doshi-Velez, Finale. (2020). Transfer Learning from Well-Curated to Less-Resourced Populations with HIV. In Doshi-Velez, F.; Fackler, J.; Jung, K.; Kale, D.; Ranganath, R.; Wallace, B.; Wiens, J. (Ed.), Proceedings of Machine Learning Research (Vol. 126). PMLR.
Parbhoo, Sonali, Wieser, Mario, , & Doshi-Velez, Finale. (2020). Transfer Learning from Well-Curated to Less-Resourced Populations with HIV. In Doshi-Velez, F.; Fackler, J.; Jung, K.; Kale, D.; Ranganath, R.; Wallace, B.; Wiens, J. (Ed.), Proceedings of Machine Learning Research (Vol. 126). PMLR.
Parbhoo, Sonali, Wieser, Mario, Wieczorek, Aleksander, & . (2020). Information Bottleneck for Estimating Treatment Effects with Systematically Missing Covariates. Entropy, 22(4), 389. https://doi.org/10.3390/e22040389
Parbhoo, Sonali, Wieser, Mario, Wieczorek, Aleksander, & . (2020). Information Bottleneck for Estimating Treatment Effects with Systematically Missing Covariates. Entropy, 22(4), 389. https://doi.org/10.3390/e22040389
Samarin, Maxim, Zweifel, Lauren, , & Alewell, Christine. (2020). Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network. Remote Sensing, 12(24), 4149. https://doi.org/10.3390/rs12244149
Samarin, Maxim, Zweifel, Lauren, , & Alewell, Christine. (2020). Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network. Remote Sensing, 12(24), 4149. https://doi.org/10.3390/rs12244149
Thorball, Christian W., Borghesi, Alessandro, Bachmann, Nadine, Von Siebenthal, Chantal, Vongrad, Valentina, Turk, Teja, Neumann, Kathrin, Beerenwinkel, Niko, Bogojeska, Jasmina, , Kok, Yik Lim, Parbhoo, Sonali, Wieser, Mario, Böni, Jürg, Perreau, Matthieu, Klimkait, Thomas, Yerly, Sabine, Battegay, Manuel, Rauch, Andri, et al. (2020). Host Genomics of the HIV-1 Reservoir Size and Its Decay Rate During Suppressive Antiretroviral Treatment. Journal of Acquired Immune Deficiency Syndromes, 85(4), 517–524. https://doi.org/10.1097/qai.0000000000002473
Thorball, Christian W., Borghesi, Alessandro, Bachmann, Nadine, Von Siebenthal, Chantal, Vongrad, Valentina, Turk, Teja, Neumann, Kathrin, Beerenwinkel, Niko, Bogojeska, Jasmina, , Kok, Yik Lim, Parbhoo, Sonali, Wieser, Mario, Böni, Jürg, Perreau, Matthieu, Klimkait, Thomas, Yerly, Sabine, Battegay, Manuel, Rauch, Andri, et al. (2020). Host Genomics of the HIV-1 Reservoir Size and Its Decay Rate During Suppressive Antiretroviral Treatment. Journal of Acquired Immune Deficiency Syndromes, 85(4), 517–524. https://doi.org/10.1097/qai.0000000000002473
Wan, Chenjie, Bachmann, Nadine, Mitov, Venelin, Blanquart, François, Céspedes, Susana Posada, Turk, Teja, Neumann, Kathrin, Beerenwinkel, Niko, Bogojeska, Jasmina, Fellay, Jacques, , Böni, Jürg, Perreau, Matthieu, Klimkait, Thomas, Yerly, Sabine, Battegay, Manuel, Walti, Laura, Calmy, Alexandra, Vernazza, Pietro, et al. (2020). Heritability of the HIV-1 reservoir size and decay under long-term suppressive ART. Nature Communications, 11(1), 5542. https://doi.org/10.1038/s41467-020-19198-7
Wan, Chenjie, Bachmann, Nadine, Mitov, Venelin, Blanquart, François, Céspedes, Susana Posada, Turk, Teja, Neumann, Kathrin, Beerenwinkel, Niko, Bogojeska, Jasmina, Fellay, Jacques, , Böni, Jürg, Perreau, Matthieu, Klimkait, Thomas, Yerly, Sabine, Battegay, Manuel, Walti, Laura, Calmy, Alexandra, Vernazza, Pietro, et al. (2020). Heritability of the HIV-1 reservoir size and decay under long-term suppressive ART. Nature Communications, 11(1), 5542. https://doi.org/10.1038/s41467-020-19198-7
Wieczorek, Aleksander, & . (2020). On the Difference between the Information Bottleneck and the Deep Information Bottleneck. Entropy, 22(2), 131. https://doi.org/10.3390/e22020131
Wieczorek, Aleksander, & . (2020). On the Difference between the Information Bottleneck and the Deep Information Bottleneck. Entropy, 22(2), 131. https://doi.org/10.3390/e22020131
Wieser, Mario, Parbhoo, Sonali, Wieczorek, Aleksander, & . (2020). Inverse Learning of Symmetries (Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H., Ed.). Curran Associates, Inc.
Wieser, Mario, Parbhoo, Sonali, Wieczorek, Aleksander, & . (2020). Inverse Learning of Symmetries (Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H., Ed.). Curran Associates, Inc.
Wieser, Mario, Parbhoo, Sonali, Wieczorek, Aleksander, & . (2020). Inverse learning of symmetries. Advances in Neural Information Processing Systems, 2020-December.
Wieser, Mario, Parbhoo, Sonali, Wieczorek, Aleksander, & . (2020). Inverse learning of symmetries. Advances in Neural Information Processing Systems, 2020-December.
Wu, Mike, Parbhoo, Sonali, Hughes, Michael C., Kindle, Ryan, Celi, Leo A., Zazzi, Maurizio, , & Doshi-Velez, Finale. (2020). Regional Tree Regularization for Interpretability in Deep Neural Networks. Proceedings of the ... AAAI Conference on Artificial Intelligence, 34. https://doi.org/10.1609/aaai.v34i04.6112
Wu, Mike, Parbhoo, Sonali, Hughes, Michael C., Kindle, Ryan, Celi, Leo A., Zazzi, Maurizio, , & Doshi-Velez, Finale. (2020). Regional Tree Regularization for Interpretability in Deep Neural Networks. Proceedings of the ... AAAI Conference on Artificial Intelligence, 34. https://doi.org/10.1609/aaai.v34i04.6112
Wu, Mike, Parbhoo, Sonali, Hughes, Michael C., Kindle, Ryan, Celi, Leo, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2020). Regional tree regularization for interpretability in deep neural networks. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, null, 6413–6421.
Wu, Mike, Parbhoo, Sonali, Hughes, Michael C., Kindle, Ryan, Celi, Leo, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2020). Regional tree regularization for interpretability in deep neural networks. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, null, 6413–6421.
Thorball, C. W., Borghesi, A., Bachmann, N., von Siebenthal, C., Vongrad, V., Turk, T., Neumann, K., Beerenwinkel, N., Bogojeska, J., Roth, V., Kok, Y. L., Parbhoo, S., Wieser, M., Böni, J., Perreau, M., Klimkait, T., Yerly, S., Battegay, M., Rauch, A., et al. (2019, December 6). Host genomics of the HIV-1 reservoir size and its decay rate during suppressive antiretroviral treatment [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/19013763
Thorball, C. W., Borghesi, A., Bachmann, N., von Siebenthal, C., Vongrad, V., Turk, T., Neumann, K., Beerenwinkel, N., Bogojeska, J., Roth, V., Kok, Y. L., Parbhoo, S., Wieser, M., Böni, J., Perreau, M., Klimkait, T., Yerly, S., Battegay, M., Rauch, A., et al. (2019, December 6). Host genomics of the HIV-1 reservoir size and its decay rate during suppressive antiretroviral treatment [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/19013763
Bachmann, Nadine, von Siebenthal, Chantal, Vongrad, Valentina, Turk, Teja, Neumann, Kathrin, Beerenwinkel, Niko, Bogojeska, Jasmina, Fellay, Jaques, , Kok, Yik Lim, Thorball, Christian W., Borghesi, Alessandro, Parbhoo, Sonali, Wieser, Mario, Böni, Jürg, Perreau, Matthieu, Klimkait, Thomas, Yerly, Sabine, Battegay, Manuel, et al. (2019). Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10884-9
Bachmann, Nadine, von Siebenthal, Chantal, Vongrad, Valentina, Turk, Teja, Neumann, Kathrin, Beerenwinkel, Niko, Bogojeska, Jasmina, Fellay, Jaques, , Kok, Yik Lim, Thorball, Christian W., Borghesi, Alessandro, Parbhoo, Sonali, Wieser, Mario, Böni, Jürg, Perreau, Matthieu, Klimkait, Thomas, Yerly, Sabine, Battegay, Manuel, et al. (2019). Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10884-9
Chaturvedi, M., Yilmaz, R., Gschwandtner, U., Greulich, K., Reimold, M., Fuhr, P., , Timmers, M., Streffer, J., Berg, D., & Liepelt-Scarfone, I. (2019). FV 4 Electroencephalographic Activity as a potential prodromal marker for Parkinson’s disease [Journal-article]. Clinical Neurophysiology, 130(8), e122–e123. https://doi.org/10.1016/j.clinph.2019.04.614
Chaturvedi, M., Yilmaz, R., Gschwandtner, U., Greulich, K., Reimold, M., Fuhr, P., , Timmers, M., Streffer, J., Berg, D., & Liepelt-Scarfone, I. (2019). FV 4 Electroencephalographic Activity as a potential prodromal marker for Parkinson’s disease [Journal-article]. Clinical Neurophysiology, 130(8), e122–e123. https://doi.org/10.1016/j.clinph.2019.04.614
Chaturvedi, Menorca, Bogaarts, Jan Guy, Kozak Cozac, Vitalii V., Hatz, Florian, Gschwandtner, Ute, Meyer, Antonia, Fuhr, Peter, & . (2019). Phase lag index and spectral power as QEEG features for identification of patients with mild cognitive impairment in Parkinson’s disease. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 130(10), 1937–1944. https://doi.org/10.1016/j.clinph.2019.07.017
Chaturvedi, Menorca, Bogaarts, Jan Guy, Kozak Cozac, Vitalii V., Hatz, Florian, Gschwandtner, Ute, Meyer, Antonia, Fuhr, Peter, & . (2019). Phase lag index and spectral power as QEEG features for identification of patients with mild cognitive impairment in Parkinson’s disease. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 130(10), 1937–1944. https://doi.org/10.1016/j.clinph.2019.07.017
Keller, Sebastian Mathias, Murezzan, Damian, & . (2019). Invexity Preserving Transformations for Projection Free Optimization with Sparsity Inducing Non-convex Constraints. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11269 LNCS, 682–697. https://doi.org/10.1007/978-3-030-12939-2_47
Keller, Sebastian Mathias, Murezzan, Damian, & . (2019). Invexity Preserving Transformations for Projection Free Optimization with Sparsity Inducing Non-convex Constraints. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11269 LNCS, 682–697. https://doi.org/10.1007/978-3-030-12939-2_47
Keller, Sebastian Mathias, Samarin, Maxim, Wieser, Mario, & . (2019). Deep Archetypal Analysis. In Fink, Gernot A.; Frintrop, Simone; Jiang, Xiaoyi (Ed.), Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-33676-9_12
Keller, Sebastian Mathias, Samarin, Maxim, Wieser, Mario, & . (2019). Deep Archetypal Analysis. In Fink, Gernot A.; Frintrop, Simone; Jiang, Xiaoyi (Ed.), Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-33676-9_12
Kortylewski, Adam, Wieczorek, Aleksander, Wieser, Mario, Blumer, Clemens, Parbhoo, Sonali, Morel-Forster, Andreas, , & Vetter, Thomas. (2019, January 1). Greedy Structure Learning of Hierarchical Compositional Models. https://doi.org/10.1109/cvpr.2019.01188
Kortylewski, Adam, Wieczorek, Aleksander, Wieser, Mario, Blumer, Clemens, Parbhoo, Sonali, Morel-Forster, Andreas, , & Vetter, Thomas. (2019, January 1). Greedy Structure Learning of Hierarchical Compositional Models. https://doi.org/10.1109/cvpr.2019.01188
Wieczorek, Aleksander, & . (2019). Information Theoretic Causal Effect Quantification. Entropy, 21(10), 975. https://doi.org/10.3390/e21100975
Wieczorek, Aleksander, & . (2019). Information Theoretic Causal Effect Quantification. Entropy, 21(10), 975. https://doi.org/10.3390/e21100975
Bogaarts, J. G., Chaturvedi, M., Cozac, V., Gschwandtner, U., Hardmeier, M., Hatz, F., Meyer, A., Fuhr, P., & (2018). P30. A novel application of the Phase-lag-Index in functional connectivity research [Journal-article]. Clinical Neurophysiology, 129(8), e79. https://doi.org/10.1016/j.clinph.2018.04.671
Bogaarts, J. G., Chaturvedi, M., Cozac, V., Gschwandtner, U., Hardmeier, M., Hatz, F., Meyer, A., Fuhr, P., & (2018). P30. A novel application of the Phase-lag-Index in functional connectivity research [Journal-article]. Clinical Neurophysiology, 129(8), e79. https://doi.org/10.1016/j.clinph.2018.04.671
Chaturvedi, M., Bogaarts, J. G., Hatz, F., Cozac, V., Meyer, A., Gschwandtner, U., Liepelt-Scarfone, I., Babiloni, C., Fuhr, P., & (2018). P78. Can Phase Lag Index (PLI) be beneficial in distinguishing Parkinsons disease Dementia (PDD) patients from Parkinsons disease (PD) patients? [Journal-article]. Clinical Neurophysiology, 129(8), e99. https://doi.org/10.1016/j.clinph.2018.04.710
Chaturvedi, M., Bogaarts, J. G., Hatz, F., Cozac, V., Meyer, A., Gschwandtner, U., Liepelt-Scarfone, I., Babiloni, C., Fuhr, P., & (2018). P78. Can Phase Lag Index (PLI) be beneficial in distinguishing Parkinsons disease Dementia (PDD) patients from Parkinsons disease (PD) patients? [Journal-article]. Clinical Neurophysiology, 129(8), e99. https://doi.org/10.1016/j.clinph.2018.04.710
Cozac, V., Bogaarts, J. G., Chaturvedi, M., Gschwandtner, U., Hatz, F., Meyer, A., , & Fuhr, P. (2018). P76. Axial impairment and EEG slowing are independent predictors of cognitive outcome in a three-year cohort of PD patients [Journal-article]. Clinical Neurophysiology, 129(8), e98. https://doi.org/10.1016/j.clinph.2018.04.708
Cozac, V., Bogaarts, J. G., Chaturvedi, M., Gschwandtner, U., Hatz, F., Meyer, A., , & Fuhr, P. (2018). P76. Axial impairment and EEG slowing are independent predictors of cognitive outcome in a three-year cohort of PD patients [Journal-article]. Clinical Neurophysiology, 129(8), e98. https://doi.org/10.1016/j.clinph.2018.04.708
Chaturvedi, M., Bogaarts, J., Hatz, F., Gschwandtner, U., Cozac, V., Meyer, A., Liepelt, I., Babiloni, C., Fuhr, P., & Roth, V. (2018). F67. Distinguishing Parkinson’s Disease Dementia (PDD) patients from Parkinson’s Disease (PD) patients using EEG frequency and connectivity measures [Journal-article]. Clinical Neurophysiology, 129, e92. https://doi.org/10.1016/j.clinph.2018.04.230
Chaturvedi, M., Bogaarts, J., Hatz, F., Gschwandtner, U., Cozac, V., Meyer, A., Liepelt, I., Babiloni, C., Fuhr, P., & Roth, V. (2018). F67. Distinguishing Parkinson’s Disease Dementia (PDD) patients from Parkinson’s Disease (PD) patients using EEG frequency and connectivity measures [Journal-article]. Clinical Neurophysiology, 129, e92. https://doi.org/10.1016/j.clinph.2018.04.230
Parbhoo, Sonali, Gottesman, Omer, Ross, Andrew Slavin, Komorowski, Matthieu, Faisal, Aldo, Bon, Isabella, , & Doshi-Velez, Finale. (2018). Improving counterfactual reasoning with kernelised dynamic mixing models. PloS One, 13(11), e0205839. https://doi.org/10.1371/journal.pone.0205839
Parbhoo, Sonali, Gottesman, Omer, Ross, Andrew Slavin, Komorowski, Matthieu, Faisal, Aldo, Bon, Isabella, , & Doshi-Velez, Finale. (2018). Improving counterfactual reasoning with kernelised dynamic mixing models. PloS One, 13(11), e0205839. https://doi.org/10.1371/journal.pone.0205839
Parbhoo, Sonali, Wieser, Mario, Wieczorek, Aleksander, & . (2018). Cause-Effect Deep Information Bottleneck For Systematically Missing Covariates. Entropy.
Parbhoo, Sonali, Wieser, Mario, Wieczorek, Aleksander, & . (2018). Cause-Effect Deep Information Bottleneck For Systematically Missing Covariates. Entropy.
Wieczorek, Aleksander, Wieser, Mario, Murezzan, Damian, & . (2018). Learning sparse latent representations with the deep copula information bottleneck. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, null.
Wieczorek, Aleksander, Wieser, Mario, Murezzan, Damian, & . (2018). Learning sparse latent representations with the deep copula information bottleneck. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, null.
Wieser, Mario, Wieczorek, Aleksander, Murezzan, Damian, & . (2018, January 1). Learning Sparse Latent Representations with the Deep Copula Information Bottleneck. https://openreview.net/forum?id=Hk0wHx-RW
Wieser, Mario, Wieczorek, Aleksander, Murezzan, Damian, & . (2018, January 1). Learning Sparse Latent Representations with the Deep Copula Information Bottleneck. https://openreview.net/forum?id=Hk0wHx-RW
Wu, Mike, Hughes, Michael C., Parbhoo, Sonali, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2018, January 1). Beyond Sparsity: Tree Regularization of Deep Models for Interpretability. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16285
Wu, Mike, Hughes, Michael C., Parbhoo, Sonali, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2018, January 1). Beyond Sparsity: Tree Regularization of Deep Models for Interpretability. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16285
Wu, Mike, Hughes, Michael C., Parbhoo, Sonali, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2018). Beyond sparsity: Tree regularization of deep models for interpretability. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, null, 1670–1678.
Wu, Mike, Hughes, Michael C., Parbhoo, Sonali, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2018). Beyond sparsity: Tree regularization of deep models for interpretability. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, null, 1670–1678.
Chaturvedi, M., Hatz, F., Gschwandtner, U., Meyer, A., Cozac, V. V., Bogaarts, J. G., , & Fuhr, P. (2017). P 129 Quantitative EEG and neuropsychological tests to differentiate between Parkinson’s disease patients and healthy controls with Random Forest algorithm [Journal-article]. Clinical Neurophysiology, 128(10), e391–e392. https://doi.org/10.1016/j.clinph.2017.06.202
Chaturvedi, M., Hatz, F., Gschwandtner, U., Meyer, A., Cozac, V. V., Bogaarts, J. G., , & Fuhr, P. (2017). P 129 Quantitative EEG and neuropsychological tests to differentiate between Parkinson’s disease patients and healthy controls with Random Forest algorithm [Journal-article]. Clinical Neurophysiology, 128(10), e391–e392. https://doi.org/10.1016/j.clinph.2017.06.202
Chaturvedi, M., Hatz, F., Gschwandtner, U., Bogaarts, J. G., Meyer, A., Fuhr, P., & (2017). Quantitative EEG (QEEG) Measures Differentiate Parkinson`s Disease Patients from Healthy Controls. Frontiers in Aging Neuroscience, 9(3), 3. https://doi.org/10.3389/fnagi.2017.00003
Chaturvedi, M., Hatz, F., Gschwandtner, U., Bogaarts, J. G., Meyer, A., Fuhr, P., & (2017). Quantitative EEG (QEEG) Measures Differentiate Parkinson`s Disease Patients from Healthy Controls. Frontiers in Aging Neuroscience, 9(3), 3. https://doi.org/10.3389/fnagi.2017.00003
Egger, Bernhard, Kaufmann, Dinu, Schönborn, Sandro, , & Vetter, Thomas. (2017). Copula Eigenfaces with Attributes: Semiparametric Principal Component Analysis for a Combined Color, Shape and Attribute Model. Communications in Computer and Information Science, 693, 95–112. https://doi.org/10.1007/978-3-319-64870-5_5
Egger, Bernhard, Kaufmann, Dinu, Schönborn, Sandro, , & Vetter, Thomas. (2017). Copula Eigenfaces with Attributes: Semiparametric Principal Component Analysis for a Combined Color, Shape and Attribute Model. Communications in Computer and Information Science, 693, 95–112. https://doi.org/10.1007/978-3-319-64870-5_5
Parbhoo, Sonali, Bogojeska, Jasmina, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2017). Combining Kernel and Model Based Learning for HIV Therapy Selection. Amia Summits on Translational Science Proceedings, 2017, 239–248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543338/
Parbhoo, Sonali, Bogojeska, Jasmina, Zazzi, Maurizio, , & Doshi-Velez, Finale. (2017). Combining Kernel and Model Based Learning for HIV Therapy Selection. Amia Summits on Translational Science Proceedings, 2017, 239–248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543338/
, & Vetter, Thomas. (2017). Preface. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10496 LNCS.
, & Vetter, Thomas. (2017). Preface. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10496 LNCS.
Chaturvedi, M., Hatz, F., Meyer, A., Cozac, V., Gschwandtner, U., Roth, V., & Fuhr, P. (2016). Can Quantitative EEG (QEEG) differentiate patients with Parkinson’s disease (PD) from healthy controls? [Journal-article]. Parkinsonism & Related Disorders, 22, e163. https://doi.org/10.1016/j.parkreldis.2015.10.388
Chaturvedi, M., Hatz, F., Meyer, A., Cozac, V., Gschwandtner, U., Roth, V., & Fuhr, P. (2016). Can Quantitative EEG (QEEG) differentiate patients with Parkinson’s disease (PD) from healthy controls? [Journal-article]. Parkinsonism & Related Disorders, 22, e163. https://doi.org/10.1016/j.parkreldis.2015.10.388
Dazert, E., Colombi, M., Boldanova, T., Moes, S., Adametz, D., Quagliata, L., , Terracciano, L., Heim, M. H., Jenoe, P., & Hall, M. N. (2016). Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1381–1386. https://doi.org/10.1073/pnas.1523434113
Dazert, E., Colombi, M., Boldanova, T., Moes, S., Adametz, D., Quagliata, L., , Terracciano, L., Heim, M. H., Jenoe, P., & Hall, M. N. (2016). Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1381–1386. https://doi.org/10.1073/pnas.1523434113
Egger, Bernhard, Kaufmann, Dinu, Schönborn, Sandro, , & Vetter, Thomas. (2016). Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling. 11th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) , 1, 50–58. https://doi.org/10.5220/0005718800480056
Egger, Bernhard, Kaufmann, Dinu, Schönborn, Sandro, , & Vetter, Thomas. (2016). Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling. 11th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) , 1, 50–58. https://doi.org/10.5220/0005718800480056
Kaufmann, Dinu, Parbhoo, Sonali, Wieczorek, Aleksander, Keller, Sebastian, Adametz, David, & . (2016). Bayesian Markov Blanket Estimation. Proceedings of Machine Learning Research, 51. http://jmlr.org/proceedings/papers/v51/kaufmann16.html
Kaufmann, Dinu, Parbhoo, Sonali, Wieczorek, Aleksander, Keller, Sebastian, Adametz, David, & . (2016). Bayesian Markov Blanket Estimation. Proceedings of Machine Learning Research, 51. http://jmlr.org/proceedings/papers/v51/kaufmann16.html
Kaufmann, Dinu, Parbhoo, Sonali, Wieczorek, Aleksander, Keller, Sebastian, Adametz, David, & . (2016). Bayesian markov blanket estimation. null, 333–341.
Kaufmann, Dinu, Parbhoo, Sonali, Wieczorek, Aleksander, Keller, Sebastian, Adametz, David, & . (2016). Bayesian markov blanket estimation. null, 333–341.
Makowska, Zuzanna, Boldanova, Tujana, Adametz, David, Quagliata, Luca, Quagliata, Luca, Vogt, Julia E., Dill, Michael T., Matter, Mathias S., , Terracciano, Luigi, & Heim, Markus H. (2016). Gene expression analysis of biopsy samples reveals critical limitations of transcriptome-based molecular classifications of hepatocellular carcinoma. The Journal of Pathology : Clinical Research, 2(2), 80–92. https://doi.org/10.1002/cjp2.37
Makowska, Zuzanna, Boldanova, Tujana, Adametz, David, Quagliata, Luca, Quagliata, Luca, Vogt, Julia E., Dill, Michael T., Matter, Mathias S., , Terracciano, Luigi, & Heim, Markus H. (2016). Gene expression analysis of biopsy samples reveals critical limitations of transcriptome-based molecular classifications of hepatocellular carcinoma. The Journal of Pathology : Clinical Research, 2(2), 80–92. https://doi.org/10.1002/cjp2.37
Kaufmann, Dinu, Keller, Sebastian, & . (2015). Copula Archetypal Analysis. In Gall, Juergen; Gehler, Peter; Leibe, Bastian (ed.), Pattern Recognition (pp. 117–128). Springer. https://doi.org/10.1007/978-3-319-24947-6_10
Kaufmann, Dinu, Keller, Sebastian, & . (2015). Copula Archetypal Analysis. In Gall, Juergen; Gehler, Peter; Leibe, Bastian (ed.), Pattern Recognition (pp. 117–128). Springer. https://doi.org/10.1007/978-3-319-24947-6_10
Makowska, Z., Boldanova, T., Adametz, D., Quagliata, L., Vogt, J. E., Dill, M. T., Matter, M. S., , Terracciano, L., & Heim, M. H. (2015). P0309 : Gene expression profiling of hepatocellular carcinoma biopsies reveals three molecular classes with distinct clinical and biological properties [Journal-article]. Journal of Hepatology, 62, S424–S425. https://doi.org/10.1016/s0168-8278(15)30524-9
Makowska, Z., Boldanova, T., Adametz, D., Quagliata, L., Vogt, J. E., Dill, M. T., Matter, M. S., , Terracciano, L., & Heim, M. H. (2015). P0309 : Gene expression profiling of hepatocellular carcinoma biopsies reveals three molecular classes with distinct clinical and biological properties [Journal-article]. Journal of Hepatology, 62, S424–S425. https://doi.org/10.1016/s0168-8278(15)30524-9
Adametz, David, & . (2015). Distance-based network recovery under feature correlation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9370, 209–210.
Adametz, David, & . (2015). Distance-based network recovery under feature correlation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9370, 209–210.
Alewell, Christine, Meusburger, Katrin, Kandl, Daniela, Fetai, Ilir, , Rugolo, Valentino, Schuldt, Heiko, & Vetter, Thomas. (2015). COSA - AlpErosion: Monitoring the degradation of Alpine soils with COSA, a Citizens’ Observatory Smartphone App (Patent No. 36). 36, Article 36. Bulletin der Bodenkundlichen Gesellschaft der Schweiz.
Alewell, Christine, Meusburger, Katrin, Kandl, Daniela, Fetai, Ilir, , Rugolo, Valentino, Schuldt, Heiko, & Vetter, Thomas. (2015). COSA - AlpErosion: Monitoring the degradation of Alpine soils with COSA, a Citizens’ Observatory Smartphone App (Patent No. 36). 36, Article 36. Bulletin der Bodenkundlichen Gesellschaft der Schweiz.
Vogt, Julia E., Kloft, Marius, Stark, Stefan, Raman, Sudhir S., Prabhakaran, Sandhya, , & Raetsch, Gunnar. (2015). Probabilistic clustering of time-evolving distance data. Machine Learning, 100(2-3), 635–654. https://doi.org/10.1007/s10994-015-5516-x
Vogt, Julia E., Kloft, Marius, Stark, Stefan, Raman, Sudhir S., Prabhakaran, Sandhya, , & Raetsch, Gunnar. (2015). Probabilistic clustering of time-evolving distance data. Machine Learning, 100(2-3), 635–654. https://doi.org/10.1007/s10994-015-5516-x
Adametz, David, Rey, Melanie, & . (2014). Information Bottleneck for Pathway-Centric Gene Expression Analysis. In Jiang, X; Hornegger, J; Koch, R (Ed.), Pattern recognition: 36th German Conference (p. S. 81–91). Springer International Publishing. https://doi.org/10.1007/978-3-319-11752-2_7
Adametz, David, Rey, Melanie, & . (2014). Information Bottleneck for Pathway-Centric Gene Expression Analysis. In Jiang, X; Hornegger, J; Koch, R (Ed.), Pattern recognition: 36th German Conference (p. S. 81–91). Springer International Publishing. https://doi.org/10.1007/978-3-319-11752-2_7
Adametz, David, & . (2014). Distance-based network recovery under feature correlation. In Z. Ghahramani and M. Welling and C. Cortes and N.D. Lawrence and K.Q. Weinberger (Ed.), Advances in neural information processing systems (Vol. 27, p. S. 775–783). MIT-Press. http://papers.nips.cc/paper/5470-distance-based-network-recovery-under-feature-correlation.pdf
Adametz, David, & . (2014). Distance-based network recovery under feature correlation. In Z. Ghahramani and M. Welling and C. Cortes and N.D. Lawrence and K.Q. Weinberger (Ed.), Advances in neural information processing systems (Vol. 27, p. S. 775–783). MIT-Press. http://papers.nips.cc/paper/5470-distance-based-network-recovery-under-feature-correlation.pdf
Bousleiman, H., Ahmed, S., Hardmeier, M., Hatz, F., Schindler, C., Roth, V., Zimmermann, R., Gschwandtner, U., & Fuhr, P. (2014). Quantitative EEG (qEEG) as Marker for Mild Cognitive Impairment (MCI) in Patients with Parkinson’s Disease (PD) (P5.059) [Journal-article]. Neurology, 82(10_supplement). https://doi.org/10.1212/wnl.82.10_supplement.p5.059
Bousleiman, H., Ahmed, S., Hardmeier, M., Hatz, F., Schindler, C., Roth, V., Zimmermann, R., Gschwandtner, U., & Fuhr, P. (2014). Quantitative EEG (qEEG) as Marker for Mild Cognitive Impairment (MCI) in Patients with Parkinson’s Disease (PD) (P5.059) [Journal-article]. Neurology, 82(10_supplement). https://doi.org/10.1212/wnl.82.10_supplement.p5.059
Bousleiman, Habib, Zimmermann, Ronan, Ahmed, Shaheen, Hardmeier, Martin, Hatz, Florian, Schindler, Christian, , Gschwandtner, Ute, & Fuhr, Peter. (2014). Power spectra for screening parkinsonian patients for mild cognitive impairment. Annals of Clinical and Translational Neurology, 1(11), 90–884. https://doi.org/10.1002/acn3.129
Bousleiman, Habib, Zimmermann, Ronan, Ahmed, Shaheen, Hardmeier, Martin, Hatz, Florian, Schindler, Christian, , Gschwandtner, Ute, & Fuhr, Peter. (2014). Power spectra for screening parkinsonian patients for mild cognitive impairment. Annals of Clinical and Translational Neurology, 1(11), 90–884. https://doi.org/10.1002/acn3.129
Dill, Michael T., Makowska, Zuzanna, Trincucci, Gaia, Gruber, Andreas J., Vogt, Julia E., Filipowicz, Magdalena, Calabrese, Diego, Krol, Ilona, Lau, Daryl T., Terracciano, Luigi, van Nimwegen, Erik, , & Heim, Markus H. (2014). Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation. Journal of Clinical Investigation, 124(4), 81–1568. https://doi.org/10.1172/jci70408
Dill, Michael T., Makowska, Zuzanna, Trincucci, Gaia, Gruber, Andreas J., Vogt, Julia E., Filipowicz, Magdalena, Calabrese, Diego, Krol, Ilona, Lau, Daryl T., Terracciano, Luigi, van Nimwegen, Erik, , & Heim, Markus H. (2014). Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation. Journal of Clinical Investigation, 124(4), 81–1568. https://doi.org/10.1172/jci70408
Dill, M.T., Makowska, Z., Trincucci, G., Gruber, A.J., Vogt,
J.E., Filipowicz, M., Calabrese, D., Krol, I., Lau, D.T., Terracciano, L., van Nimwegen, E., , & Heim, M.H. (2014). O47 PEGYLATED INTERFERON-ALPHA INDUCES SUSTAINED TRANSCRIPTIONAL RESPONSE IN LIVER INFILTRATING IMMUNE CELLS BUT NOT IN HEPATOCYTES IN THE LIVER OF PATIENTS WITH CHRONIC HEPATITIS C. Journal of Hepatology, 60, S1–S22. https://doi.org/10.1016/s0168-8278(14)60049-0
Dill, M.T., Makowska, Z., Trincucci, G., Gruber, A.J., Vogt,
J.E., Filipowicz, M., Calabrese, D., Krol, I., Lau, D.T., Terracciano, L., van Nimwegen, E., , & Heim, M.H. (2014). O47 PEGYLATED INTERFERON-ALPHA INDUCES SUSTAINED TRANSCRIPTIONAL RESPONSE IN LIVER INFILTRATING IMMUNE CELLS BUT NOT IN HEPATOCYTES IN THE LIVER OF PATIENTS WITH CHRONIC HEPATITIS C. Journal of Hepatology, 60, S1–S22. https://doi.org/10.1016/s0168-8278(14)60049-0
Giallonardo, Francesca Di, Töpfer, Armin, Rey, Melanie, Prabhakaran, Sandhya, Duport, Yannick, Leemann, Christine, Schmutz, Stefan, Campbell, Nottania K., Joos, Beda, Lecca, Maria Rita, Patrignani, Andrea, Däumer, Martin, Beisel, Christian, Rusert, Peter, Trkola, Alexandra, Günthard, Huldrych F., , Beerenwinkel, Niko, & Metzner, Karin J. (2014). Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids Research, 42(14), e115. https://doi.org/10.1093/nar/gku537
Giallonardo, Francesca Di, Töpfer, Armin, Rey, Melanie, Prabhakaran, Sandhya, Duport, Yannick, Leemann, Christine, Schmutz, Stefan, Campbell, Nottania K., Joos, Beda, Lecca, Maria Rita, Patrignani, Andrea, Däumer, Martin, Beisel, Christian, Rusert, Peter, Trkola, Alexandra, Günthard, Huldrych F., , Beerenwinkel, Niko, & Metzner, Karin J. (2014). Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids Research, 42(14), e115. https://doi.org/10.1093/nar/gku537
Prabhakaran, Sandhya, Rey, Melanie, Zagordi, Osvaldo, Beerenwinkel, Niko, & . (2014). HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182–191. https://doi.org/ea017b9f-ec09-4077-85ab-ded3af538c48
Prabhakaran, Sandhya, Rey, Melanie, Zagordi, Osvaldo, Beerenwinkel, Niko, & . (2014). HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182–191. https://doi.org/ea017b9f-ec09-4077-85ab-ded3af538c48
Prabhakaran, Sandhya, Rey, Melanie, Zagordi, Osvaldo, Beerenwinkel, Niko, & . (2014). HIV haplotype inference using a propagating dirichlet process mixture model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182–191. https://doi.org/10.1109/TCBB.2013.145
Prabhakaran, Sandhya, Rey, Melanie, Zagordi, Osvaldo, Beerenwinkel, Niko, & . (2014). HIV haplotype inference using a propagating dirichlet process mixture model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182–191. https://doi.org/10.1109/TCBB.2013.145
Rey, Melani, , & Fuchs, Thomas. (2014). Sparse meta-Gaussian information bottleneck (Jebara,Tony;Xing,Eric P., Ed.). Curran. http://jmlr.org/proceedings/papers/v32/rey14.pdf
Rey, Melani, , & Fuchs, Thomas. (2014). Sparse meta-Gaussian information bottleneck (Jebara,Tony;Xing,Eric P., Ed.). Curran. http://jmlr.org/proceedings/papers/v32/rey14.pdf
Prabhakaran, Sandhya, Adametz, David, Metzner, Karin J., Boehm, Alexander, & . (2013). Recovering networks from distance data. Machine Learning, 92(2-3), 251–283. https://doi.org/10.1007/s10994-013-5370-7
Prabhakaran, Sandhya, Adametz, David, Metzner, Karin J., Boehm, Alexander, & . (2013). Recovering networks from distance data. Machine Learning, 92(2-3), 251–283. https://doi.org/10.1007/s10994-013-5370-7
Rey, Melanie Rey, & . (2013). Meta-Gaussian information bottleneck (Bartlett,P; Pereira,F.C.N.;Burges,C.J.C.,Bottou,L.; Weinberger,K.Q.}, Ed.; Vol. 25). The MIT Press.
Rey, Melanie Rey, & . (2013). Meta-Gaussian information bottleneck (Bartlett,P; Pereira,F.C.N.;Burges,C.J.C.,Bottou,L.; Weinberger,K.Q.}, Ed.; Vol. 25). The MIT Press.
Roth, V., Fuchs, T. J., Vogt, J. E., Prabhakaran, S., & Buhmann, J. M. (2013). Structure Preserving Embedding of Dissimilarity Data (pp. 157–177). Springer London. https://doi.org/10.1007/978-1-4471-5628-4_7
Roth, V., Fuchs, T. J., Vogt, J. E., Prabhakaran, S., & Buhmann, J. M. (2013). Structure Preserving Embedding of Dissimilarity Data (pp. 157–177). Springer London. https://doi.org/10.1007/978-1-4471-5628-4_7
Töpfer, Armin, Zagordi, Osvaldo, Prabhakaran, Sandhya, , Halperin, Eran, & Beerenwinkel, Niko. (2013). Probabilistic inference of viral quasispecies subject to recombination. Journal of Computational Biology, 20(2), 23–113. https://doi.org/10.1089/cmb.2012.0232
Töpfer, Armin, Zagordi, Osvaldo, Prabhakaran, Sandhya, , Halperin, Eran, & Beerenwinkel, Niko. (2013). Probabilistic inference of viral quasispecies subject to recombination. Journal of Computational Biology, 20(2), 23–113. https://doi.org/10.1089/cmb.2012.0232
Wigger, Leonore, Vogt, Julia E, & . (2013). Malaria haplotype frequency estimation. Statistics in Medicine, 32(21), 51–3737. https://doi.org/10.1002/sim.5792
Wigger, Leonore, Vogt, Julia E, & . (2013). Malaria haplotype frequency estimation. Statistics in Medicine, 32(21), 51–3737. https://doi.org/10.1002/sim.5792
Prabhakaran, Sandhya, Metzner, Karin J., Böhm, Alexander, & . (2012). Recovering networks from distance data. Journal of Machine Learning Research, 25, 349–364.
Prabhakaran, Sandhya, Metzner, Karin J., Böhm, Alexander, & . (2012). Recovering networks from distance data. Journal of Machine Learning Research, 25, 349–364.
Rey, Mélanie, & . (2012). Meta-Gaussian information bottleneck. Advances in Neural Information Processing Systems, 3, 1916–1924.
Rey, Mélanie, & . (2012). Meta-Gaussian information bottleneck. Advances in Neural Information Processing Systems, 3, 1916–1924.
Rey, Mélanie, & . (2012). Copula mixture model for dependency-seeking clustering. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 1, 927–934.
Rey, Mélanie, & . (2012). Copula mixture model for dependency-seeking clustering. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 1, 927–934.
Vogt, Julia E., & . (2012). A complete analysis of the ℓ 1,p Group-Lasso. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 1, 185–192.
Vogt, Julia E., & . (2012). A complete analysis of the ℓ 1,p Group-Lasso. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 1, 185–192.
Makowska, Z., Dill, M. T., Vogt, J. E., Filipowicz, M., Terraciano, L., , & Heim, M. H. (2012). P139 Continuous exposure to PEG-IFN-Alpha only transiently activates JAK-stat signalling in human liver [Journal-article]. Cytokine, 59(3), 563–564. https://doi.org/10.1016/j.cyto.2012.06.231
Makowska, Z., Dill, M. T., Vogt, J. E., Filipowicz, M., Terraciano, L., , & Heim, M. H. (2012). P139 Continuous exposure to PEG-IFN-Alpha only transiently activates JAK-stat signalling in human liver [Journal-article]. Cytokine, 59(3), 563–564. https://doi.org/10.1016/j.cyto.2012.06.231
Beerenwinkel, Niko, Günthard, Huldrych F, , & Metzner, Karin J. (2012). Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Frontiers in Microbiology, 3(00329), 329. https://doi.org/10.3389/fmicb.2012.00329
Beerenwinkel, Niko, Günthard, Huldrych F, , & Metzner, Karin J. (2012). Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Frontiers in Microbiology, 3(00329), 329. https://doi.org/10.3389/fmicb.2012.00329
Melanie, Rey, & . (2012). Copula mixture model for eependency-seeking clustering. 8 S. http://icml.cc/2012/papers/486.pdf
Melanie, Rey, & . (2012). Copula mixture model for eependency-seeking clustering. 8 S. http://icml.cc/2012/papers/486.pdf
Meyer, Stefanie, Fuchs, Thomas J., Bosserhoff, Anja K., Hofstädter, Ferdinand, Pauer, Armin, , Buhmann, Joachim M., Moll, Ingrid, Anagnostou, Nikos, Brandner, Johanna M., Ikenberg, Kristian, Moch, Holger, Landthaler, Michael, Vogt, Thomas, & Wild, Peter J. (2012). A seven-marker signature and clinical outcome in malignant melanoma : a large-scale tissue-microarray study with two independent patient cohorts. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038222
Meyer, Stefanie, Fuchs, Thomas J., Bosserhoff, Anja K., Hofstädter, Ferdinand, Pauer, Armin, , Buhmann, Joachim M., Moll, Ingrid, Anagnostou, Nikos, Brandner, Johanna M., Ikenberg, Kristian, Moch, Holger, Landthaler, Michael, Vogt, Thomas, & Wild, Peter J. (2012). A seven-marker signature and clinical outcome in malignant melanoma : a large-scale tissue-microarray study with two independent patient cohorts. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038222
Prabhakaran, Sandhya, Metzner, Karin J., Boehm, Alexander, & . (2012). Recovering Networks from Distance Data. Journal of Machine Learning Research, 25, 349–364.
Prabhakaran, Sandhya, Metzner, Karin J., Boehm, Alexander, & . (2012). Recovering Networks from Distance Data. Journal of Machine Learning Research, 25, 349–364.
Prabhakaran, Sandhya, Raman, Sudhir, Vogt, Julia E., & . (2012). Automatic model selection in archetype analysis. In Pinz, Axel; Pock, Thomas; Bischof, Horst; Leberl, Franz (Ed.), Lecture notes in computer science. Springer. https://doi.org/10.1007/978-3-642-32717-9_46
Prabhakaran, Sandhya, Raman, Sudhir, Vogt, Julia E., & . (2012). Automatic model selection in archetype analysis. In Pinz, Axel; Pock, Thomas; Bischof, Horst; Leberl, Franz (Ed.), Lecture notes in computer science. Springer. https://doi.org/10.1007/978-3-642-32717-9_46