Publications
155 found
Show per page
Tejada-Arranz, Alejandro, Plack, Annika, Antelo-Varela, Minia, Kaczmarczyk, Andreas, Klotz, Alexander, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.10.26.620397
, & Basler, Marek. (2025). Mechanisms of Pseudomonas aeruginosa resistance to Type VI Secretion System attacks [Posted-content]. In
Tejada-Arranz, Alejandro, Plack, Annika, Antelo-Varela, Minia, Kaczmarczyk, Andreas, Klotz, Alexander, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.10.26.620397
, & Basler, Marek. (2025). Mechanisms of Pseudomonas aeruginosa resistance to Type VI Secretion System attacks [Posted-content]. In
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, Maier, Timm, & Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48295-0
. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution.
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, Maier, Timm, & Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48295-0
. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution.
Maffei, Enea, Woischnig, Anne-Kathrin, Burkolter, Marco R., Heyer, Yannik, Humolli, Dorentina, Thürkauf, Nicole, Bock, Thomas, Schmidt, Alexander, Manfredi, Pablo, Egli, Adrian, Khanna, Nina, Nature Communications, 15(1). https://doi.org/10.1038/s41467-023-44157-3
, & Harms, Alexander. (2024). Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication.
Maffei, Enea, Woischnig, Anne-Kathrin, Burkolter, Marco R., Heyer, Yannik, Humolli, Dorentina, Thürkauf, Nicole, Bock, Thomas, Schmidt, Alexander, Manfredi, Pablo, Egli, Adrian, Khanna, Nina, Nature Communications, 15(1). https://doi.org/10.1038/s41467-023-44157-3
, & Harms, Alexander. (2024). Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication.
Kurmashev, Amanzhol, Boos, Julia A., Laventie, Benoît-Joseph, Swart, A. Leoni, Sütterlin, Rosmarie, Junne, Tina, Advanced Materials Technologies, 9(20). https://doi.org/10.1002/admt.202400326
, & Hierlemann, Andreas. (2024). Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues.
Kurmashev, Amanzhol, Boos, Julia A., Laventie, Benoît-Joseph, Swart, A. Leoni, Sütterlin, Rosmarie, Junne, Tina, Advanced Materials Technologies, 9(20). https://doi.org/10.1002/admt.202400326
, & Hierlemann, Andreas. (2024). Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues.
Santi, Isabella, Dias Teixeira, Raphael, Manfredi, Pablo, Hernandez Gonzalez, Hector, Spiess, Daniel C, Mas, Guillaume, Klotz, Alexander, Kaczmarczyk, Andreas, Zamboni, Nicola, Hiller, Sebastian, & The EMBO Journal, 43(21), 5211–5236. https://doi.org/10.1038/s44318-024-00248-5
. (2024). Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen [Journal-article].
Santi, Isabella, Dias Teixeira, Raphael, Manfredi, Pablo, Hernandez Gonzalez, Hector, Spiess, Daniel C, Mas, Guillaume, Klotz, Alexander, Kaczmarczyk, Andreas, Zamboni, Nicola, Hiller, Sebastian, & The EMBO Journal, 43(21), 5211–5236. https://doi.org/10.1038/s44318-024-00248-5
. (2024). Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen [Journal-article].
Leoni Swart, A., Laventie, Benoît-Joseph, Sütterlin, Rosmarie, Junne, Tina, Lauer, Luisa, Manfredi, Pablo, Jakonia, Sandro, Yu, Xiao, Karagkiozi, Evdoxia, Okujava, Rusudan, & Nature Microbiology, 9(7), 1725–1737. https://doi.org/10.1038/s41564-024-01718-6
. (2024). Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model.
Leoni Swart, A., Laventie, Benoît-Joseph, Sütterlin, Rosmarie, Junne, Tina, Lauer, Luisa, Manfredi, Pablo, Jakonia, Sandro, Yu, Xiao, Karagkiozi, Evdoxia, Okujava, Rusudan, & Nature Microbiology, 9(7), 1725–1737. https://doi.org/10.1038/s41564-024-01718-6
. (2024). Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model.
Maffei, Enea, Manner, Christina, Microbiology Resource Announcements, 13(4). https://doi.org/10.1128/mra.01174-23
, & Harms, Alexander. (2024). Complete genome sequence of Pseudomonas aeruginosa phage Knedl.
Maffei, Enea, Manner, Christina, Microbiology Resource Announcements, 13(4). https://doi.org/10.1128/mra.01174-23
, & Harms, Alexander. (2024). Complete genome sequence of Pseudomonas aeruginosa phage Knedl.
Pérez-Burgos, María, Herfurth, Marco, Kaczmarczyk, Andreas, Harms, Andrea, Huber, Katrin, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.06.579105
, Glatter, Timo, & Søgaard-Andersen, Lotte. (2024). A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis [Posted-content]. In
Pérez-Burgos, María, Herfurth, Marco, Kaczmarczyk, Andreas, Harms, Andrea, Huber, Katrin, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.06.579105
, Glatter, Timo, & Søgaard-Andersen, Lotte. (2024). A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis [Posted-content]. In
Sollier, Julie, Basler, Marek, Broz, Petr, Dittrich, Petra S., Drescher, Knut, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions. Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
Sollier, Julie, Basler, Marek, Broz, Petr, Dittrich, Petra S., Drescher, Knut, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions. Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
Kurmashev, Amanzhol, Boos, Julia A., Laventie, Benoît-Joseph, Swart, A. Leoni, Sütterlin, Rosmarie, Junne, Tina, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.11.22.567838
, & Hierlemann, Andreas. (2023). Transwell-based microphysiological platform for high-resolution imaging of airway tissues [Posted-content]. In
Kurmashev, Amanzhol, Boos, Julia A., Laventie, Benoît-Joseph, Swart, A. Leoni, Sütterlin, Rosmarie, Junne, Tina, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.11.22.567838
, & Hierlemann, Andreas. (2023). Transwell-based microphysiological platform for high-resolution imaging of airway tissues [Posted-content]. In
Santi, Isabella, Dias Teixeira, Raphael, Manfredi, Pablo, Spiess, Daniel, Mas, Guillaume, Klotz, Alexander, Zamboni, Nicola, Hiller, Sebastian, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.09.28.559889
. (2023). Toxin-mediated depletion of nicotinamide dinucleotides drives persister formation in a human pathogen [Posted-content]. In
Santi, Isabella, Dias Teixeira, Raphael, Manfredi, Pablo, Spiess, Daniel, Mas, Guillaume, Klotz, Alexander, Zamboni, Nicola, Hiller, Sebastian, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.09.28.559889
. (2023). Toxin-mediated depletion of nicotinamide dinucleotides drives persister formation in a human pathogen [Posted-content]. In
Swart, A. Leoni, Laventie, Benoît-Joseph, Sütterlin, Rosmarie, Junne, Tina, Yu, Xiao, Karagkiozi, Evdoxia, Okujava, Rusudan, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.13.553119
. (2023). Goblet cell invasion promotes breaching of respiratory epithelia by an opportunistic human pathogen [Posted-content]. In
Swart, A. Leoni, Laventie, Benoît-Joseph, Sütterlin, Rosmarie, Junne, Tina, Yu, Xiao, Karagkiozi, Evdoxia, Okujava, Rusudan, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.13.553119
. (2023). Goblet cell invasion promotes breaching of respiratory epithelia by an opportunistic human pathogen [Posted-content]. In
Klotz, Alexander, Kaczmarczyk, Andreas, & Applied and Environmental Microbiology, 89(6). https://doi.org/10.1128/aem.00211-23
. (2023). A Synthetic Cumate-Inducible Promoter for Graded and Homogenous Gene Expression in Pseudomonas aeruginosa.
Klotz, Alexander, Kaczmarczyk, Andreas, & Applied and Environmental Microbiology, 89(6). https://doi.org/10.1128/aem.00211-23
. (2023). A Synthetic Cumate-Inducible Promoter for Graded and Homogenous Gene Expression in Pseudomonas aeruginosa.
Dubey, Badri Nath, Shyp, Viktoriya, Fucile, Geoffrey, Sondermann, Holger, Scientific reports, 13(1), 2727. https://doi.org/10.1038/s41598-023-29110-0
, & Schirmer, Tilman. (2023). Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization.
Dubey, Badri Nath, Shyp, Viktoriya, Fucile, Geoffrey, Sondermann, Holger, Scientific reports, 13(1), 2727. https://doi.org/10.1038/s41598-023-29110-0
, & Schirmer, Tilman. (2023). Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization.
Manner, Christina, Dias Teixeira, Raphael, Saha, Dibya, Kaczmarczyk, Andreas, Zemp, Raphaela, Wyss, Fabian, Jaeger, Tina, Laventie, Benoit-Joseph, Boyer, Sebastien, Malone, Jacob G., Qvortrup, Katrine, Andersen, Jens Bo, Givskov, Michael, Tolker-Nielsen, Tim, Hiller, Sebastian, Drescher, Knut, & Nature Microbiology, 8(8), 1520–1533. https://doi.org/10.1038/s41564-023-01403-0
. (2023). A genetic switch controls Pseudomonas aeruginosa surface colonization.
Manner, Christina, Dias Teixeira, Raphael, Saha, Dibya, Kaczmarczyk, Andreas, Zemp, Raphaela, Wyss, Fabian, Jaeger, Tina, Laventie, Benoit-Joseph, Boyer, Sebastien, Malone, Jacob G., Qvortrup, Katrine, Andersen, Jens Bo, Givskov, Michael, Tolker-Nielsen, Tim, Hiller, Sebastian, Drescher, Knut, & Nature Microbiology, 8(8), 1520–1533. https://doi.org/10.1038/s41564-023-01403-0
. (2023). A genetic switch controls Pseudomonas aeruginosa surface colonization.
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Reinders, Alberto, Klotz, Alexander, Maier, Timm, & A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.18.512705
. (2022).
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Reinders, Alberto, Klotz, Alexander, Maier, Timm, & A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.18.512705
. (2022).
Dubey, Badri Nath, Shyp, Viktoriya, Fucile, Geoffrey, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.07.30.502141
, & Schirmer, Tilman. (2022). High-resolution crystal structure of a metabolic switch protein in a complex with monomeric c-di-GMP reveals a potential mechanism for c-di-GMP dimerization [Posted-content]. In
Dubey, Badri Nath, Shyp, Viktoriya, Fucile, Geoffrey, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.07.30.502141
, & Schirmer, Tilman. (2022). High-resolution crystal structure of a metabolic switch protein in a complex with monomeric c-di-GMP reveals a potential mechanism for c-di-GMP dimerization [Posted-content]. In
Povolo, Vanessa R, D’Souza, Glen G, Kaczmarczyk, Andreas, Stubbusch, Astrid KM, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.06.13.495907
, & Ackermann, Martin. (2022). Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer [Posted-content]. In
Povolo, Vanessa R, D’Souza, Glen G, Kaczmarczyk, Andreas, Stubbusch, Astrid KM, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.06.13.495907
, & Ackermann, Martin. (2022). Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer [Posted-content]. In
Anglada-Girotto, Miquel, Handschin, Gabriel, Ortmayr, Karin, Campos, Adrian I., Gillet, Ludovic, Manfredi, Pablo, Mulholland, Claire V., Berney, Michael, Nature Chemical Biology, 18(5), 482–491. https://doi.org/10.1038/s41589-022-00970-3
, Picotti, Paola, & Zampieri, Mattia. (2022). Combining CRISPRi and metabolomics for functional annotation of compound libraries.
Anglada-Girotto, Miquel, Handschin, Gabriel, Ortmayr, Karin, Campos, Adrian I., Gillet, Ludovic, Manfredi, Pablo, Mulholland, Claire V., Berney, Michael, Nature Chemical Biology, 18(5), 482–491. https://doi.org/10.1038/s41589-022-00970-3
, Picotti, Paola, & Zampieri, Mattia. (2022). Combining CRISPRi and metabolomics for functional annotation of compound libraries.
Anglada-Girotto, Miquel, Handschin, Gabriel, Ortmayr, Karin, Campos, Adrian I., Gillet, Ludovic, Manfredi, Pablo, Mulholland, Claire V., Berney, Michael, Nature Chemical Biology, 18(5), 575. https://doi.org/10.1038/s41589-022-01028-0
, Picotti, Paola, & Zampieri, Mattia. (2022). Author Correction: Combining CRISPRi and metabolomics for functional annotation of compound libraries.
Anglada-Girotto, Miquel, Handschin, Gabriel, Ortmayr, Karin, Campos, Adrian I., Gillet, Ludovic, Manfredi, Pablo, Mulholland, Claire V., Berney, Michael, Nature Chemical Biology, 18(5), 575. https://doi.org/10.1038/s41589-022-01028-0
, Picotti, Paola, & Zampieri, Mattia. (2022). Author Correction: Combining CRISPRi and metabolomics for functional annotation of compound libraries.
Haas, Thomas M., Laventie, Benoit-Joseph, Lagies, Simon, Harter, Caroline, Prucker, Isabel, Ritz, Danilo, Batcha, Raspudin Saleem, Qiu, Danye, Hüttel, Wolfgang, Andexer, Jennifer, Kammerer, Bernd, Angewandte Chemie International Edition, 61(22), e202201731. https://doi.org/10.1002/anie.202201731
, & Jessen, Henning Jacob. (2022). Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes.
Haas, Thomas M., Laventie, Benoit-Joseph, Lagies, Simon, Harter, Caroline, Prucker, Isabel, Ritz, Danilo, Batcha, Raspudin Saleem, Qiu, Danye, Hüttel, Wolfgang, Andexer, Jennifer, Kammerer, Bernd, Angewandte Chemie International Edition, 61(22), e202201731. https://doi.org/10.1002/anie.202201731
, & Jessen, Henning Jacob. (2022). Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes.
Nature, 605(7910), 431–432. https://doi.org/10.1038/d41586-022-01127-x
. (2022). Killing the messenger to evade bacterial defences.
Nature, 605(7910), 431–432. https://doi.org/10.1038/d41586-022-01127-x
. (2022). Killing the messenger to evade bacterial defences.
Maffei, Enea, Burkolter, Marco, Heyer, Yannik, Egli, Adrian, bioRxiv, 477855. https://doi.org/10.1101/2022.01.26.477855
, & Harms, Alexander. (2022). Phage Paride hijacks bacterial stress responses to kill dormant, antibiotic-tolerant cells.
Maffei, Enea, Burkolter, Marco, Heyer, Yannik, Egli, Adrian, bioRxiv, 477855. https://doi.org/10.1101/2022.01.26.477855
, & Harms, Alexander. (2022). Phage Paride hijacks bacterial stress responses to kill dormant, antibiotic-tolerant cells.
Sauter, Nora, Sangermani, Matteo, Hug, Isabelle, Communications Biology, 5(1), 1093. https://doi.org/10.1038/s42003-022-04026-z
, & Pfohl, Thomas. (2022). Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation.
Sauter, Nora, Sangermani, Matteo, Hug, Isabelle, Communications Biology, 5(1), 1093. https://doi.org/10.1038/s42003-022-04026-z
, & Pfohl, Thomas. (2022). Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation.
Steiner, Elisabeth, Shilling, Rebecca E., Richter, Anja M., Schmid, Nadine, Fazli, Mustafa, Kaever, Volkhard, NPJ Biofilms and Microbiomes, 8(1), 93. https://doi.org/10.1038/s41522-022-00356-2
, Tolker-Nielsen, Tim, & Eberl, Leo. (2022). The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB.
Steiner, Elisabeth, Shilling, Rebecca E., Richter, Anja M., Schmid, Nadine, Fazli, Mustafa, Kaever, Volkhard, NPJ Biofilms and Microbiomes, 8(1), 93. https://doi.org/10.1038/s41522-022-00356-2
, Tolker-Nielsen, Tim, & Eberl, Leo. (2022). The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB.
Haas, Thomas M., Laventie, Benoît-Joseph, Lagies, Simon, Harter, Caroline, Prucker, Isabel, Ritz, Danilo, Batcha, Raspudin Saleem, Qiu, Danye, Hüttel, Wolfgang, Andexer, Jennifer, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.12.15.472736
, & Jessen, Henning J. (2021). Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes [Posted-content]. In
Haas, Thomas M., Laventie, Benoît-Joseph, Lagies, Simon, Harter, Caroline, Prucker, Isabel, Ritz, Danilo, Batcha, Raspudin Saleem, Qiu, Danye, Hüttel, Wolfgang, Andexer, Jennifer, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.12.15.472736
, & Jessen, Henning J. (2021). Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes [Posted-content]. In
Sellner, B., Prakapaite, R., Van Berkum, M., Heinemann, M., Harms, A., & Jenal, U. (2021). A New Sugar for an Old Phage: A c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection. mBio, 12(6). https://doi.org/10.1128/mbio.03246-21
Sellner, B., Prakapaite, R., Van Berkum, M., Heinemann, M., Harms, A., & Jenal, U. (2021). A New Sugar for an Old Phage: A c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection. mBio, 12(6). https://doi.org/10.1128/mbio.03246-21
Fuentes, Diego Antonio Fernandez, Manfredi, Pablo, Nature Communications, 12(1), 3204. https://doi.org/10.1038/s41467-021-23522-0
, & Zampieri, Mattia. (2021). Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli.
Fuentes, Diego Antonio Fernandez, Manfredi, Pablo, Nature Communications, 12(1), 3204. https://doi.org/10.1038/s41467-021-23522-0
, & Zampieri, Mattia. (2021). Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli.
Reinders, Alberto, Sellner, Benjamin, Fadel, Firas, van Berkum, Margo, Kaczmarczyk, Andreas, Ozaki, Shogo, Rueher, Johanna, Manfredi, Pablo, Sangermani, Matteo, Harms, Alexander, Perez, Camilo, Schirmer, Tilman, & Digital control of c-di-GMP in E. coli balances population-wide developmental transitions and phage sensitivity [bioRxiv]. 40. https://doi.org/10.1101/2021.10.01.462762
. (2021).
Reinders, Alberto, Sellner, Benjamin, Fadel, Firas, van Berkum, Margo, Kaczmarczyk, Andreas, Ozaki, Shogo, Rueher, Johanna, Manfredi, Pablo, Sangermani, Matteo, Harms, Alexander, Perez, Camilo, Schirmer, Tilman, & Digital control of c-di-GMP in E. coli balances population-wide developmental transitions and phage sensitivity [bioRxiv]. 40. https://doi.org/10.1101/2021.10.01.462762
. (2021).
Santi, Isabella, Manfredi, Pablo, & Methods in Molecular Biology, 2357, 177–194. https://doi.org/10.1007/978-1-0716-1621-5_12
. (2021). The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment.
Santi, Isabella, Manfredi, Pablo, & Methods in Molecular Biology, 2357, 177–194. https://doi.org/10.1007/978-1-0716-1621-5_12
. (2021). The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment.
Santi, Isabella, Manfredi, Pablo, Maffei, Enea, Egli, Adrian, & mBio, 12(1), e03482–20. https://doi.org/10.1128/mbio.03482-20
. (2021). Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections.
Santi, Isabella, Manfredi, Pablo, Maffei, Enea, Egli, Adrian, & mBio, 12(1), e03482–20. https://doi.org/10.1128/mbio.03482-20
. (2021). Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections.
Sellner, Benjamin, Prakapaitė, Rūta, van Berkum, Margo, Heinemann, Matthias, Harms, Alexander, & A new sugar for an old phage: A c-di-GMP dependent polysaccharide pathway sensitizes E. coli for bacteriophage infection. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.09.27.461960
. (2021).
Sellner, Benjamin, Prakapaitė, Rūta, van Berkum, Margo, Heinemann, Matthias, Harms, Alexander, & A new sugar for an old phage: A c-di-GMP dependent polysaccharide pathway sensitizes E. coli for bacteriophage infection. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.09.27.461960
. (2021).
Shyp, Viktoriya, Dubey, Badri Nath, Böhm, Raphael, Hartl, Johannes, Nesper, Jutta, Vorholt, Julia A., Hiller, Sebastian, Schirmer, Tilman, & Nature Microbiology, 6(1), 59–72. https://doi.org/10.1038/s41564-020-00809-4
. (2021). Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus.
Shyp, Viktoriya, Dubey, Badri Nath, Böhm, Raphael, Hartl, Johannes, Nesper, Jutta, Vorholt, Julia A., Hiller, Sebastian, Schirmer, Tilman, & Nature Microbiology, 6(1), 59–72. https://doi.org/10.1038/s41564-020-00809-4
. (2021). Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus.
Manfredi, Pablo, Santi, Isabella, Maffei, Enea, Lezan, Emmanuelle, Schmidt, Alexander, & Bacterial Persistence: Methods and Protocols (pp. 161–175). Springer. https://doi.org/10.1007/978-1-0716-1621-5_11
. (2021). Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa. In Verstraeten, Natalie; Michiels, Jan (Ed.),
Manfredi, Pablo, Santi, Isabella, Maffei, Enea, Lezan, Emmanuelle, Schmidt, Alexander, & Bacterial Persistence: Methods and Protocols (pp. 161–175). Springer. https://doi.org/10.1007/978-1-0716-1621-5_11
. (2021). Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa. In Verstraeten, Natalie; Michiels, Jan (Ed.),
Coppine, Jérôme, Kaczmarczyk, Andreas, Petit, Kenny, Brochier, Thomas, Journal of Bacteriology, 202(17), e00345–20. https://doi.org/10.1128/jb.00345-20
, & Hallez, Régis. (2020). Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases.
Coppine, Jérôme, Kaczmarczyk, Andreas, Petit, Kenny, Brochier, Thomas, Journal of Bacteriology, 202(17), e00345–20. https://doi.org/10.1128/jb.00345-20
, & Hallez, Régis. (2020). Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases.
Dubey, Badri N., Agustoni, Elia, Böhm, Raphael, Kaczmarczyk, Andreas, Mangia, Francesca, von Arx, Christoph, Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1000–1008. https://doi.org/10.1073/pnas.1911427117
, Hiller, Sebastian, Plaza-Menacho, Iván, & Schirmer, Tilman. (2020). Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation.
Dubey, Badri N., Agustoni, Elia, Böhm, Raphael, Kaczmarczyk, Andreas, Mangia, Francesca, von Arx, Christoph, Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1000–1008. https://doi.org/10.1073/pnas.1911427117
, Hiller, Sebastian, Plaza-Menacho, Iván, & Schirmer, Tilman. (2020). Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation.
Hartl, Johannes, Kiefer, Patrick, Kaczmarczyk, Andreas, Mittelviefhaus, Maximilian, Meyer, Fabian, Vonderach, Thomas, Hattendorf, Bodo, Nature Metabolism, 2(2), 153–166. https://doi.org/10.1038/s42255-019-0166-0
, & Vorholt, Julia A. (2020). Untargeted metabolomics links glutathione to bacterial cell cycle progression.
Hartl, Johannes, Kiefer, Patrick, Kaczmarczyk, Andreas, Mittelviefhaus, Maximilian, Meyer, Fabian, Vonderach, Thomas, Hattendorf, Bodo, Nature Metabolism, 2(2), 153–166. https://doi.org/10.1038/s42255-019-0166-0
, & Vorholt, Julia A. (2020). Untargeted metabolomics links glutathione to bacterial cell cycle progression.
Hee, Chee-Seng, Habazettl, Judith, Schmutz, Christoph, Schirmer, Tilman, Proceedings of the National Academy of Sciences of the United States of America, 117(29), 17211–17220. https://doi.org/10.1073/pnas.2001232117
, & Grzesiek, Stephan. (2020). Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP.
Hee, Chee-Seng, Habazettl, Judith, Schmutz, Christoph, Schirmer, Tilman, Proceedings of the National Academy of Sciences of the United States of America, 117(29), 17211–17220. https://doi.org/10.1073/pnas.2001232117
, & Grzesiek, Stephan. (2020). Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP.
Kaczmarczyk, Andreas, Hempel, Antje M., von Arx, Christoph, Böhm, Raphael, Dubey, Badri N., Nesper, Jutta, Schirmer, Tilman, Hiller, Sebastian, & Nature Communications, 11(1), 816. https://doi.org/10.1038/s41467-020-14585-6
. (2020). Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter.
Kaczmarczyk, Andreas, Hempel, Antje M., von Arx, Christoph, Böhm, Raphael, Dubey, Badri N., Nesper, Jutta, Schirmer, Tilman, Hiller, Sebastian, & Nature Communications, 11(1), 816. https://doi.org/10.1038/s41467-020-14585-6
. (2020). Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter.
Laventie, Benoît-Joseph, & Annual review of microbiology, 74, 735–760. https://doi.org/10.1146/annurev-micro-012120-063427
. (2020). Surface Sensing and Adaptation in Bacteria.
Laventie, Benoît-Joseph, & Annual review of microbiology, 74, 735–760. https://doi.org/10.1146/annurev-micro-012120-063427
. (2020). Surface Sensing and Adaptation in Bacteria.
Ozaki, Shogo, mBio, 11(2), e00487–20. https://doi.org/10.1128/mbio.00487-20
, & Katayama, Tsutomu. (2020). Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus.
Ozaki, Shogo, mBio, 11(2), e00487–20. https://doi.org/10.1128/mbio.00487-20
, & Katayama, Tsutomu. (2020). Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus.
Rossmann, Florian M., Hug, Isabelle, Sangermani, Matteo, Molecular microbiology, 114(3), 443–453. https://doi.org/10.1111/mmi.14525
, & Beeby, Morgan. (2020). In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog.
Rossmann, Florian M., Hug, Isabelle, Sangermani, Matteo, Molecular microbiology, 114(3), 443–453. https://doi.org/10.1111/mmi.14525
, & Beeby, Morgan. (2020). In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog.
Santi, Isabella, Manfredi, Pablo, Maffei, Enea, Egli, Adrian, & Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections. bioRxiv. https://doi.org/10.1101/2020.10.23.352104
. (2020).
Santi, Isabella, Manfredi, Pablo, Maffei, Enea, Egli, Adrian, & Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections. bioRxiv. https://doi.org/10.1101/2020.10.23.352104
. (2020).
Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., Brynildsen, M. P., Bumann, D., Camilli, A., Collins, J. J., Dehio, C., Fortune, S., Ghigo, J.-M., Hardt, W.-D., Harms, A., Heinemann, M., Hung, D. T., Jenal, U., Levin, B. R., et al. (2019). Publisher Correction: Definitions and guidelines for research on antibiotic persistence (Nature Reviews Microbiology, (2019), 17, 7, (441-448), 10.1038/s41579-019-0196-3). Nature Reviews Microbiology, 17(7). https://doi.org/10.1038/s41579-019-0207-4
Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., Brynildsen, M. P., Bumann, D., Camilli, A., Collins, J. J., Dehio, C., Fortune, S., Ghigo, J.-M., Hardt, W.-D., Harms, A., Heinemann, M., Hung, D. T., Jenal, U., Levin, B. R., et al. (2019). Publisher Correction: Definitions and guidelines for research on antibiotic persistence (Nature Reviews Microbiology, (2019), 17, 7, (441-448), 10.1038/s41579-019-0196-3). Nature Reviews Microbiology, 17(7). https://doi.org/10.1038/s41579-019-0207-4
Sangermani, Matteo, Hug, Isabelle, Sauter, Nora, Pfohl, Thomas, & mBio, 10(3). https://doi.org/10.1128/mBio.01237-19
. (2019). Tad pili play a dynamic role in caulobacter crescentus surface colonization.
Sangermani, Matteo, Hug, Isabelle, Sauter, Nora, Pfohl, Thomas, & mBio, 10(3). https://doi.org/10.1128/mBio.01237-19
. (2019). Tad pili play a dynamic role in caulobacter crescentus surface colonization.
Dubey, Badri N., Agustoni, Elia, Böhm, Raphael, Kaczmarczyk, Andreas, Mangia, Francesca, von Arx, Christoph, Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/675454
, Hiller, Sebastian, Plaza-Menacho, Iván, & Schirmer, Tilman. (2019).
Dubey, Badri N., Agustoni, Elia, Böhm, Raphael, Kaczmarczyk, Andreas, Mangia, Francesca, von Arx, Christoph, Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/675454
, Hiller, Sebastian, Plaza-Menacho, Iván, & Schirmer, Tilman. (2019).
Kaczmarczyk, Andreas, Hempel, Antje M., von Arx, Christoph, Böhm, Raphael, Dubey, Badri N., Nesper, Jutta, Schirmer, Tilman, Hiller, Sebastian, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/675330
. (2019). Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition [Posted-content]. In
Kaczmarczyk, Andreas, Hempel, Antje M., von Arx, Christoph, Böhm, Raphael, Dubey, Badri N., Nesper, Jutta, Schirmer, Tilman, Hiller, Sebastian, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/675330
. (2019). Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition [Posted-content]. In
bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/526160
, Sangermani, Matteo, Hug, Isabelle, Sauter, Nora, & Pfohl, Thomas. (2019). Tad pili play a dynamic role in Caulobacter crescentus surface colonization. In
bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/526160
, Sangermani, Matteo, Hug, Isabelle, Sauter, Nora, & Pfohl, Thomas. (2019). Tad pili play a dynamic role in Caulobacter crescentus surface colonization. In
Balaban, Nathalie Q., Helaine, Sophie, Lewis, Kim, Ackermann, Martin, Aldridge, Bree, Andersson, Dan I., Brynildsen, Mark P., Bumann, Dirk, Camilli, Andrew, Collins, James J., Dehio, Christoph, Fortune, Sarah M., Ghigo, Jean-Marc, Hardt, Wolf-Dietrich, Harms, Alexander, Heinemann, Matthias, Hung, Deborah T., Nature Reviews Microbiology, 17(7), 441–448. https://doi.org/10.1038/s41579-019-0196-3
, Levin, Bruce R., et al. (2019). Definitions and guidelines for research on antibiotic persistence.
Balaban, Nathalie Q., Helaine, Sophie, Lewis, Kim, Ackermann, Martin, Aldridge, Bree, Andersson, Dan I., Brynildsen, Mark P., Bumann, Dirk, Camilli, Andrew, Collins, James J., Dehio, Christoph, Fortune, Sarah M., Ghigo, Jean-Marc, Hardt, Wolf-Dietrich, Harms, Alexander, Heinemann, Matthias, Hung, Deborah T., Nature Reviews Microbiology, 17(7), 441–448. https://doi.org/10.1038/s41579-019-0196-3
, Levin, Bruce R., et al. (2019). Definitions and guidelines for research on antibiotic persistence.
Laventie, Benoît-Joseph, Sangermani, Matteo, Estermann, Fabienne, Manfredi, Pablo, Planes, Rémi, Hug, Isabelle, Jaeger, Tina, Meunier, Etienne, Broz, Petr, & Cell Host & Microbe, 25(1), 140–+. https://doi.org/10.1016/j.chom.2018.11.008
. (2019). A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa.
Laventie, Benoît-Joseph, Sangermani, Matteo, Estermann, Fabienne, Manfredi, Pablo, Planes, Rémi, Hug, Isabelle, Jaeger, Tina, Meunier, Etienne, Broz, Petr, & Cell Host & Microbe, 25(1), 140–+. https://doi.org/10.1016/j.chom.2018.11.008
. (2019). A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa.
Lori, C., Kaczmarczyk, A., de Jong, I., & mBio, 9(3), e00809–18. https://doi.org/10.1128/mbio.00809-18
(2018). A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria.
Lori, C., Kaczmarczyk, A., de Jong, I., & mBio, 9(3), e00809–18. https://doi.org/10.1128/mbio.00809-18
(2018). A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria.
Lori, C., Kaczmarczyk, A., de Jong, I., & mBio, 9(5), e01534–18. https://doi.org/10.1128/mbio.01534-18
(2018). Erratum for Lori et al., “A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria”.
Lori, C., Kaczmarczyk, A., de Jong, I., & mBio, 9(5), e01534–18. https://doi.org/10.1128/mbio.01534-18
(2018). Erratum for Lori et al., “A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria”.
Wennemers, Helma, Foletti, Carlotta, Kramer, Rolf, Mauser, Harald, Angewandte Chemie (International Ed. In English), 57(26), 7729–7733. https://doi.org/10.1002/anie.201801845
, & Bleicher, Konrad. (2018). Functionalized Proline-Rich Peptides Bind the Bacterial Second Messenger c-di-GMP.
Wennemers, Helma, Foletti, Carlotta, Kramer, Rolf, Mauser, Harald, Angewandte Chemie (International Ed. In English), 57(26), 7729–7733. https://doi.org/10.1002/anie.201801845
, & Bleicher, Konrad. (2018). Functionalized Proline-Rich Peptides Bind the Bacterial Second Messenger c-di-GMP.
Hug, Isabelle, Deshpande, Siddharth, Sprecher, Kathrin S., Pfohl, Thomas, & Science, 358(6362), 531–534. https://doi.org/10.1126/science.aan5353
. (2017). Second messenger-mediated tactile response by a bacterial rotary motor.
Hug, Isabelle, Deshpande, Siddharth, Sprecher, Kathrin S., Pfohl, Thomas, & Science, 358(6362), 531–534. https://doi.org/10.1126/science.aan5353
. (2017). Second messenger-mediated tactile response by a bacterial rotary motor.
Nature Reviews Microbiology, 15(5), 271–284. https://doi.org/10.1038/nrmicro.2016.190
, Reinders, Alberto, & Lori, Christian. (2017). Cyclic di-GMP: second messenger extraordinaire.
Nature Reviews Microbiology, 15(5), 271–284. https://doi.org/10.1038/nrmicro.2016.190
, Reinders, Alberto, & Lori, Christian. (2017). Cyclic di-GMP: second messenger extraordinaire.
Laventie, Benoît-Joseph, Glatter, Timo, & Methods in Molecular Biology, 1657, 361–376. https://doi.org/10.1007/978-1-4939-7240-1_28
. (2017). Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins.
Laventie, Benoît-Joseph, Glatter, Timo, & Methods in Molecular Biology, 1657, 361–376. https://doi.org/10.1007/978-1-4939-7240-1_28
. (2017). Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins.
Moreira, Ricardo N., Dressaire, Clémentine, Barahona, Susana, Galego, Lisete, Kaever, Volkhard, mBio, 8(5), 17. https://doi.org/10.1128/mbio.00443-17
, & Arraiano, Cecília M. (2017). BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.
Moreira, Ricardo N., Dressaire, Clémentine, Barahona, Susana, Galego, Lisete, Kaever, Volkhard, mBio, 8(5), 17. https://doi.org/10.1128/mbio.00443-17
, & Arraiano, Cecília M. (2017). BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.
Nesper, Jutta, Hug, Isabelle, Kato, Setsu, Hee, Chee-Seng, Habazettl, Judith Maria, Manfredi, Pablo, Grzesiek, Stephan, Schirmer, Tilman, Emonet, Thierry, & eLife, 6, e28842. https://doi.org/10.7554/elife.28842
. (2017). Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.
Nesper, Jutta, Hug, Isabelle, Kato, Setsu, Hee, Chee-Seng, Habazettl, Judith Maria, Manfredi, Pablo, Grzesiek, Stephan, Schirmer, Tilman, Emonet, Thierry, & eLife, 6, e28842. https://doi.org/10.7554/elife.28842
. (2017). Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.
Schmid, Nadine, Suppiger, Angela, Steiner, Elisabeth, Pessi, Gabriella, Kaever, Volkhard, Fazli, Mustafa, Tolker-Nielsen, Tim, Microbiology, 163(5), 754–764. https://doi.org/10.1099/mic.0.000452
, & Eberl, Leo. (2017). High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111.
Schmid, Nadine, Suppiger, Angela, Steiner, Elisabeth, Pessi, Gabriella, Kaever, Volkhard, Fazli, Mustafa, Tolker-Nielsen, Tim, Microbiology, 163(5), 754–764. https://doi.org/10.1099/mic.0.000452
, & Eberl, Leo. (2017). High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111.
Sedlmayer, Ferdinand, Jaeger, Tina, Nano Letters, 17(8), 5043–5050. https://doi.org/10.1021/acs.nanolett.7b02270
, & Fussenegger, Martin. (2017). Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms.
Sedlmayer, Ferdinand, Jaeger, Tina, Nano Letters, 17(8), 5043–5050. https://doi.org/10.1021/acs.nanolett.7b02270
, & Fussenegger, Martin. (2017). Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms.
Sprecher, Kathrin S., Hug, Isabelle, Nesper, Jutta, Potthoff, Eva, Mahi, Mohamed-Ali, Sangermani, Matteo, Kaever, Volkhard, Schwede, Torsten, Vorholt, Julia, & mBio, 8(2), e00294–17. https://doi.org/10.1128/mbio.00294-17
. (2017). Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein.
Sprecher, Kathrin S., Hug, Isabelle, Nesper, Jutta, Potthoff, Eva, Mahi, Mohamed-Ali, Sangermani, Matteo, Kaever, Volkhard, Schwede, Torsten, Vorholt, Julia, & mBio, 8(2), e00294–17. https://doi.org/10.1128/mbio.00294-17
. (2017). Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein.
Valentini, M., Laventie, B.-J., Moscoso, J. A., Jenal, U., & Filloux, A. (2016). Erratum: The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility (PLoS Genet (2016) 12:10 (e1006354) DOI: 10.1371/journal.pgen.1006354). PLoS Genetics, 12(11). https://doi.org/10.1371/JOURNAL.PGEN.1006473
Valentini, M., Laventie, B.-J., Moscoso, J. A., Jenal, U., & Filloux, A. (2016). Erratum: The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility (PLoS Genet (2016) 12:10 (e1006354) DOI: 10.1371/journal.pgen.1006354). PLoS Genetics, 12(11). https://doi.org/10.1371/JOURNAL.PGEN.1006473
Broder, Ursula N., Jaeger, Tina, & Nature Microbiology, 2, 16184. https://doi.org/10.1038/nmicrobiol.2016.184
. (2016). LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa.
Broder, Ursula N., Jaeger, Tina, & Nature Microbiology, 2, 16184. https://doi.org/10.1038/nmicrobiol.2016.184
. (2016). LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa.
Dubey, Badri N., Lori, Christian, Ozaki, Shogo, Fucile, Geoffrey, Plaza-Menacho, Ivan, Science Advances, 2(9), e1600823. https://doi.org/10.1126/sciadv.1600823
, & Schirmer, Tilman. (2016). Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.
Dubey, Badri N., Lori, Christian, Ozaki, Shogo, Fucile, Geoffrey, Plaza-Menacho, Ivan, Science Advances, 2(9), e1600823. https://doi.org/10.1126/sciadv.1600823
, & Schirmer, Tilman. (2016). Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.
Hengge, Regine, Galperin, Michael Y, Ghigo, Jean-Marc, Gomelsky, Mark, Green, Jeffrey, Hughes, Kelly T, Journal of Bacteriology, 198(1), 7–11. https://doi.org/10.1128/jb.00424-15
, & Landini, Paolo. (2016). Systematic nomenclature for GGDEF and EAL domain-containing Cyclic di-GMP turnover proteins of Escherichia coli.
Hengge, Regine, Galperin, Michael Y, Ghigo, Jean-Marc, Gomelsky, Mark, Green, Jeffrey, Hughes, Kelly T, Journal of Bacteriology, 198(1), 7–11. https://doi.org/10.1128/jb.00424-15
, & Landini, Paolo. (2016). Systematic nomenclature for GGDEF and EAL domain-containing Cyclic di-GMP turnover proteins of Escherichia coli.
Hengge, Regine, Gründling, Angelika, Journal of Bacteriology, 198(1), 15–26. https://doi.org/10.1128/jb.00331-15
, Ryan, Robert, & Yildiz, Fitnat. (2016). Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers.
Hengge, Regine, Gründling, Angelika, Journal of Bacteriology, 198(1), 15–26. https://doi.org/10.1128/jb.00331-15
, Ryan, Robert, & Yildiz, Fitnat. (2016). Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers.
Reinders, Alberto, Hee, Chee-Seng, Ozaki, Shogo, Mazur, Adam, Boehm, Alex, Schirmer, Tilman, & Journal of Bacteriology, 198(3), 448–462. https://doi.org/10.1128/jb.00604-15
. (2016). Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli.
Reinders, Alberto, Hee, Chee-Seng, Ozaki, Shogo, Mazur, Adam, Boehm, Alex, Schirmer, Tilman, & Journal of Bacteriology, 198(3), 448–462. https://doi.org/10.1128/jb.00604-15
. (2016). Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli.
Rotem, Or, Nesper, Jutta, Borovok, Ilya, Gorovits, Rena, Kolot, Mikhail, Pasternak, Zohar, Shin, Irina, Glatter, Timo, Pietrokovski, Shmuel, Journal of Bacteriology, 198(1), 127–137. https://doi.org/10.1128/jb.00422-15
, & Jurkevitch, Edouard. (2016). An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus.
Rotem, Or, Nesper, Jutta, Borovok, Ilya, Gorovits, Rena, Kolot, Mikhail, Pasternak, Zohar, Shin, Irina, Glatter, Timo, Pietrokovski, Shmuel, Journal of Bacteriology, 198(1), 127–137. https://doi.org/10.1128/jb.00422-15
, & Jurkevitch, Edouard. (2016). An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus.
Valentini, Martina, Laventie, Benoît-Joseph, Moscoso, Joana, PLoS Genetics, 12(10), e1006354. https://doi.org/10.1371/journal.pgen.1006354
, & Filloux, Alain. (2016). The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility.
Valentini, Martina, Laventie, Benoît-Joseph, Moscoso, Joana, PLoS Genetics, 12(10), e1006354. https://doi.org/10.1371/journal.pgen.1006354
, & Filloux, Alain. (2016). The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility.
Laventie, Benoît-Joseph, Nesper, Jutta, Ahrné, Erik, Glatter, Timo, Schmidt, Alexander, & Journal of Visualized Experiments, 97 , e51404(97), e51404. https://doi.org/10.3791/51404
. (2015). Capture compound mass spectrometry - a powerful tool to identify novel c-di-GMP effector proteins.
Laventie, Benoît-Joseph, Nesper, Jutta, Ahrné, Erik, Glatter, Timo, Schmidt, Alexander, & Journal of Visualized Experiments, 97 , e51404(97), e51404. https://doi.org/10.3791/51404
. (2015). Capture compound mass spectrometry - a powerful tool to identify novel c-di-GMP effector proteins.
Lori, Christian, Ozaki, Shogo, Steiner, Samuel, Böhm, Raphael, Abel, Sören, Dubey, Badri N., Schirmer, Tilman, Hiller, Sebastian, & Nature, 523(7559), 236–239. https://doi.org/10.1038/nature14473
. (2015). Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication.
Lori, Christian, Ozaki, Shogo, Steiner, Samuel, Böhm, Raphael, Abel, Sören, Dubey, Badri N., Schirmer, Tilman, Hiller, Sebastian, & Nature, 523(7559), 236–239. https://doi.org/10.1038/nature14473
. (2015). Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication.
Manfredi, Pablo, & Cell Host & Microbe, 18(3), 268–269. https://doi.org/10.1016/j.chom.2015.08.013
. (2015). Bacteria in the CF Lung: Isolation Drives Diversity.
Manfredi, Pablo, & Cell Host & Microbe, 18(3), 268–269. https://doi.org/10.1016/j.chom.2015.08.013
. (2015). Bacteria in the CF Lung: Isolation Drives Diversity.
Fei, Na, Häussinger, Daniel, Blümli, Seraina, Laventie, Benoît-Joseph, Bizzini, Lorenzo D, Zimmermann, Kaspar, Chemical Communications, 50(62), 8499–8502. https://doi.org/10.1039/c4cc01919a
, & Gillingham, Dennis. (2014). Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.
Fei, Na, Häussinger, Daniel, Blümli, Seraina, Laventie, Benoît-Joseph, Bizzini, Lorenzo D, Zimmermann, Kaspar, Chemical Communications, 50(62), 8499–8502. https://doi.org/10.1039/c4cc01919a
, & Gillingham, Dennis. (2014). Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.
Fumeaux, Coralie, Radhakrishnan, Sunish Kumar, Ardissone, Silvia, Théraulaz, Laurence, Frandi, Antonio, Martins, Daniel, Nesper, Jutta, Abel, Sören, Nature Communications, 5, 4081. https://doi.org/10.1038/ncomms5081
, & Viollier, Patrick H. (2014). Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators.
Fumeaux, Coralie, Radhakrishnan, Sunish Kumar, Ardissone, Silvia, Théraulaz, Laurence, Frandi, Antonio, Martins, Daniel, Nesper, Jutta, Abel, Sören, Nature Communications, 5, 4081. https://doi.org/10.1038/ncomms5081
, & Viollier, Patrick H. (2014). Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators.
Moscoso, Joana A., Jaeger, Tina, Valentini, Martina, Hui, Kailyn, Journal of Bacteriology, 196(23), 4081–4088. https://doi.org/10.1128/jb.01850-14
, & Filloux, Alain. (2014). The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa.
Moscoso, Joana A., Jaeger, Tina, Valentini, Martina, Hui, Kailyn, Journal of Bacteriology, 196(23), 4081–4088. https://doi.org/10.1128/jb.01850-14
, & Filloux, Alain. (2014). The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa.
Ozaki, Shogo, Schalch-Moser, Annina, Zumthor, Ludwig, Manfredi, Pablo, Ebbensgaard, Anna, Schirmer, Tilman, & Molecular Microbiology, 94(3), 580–594. https://doi.org/10.1111/mmi.12777
. (2014). Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control.
Ozaki, Shogo, Schalch-Moser, Annina, Zumthor, Ludwig, Manfredi, Pablo, Ebbensgaard, Anna, Schirmer, Tilman, & Molecular Microbiology, 94(3), 580–594. https://doi.org/10.1111/mmi.12777
. (2014). Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control.
Sundriyal, Amit, Massa, Claudia, Samoray, Dietrich, Zehender, Fabian, Sharpe, Timothy, Journal of Biological Chemistry, 289(10), 6978–6990. https://doi.org/10.1074/jbc.m113.516195
, & Schirmer, Tilman. (2014). Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP.
Sundriyal, Amit, Massa, Claudia, Samoray, Dietrich, Zehender, Fabian, Sharpe, Timothy, Journal of Biological Chemistry, 289(10), 6978–6990. https://doi.org/10.1074/jbc.m113.516195
, & Schirmer, Tilman. (2014). Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP.
Boos, W., Parkinson, J. S., Jenal, U., Vogel, J., & Søgaard-Andersen, L. (2013). Alexander Böhm (1971-2012). Molecular Microbiology, 88(2), 219–221. https://doi.org/10.1111/mmi.12198
Boos, W., Parkinson, J. S., Jenal, U., Vogel, J., & Søgaard-Andersen, L. (2013). Alexander Böhm (1971-2012). Molecular Microbiology, 88(2), 219–221. https://doi.org/10.1111/mmi.12198
Abel, Sören, Bucher, Tabitha, Nicollier, Micaël, Hug, Isabelle, Kaever, Volkhard, Abel Zur Wiesch, Pia, & PLoS Genetics, 9(9), e1003744. https://doi.org/10.1371/journal.pgen.1003744
. (2013). Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle.
Abel, Sören, Bucher, Tabitha, Nicollier, Micaël, Hug, Isabelle, Kaever, Volkhard, Abel Zur Wiesch, Pia, & PLoS Genetics, 9(9), e1003744. https://doi.org/10.1371/journal.pgen.1003744
. (2013). Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle.
Davis, N. J., Cohen, Y., Sanselicio, S., Fumeaux, C., Ozaki, S., Luciano, J., Guerrero-Ferreira, R. C., Wright, E. R., Genes and Development, 27(18), 2049–2062. https://doi.org/10.1101/gad.222679.113
, & Viollier, P. H. (2013). De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle.
Davis, N. J., Cohen, Y., Sanselicio, S., Fumeaux, C., Ozaki, S., Luciano, J., Guerrero-Ferreira, R. C., Wright, E. R., Genes and Development, 27(18), 2049–2062. https://doi.org/10.1101/gad.222679.113
, & Viollier, P. H. (2013). De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle.
The EMBO Journal, 32(14), 1972–1974. https://doi.org/10.1038/emboj.2013.140
. (2013). Think globally, act locally: how bacteria integrate local decisions with their global cellular programme.
The EMBO Journal, 32(14), 1972–1974. https://doi.org/10.1038/emboj.2013.140
. (2013). Think globally, act locally: how bacteria integrate local decisions with their global cellular programme.
Renggli, Sabine, Keck, Wolfgang, Journal of Bacteriology, 195(18), 4067–4073. https://doi.org/10.1128/jb.00393-13
, & Ritz, Daniel. (2013). The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics.
Renggli, Sabine, Keck, Wolfgang, Journal of Bacteriology, 195(18), 4067–4073. https://doi.org/10.1128/jb.00393-13
, & Ritz, Daniel. (2013). The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics.
Renggli, Sabine, Keck, Wolfgang, Journal of Bacteriology, 195(18), 4067–4073. https://doi.org/10.1128/jb.00393-13
, & Ritz, Daniel. (2013). Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics.
Renggli, Sabine, Keck, Wolfgang, Journal of Bacteriology, 195(18), 4067–4073. https://doi.org/10.1128/jb.00393-13
, & Ritz, Daniel. (2013). Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics.
Steiner, S., Lori, C., Boehm, A., & The EMBO journal, 32(3), 354–368. https://doi.org/10.1038/emboj.2012.315
(2013). Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction.
Steiner, S., Lori, C., Boehm, A., & The EMBO journal, 32(3), 354–368. https://doi.org/10.1038/emboj.2012.315
(2013). Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction.
Wegrzyn, Katarzyna, Witosinska, Monika, Schweiger, Pawel, Bury, Katarzyna, Microbiology, 159(Pt 6), 1010–1022. https://doi.org/10.1099/mic.0.065490-0
, & Konieczny, Igor. (2013). RK2 plasmid dynamics in Caulobacter crescentus cells - two modes of DNA replication initiation.
Wegrzyn, Katarzyna, Witosinska, Monika, Schweiger, Pawel, Bury, Katarzyna, Microbiology, 159(Pt 6), 1010–1022. https://doi.org/10.1099/mic.0.065490-0
, & Konieczny, Igor. (2013). RK2 plasmid dynamics in Caulobacter crescentus cells - two modes of DNA replication initiation.
Zähringer, Franziska, Lacanna, Egidio, Structure: with folding and design, 21(7), 1149–1157. https://doi.org/10.1016/j.str.2013.04.026
, Schirmer, Tilman, & Boehm, Alex. (2013). Structure and signaling mechanism of a zinc-sensory diguanylate cyclase.
Zähringer, Franziska, Lacanna, Egidio, Structure: with folding and design, 21(7), 1149–1157. https://doi.org/10.1016/j.str.2013.04.026
, Schirmer, Tilman, & Boehm, Alex. (2013). Structure and signaling mechanism of a zinc-sensory diguanylate cyclase.
Hardwick, S. W., Gubbey, T., Hug, I., Biology Open, 2(4), 120028. https://doi.org/10.1098/rsob.120028
, & Luisi, B. F. (2012). Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.
Hardwick, S. W., Gubbey, T., Hug, I., Biology Open, 2(4), 120028. https://doi.org/10.1098/rsob.120028
, & Luisi, B. F. (2012). Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.
Malone, J. G., Jaeger, T., Manfredi, P., Dötsch, A., Blanka, A., Bos, R., Cornelis, G. R., Häussler, S., & PLoS Pathogens, 8(6). https://doi.org/10.1371/journal.ppat.1002760
(2012). The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent pseudomonas aeruginosa in cystic fibrosis airways.
Malone, J. G., Jaeger, T., Manfredi, P., Dötsch, A., Blanka, A., Bos, R., Cornelis, G. R., Häussler, S., & PLoS Pathogens, 8(6). https://doi.org/10.1371/journal.ppat.1002760
(2012). The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent pseudomonas aeruginosa in cystic fibrosis airways.
Nesper, J., Reinders, A., Glatter, T., Schmidt, A., & Journal of Proteomics, 75(15), 4874–4878. https://doi.org/10.1016/j.jprot.2012.05.033
(2012). A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins.
Nesper, J., Reinders, A., Glatter, T., Schmidt, A., & Journal of Proteomics, 75(15), 4874–4878. https://doi.org/10.1016/j.jprot.2012.05.033
(2012). A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins.
Petters, Tobias, Zhang, Xin, Nesper, Jutta, Treuner-Lange, Anke, Gomez-Santos, Nuria, Hoppert, Michael, Molecular microbiology, 84(1), 147–165. https://doi.org/10.1111/j.1365-2958.2012.08015.x
, & Søgaard-Andersen, Lotte. (2012). The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus.
Petters, Tobias, Zhang, Xin, Nesper, Jutta, Treuner-Lange, Anke, Gomez-Santos, Nuria, Hoppert, Michael, Molecular microbiology, 84(1), 147–165. https://doi.org/10.1111/j.1365-2958.2012.08015.x
, & Søgaard-Andersen, Lotte. (2012). The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus.
Abel, Sören, Chien, Peter, Wassmann, Paul, Schirmer, Tilman, Kaever, Volkhard, Laub, Michael T, Baker, Tania A, & Molecular Cell, 43(4), 550–560. https://doi.org/10.1016/j.molcel.2011.07.018
. (2011). Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked Phosphorylation and Second Messenger Networks.
Abel, Sören, Chien, Peter, Wassmann, Paul, Schirmer, Tilman, Kaever, Volkhard, Laub, Michael T, Baker, Tania A, & Molecular Cell, 43(4), 550–560. https://doi.org/10.1016/j.molcel.2011.07.018
. (2011). Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked Phosphorylation and Second Messenger Networks.
Habazettl, Judith, Allan, Martin G, Journal of Biological Chemistry, 286(16), 14304–14314. https://doi.org/10.1074/jbc.m110.209007
, & Grzesiek, Stephan. (2011). Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout.
Habazettl, Judith, Allan, Martin G, Journal of Biological Chemistry, 286(16), 14304–14314. https://doi.org/10.1074/jbc.m110.209007
, & Grzesiek, Stephan. (2011). Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout.
Levi, A., Folcher, M., mBio, 2(1), e00316–10. https://doi.org/10.1128/mbio.00316-10
, & Shuman, H. A. (2011). Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila.
Levi, A., Folcher, M., mBio, 2(1), e00316–10. https://doi.org/10.1128/mbio.00316-10
, & Shuman, H. A. (2011). Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila.
Abgottspon, Daniela, Rölli, Gina, Hosch, Lucie, Steinhuber, Andrea, Jiang, Xiaohua, Schwardt, Oliver, Cutting, Brian, Smiesko, Martin, Journal of Microbiological Methods, 82(3), 249–255. https://doi.org/10.1016/j.mimet.2010.06.015
, Ernst, Beat, & Trampuz, Andrej. (2010). Development of an aggregation assay to screen FimH antagonists.
Abgottspon, Daniela, Rölli, Gina, Hosch, Lucie, Steinhuber, Andrea, Jiang, Xiaohua, Schwardt, Oliver, Cutting, Brian, Smiesko, Martin, Journal of Microbiological Methods, 82(3), 249–255. https://doi.org/10.1016/j.mimet.2010.06.015
, Ernst, Beat, & Trampuz, Andrej. (2010). Development of an aggregation assay to screen FimH antagonists.
Boehm, Alex, Kaiser, Matthias, Li, Hui, Spangler, Christian, Kasper, Christoph Alexander, Ackermann, Martin, Kaever, Volkhard, Sourjik, Victor, Roth, Volker, & Cell, 141(1), 107–116. https://doi.org/10.1016/j.cell.2010.01.018
. (2010). Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity.
Boehm, Alex, Kaiser, Matthias, Li, Hui, Spangler, Christian, Kasper, Christoph Alexander, Ackermann, Martin, Kaever, Volkhard, Sourjik, Victor, Roth, Volker, & Cell, 141(1), 107–116. https://doi.org/10.1016/j.cell.2010.01.018
. (2010). Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity.
Diepold, A., Amstutz, M., Abel, S., Sorg, I., The EMBO journal, 29(11), 1928–1940. https://doi.org/10.1038/emboj.2010.84
, & Cornelis, G. R. (2010). Deciphering the assembly of the Yersinia type III secretion injectisome.
Diepold, A., Amstutz, M., Abel, S., Sorg, I., The EMBO journal, 29(11), 1928–1940. https://doi.org/10.1038/emboj.2010.84
, & Cornelis, G. R. (2010). Deciphering the assembly of the Yersinia type III secretion injectisome.
Malone, J. G., Jaeger, T., Spangler, C., Ritz, D., Spang, A., Arrieumerlou, C., Kaever, V., Landmann, R., & PLoS Pathogens, 6(3), e1000804. https://doi.org/10.1371/journal.ppat.1000804
(2010). YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa.
Malone, J. G., Jaeger, T., Spangler, C., Ritz, D., Spang, A., Arrieumerlou, C., Kaever, V., Landmann, R., & PLoS Pathogens, 6(3), e1000804. https://doi.org/10.1371/journal.ppat.1000804
(2010). YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa.
Spangler, Christian, Böhm, Alex, Journal of Microbiological Methods, 81(3), 226–231. https://doi.org/10.1016/j.mimet.2010.03.020
, Seifert, Roland, & Kaever, Volkhard. (2010). A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate.
Spangler, Christian, Böhm, Alex, Journal of Microbiological Methods, 81(3), 226–231. https://doi.org/10.1016/j.mimet.2010.03.020
, Seifert, Roland, & Kaever, Volkhard. (2010). A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate.
Abel, Sören, & Second messenger cyclic Di-GMP (pp. 120–136). ASM Press. https://doi.org/10.1128/9781555816667.ch9
. (2010). Role of cyclic di-GMP in Caulobacter crescentus development and cell cycle control. In
Abel, Sören, & Second messenger cyclic Di-GMP (pp. 120–136). ASM Press. https://doi.org/10.1128/9781555816667.ch9
. (2010). Role of cyclic di-GMP in Caulobacter crescentus development and cell cycle control. In
Jenal, U. (2009). The role of proteolysis in the Caulobacter crescentus cell cycle and development. Research in Microbiology, 160(9), 687–695. https://doi.org/10.1016/j.resmic.2009.09.006
Jenal, U. (2009). The role of proteolysis in the Caulobacter crescentus cell cycle and development. Research in Microbiology, 160(9), 687–695. https://doi.org/10.1016/j.resmic.2009.09.006