Publications
121 found
Show per page
Mumme, Marcus, Wixmerten, Anke, Ivkovic, Alan, Peretti Giuseppe M, Yilmaz, Tayfun, Reppenhagen, Stephan, Pullig, Olliver, Miot, Sylvie, Izadpanah, Kaywan, Jakob, Marcel, Mangiavini, Laura, Sosio, Corrado, Vuletić, Filip, Bieri, Oliver, Biguzzi, Stefano, Gahl, Brigitta, Lehoczky, Gyözö, Vukojevic, Rudolf, Häusner, Sebastian, et al. (2025). Clinical relevance of engineered cartilage maturation in a randomized multicenter trial for articular cartilage repair. Science Translational Medicine, 17(788). https://doi.org/10.1126/scitranslmed.ads0848
Mumme, Marcus, Wixmerten, Anke, Ivkovic, Alan, Peretti Giuseppe M, Yilmaz, Tayfun, Reppenhagen, Stephan, Pullig, Olliver, Miot, Sylvie, Izadpanah, Kaywan, Jakob, Marcel, Mangiavini, Laura, Sosio, Corrado, Vuletić, Filip, Bieri, Oliver, Biguzzi, Stefano, Gahl, Brigitta, Lehoczky, Gyözö, Vukojevic, Rudolf, Häusner, Sebastian, et al. (2025). Clinical relevance of engineered cartilage maturation in a randomized multicenter trial for articular cartilage repair. Science Translational Medicine, 17(788). https://doi.org/10.1126/scitranslmed.ads0848
Bühler, D., Hilpert, M., Barbero, A., Müller, A. M., Müller, S. A., Martin, I., & Pelttari, K. (2025). Occurrence of cellular senescence in chronic human shoulder tendinopathies and its attenuation ex vivo by inhibition of Enhancer of Zeste 2 [Journal-article]. Bone and Joint Research, 14(2), 143–154. https://doi.org/10.1302/2046-3758.142.bjr-2023-0378.r2
Bühler, D., Hilpert, M., Barbero, A., Müller, A. M., Müller, S. A., Martin, I., & Pelttari, K. (2025). Occurrence of cellular senescence in chronic human shoulder tendinopathies and its attenuation ex vivo by inhibition of Enhancer of Zeste 2 [Journal-article]. Bone and Joint Research, 14(2), 143–154. https://doi.org/10.1302/2046-3758.142.bjr-2023-0378.r2
Kaiser, Benedict, Miot, Sylvie, Wixmerten, Anke, Pullig, Oliver, Eyrich, Matthias, Fulco, Ilario, Vavrina, Josef, Schaefer, Dirk J., Martin, Ivan, , & Haug, Martin D. (2024). Engineered autologous nasal cartilage for repair of nasal septal perforations: a case series [Journal-article]. International journal of surgery (London, England), 110(10), 6573–6580. https://doi.org/10.1097/js9.0000000000001843
Kaiser, Benedict, Miot, Sylvie, Wixmerten, Anke, Pullig, Oliver, Eyrich, Matthias, Fulco, Ilario, Vavrina, Josef, Schaefer, Dirk J., Martin, Ivan, , & Haug, Martin D. (2024). Engineered autologous nasal cartilage for repair of nasal septal perforations: a case series [Journal-article]. International journal of surgery (London, England), 110(10), 6573–6580. https://doi.org/10.1097/js9.0000000000001843
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, Martin, Ivan, & . (2024). Engineered human osteoarthritic cartilage organoids [Journal-article]. Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, Martin, Ivan, & . (2024). Engineered human osteoarthritic cartilage organoids [Journal-article]. Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, Martin, Ivan, , & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article]. ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, Martin, Ivan, , & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article]. ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
Mumme, M., Wixmerten, A., Ivkovic, A., Peretti, G. M., Yilmaz, T., Reppenhagen, S., Pullig, O., Miot, S., Jakob, M., Mangiavini, L., Sosio, C., Bieri, O., Biguzzi, S., Gahl, B., Lehoczky, G., Vukojevic, R., Häusner, S., Gryadunova, A., Haug, M., et al. (2024). Engineered Cartilage from Nasal Chondrocytes for Knee Repair: Clinical Relevance of Tissue Maturation in a Randomized, Multicenter Phase 2 Trial [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4797651
Mumme, M., Wixmerten, A., Ivkovic, A., Peretti, G. M., Yilmaz, T., Reppenhagen, S., Pullig, O., Miot, S., Jakob, M., Mangiavini, L., Sosio, C., Bieri, O., Biguzzi, S., Gahl, B., Lehoczky, G., Vukojevic, R., Häusner, S., Gryadunova, A., Haug, M., et al. (2024). Engineered Cartilage from Nasal Chondrocytes for Knee Repair: Clinical Relevance of Tissue Maturation in a Randomized, Multicenter Phase 2 Trial [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4797651
Mainardi, A., Börsch, A., Occhetta, P., Ivanek, R., Ehrbar, M., Krattiger, L., Oertle, P., Loparic, M., Martin, I., Rasponi, M., & Barbero, A. (2023). Modelling Osteoarthritis pathogenesis through Mechanical Loading in an Osteochondral Unit-on-Chip [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.29.555292
Mainardi, A., Börsch, A., Occhetta, P., Ivanek, R., Ehrbar, M., Krattiger, L., Oertle, P., Loparic, M., Martin, I., Rasponi, M., & Barbero, A. (2023). Modelling Osteoarthritis pathogenesis through Mechanical Loading in an Osteochondral Unit-on-Chip [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.29.555292
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, Martin, Ivan, Pullig, Oliver, & . (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study. Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, Martin, Ivan, Pullig, Oliver, & . (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study. Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, , Martin, Ivan, & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs. Advanced Healthcare Materials, 12(9). https://doi.org/10.1002/adhm.202202550
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, , Martin, Ivan, & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs. Advanced Healthcare Materials, 12(9). https://doi.org/10.1002/adhm.202202550
Dönges, L., Damle, A., Bock, T., Schönenberger, M., Martin, I., & Barbero, A. (2023). Engineered Human Osteoarthritic Cartilage Organoids [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4613402
Dönges, L., Damle, A., Bock, T., Schönenberger, M., Martin, I., & Barbero, A. (2023). Engineered Human Osteoarthritic Cartilage Organoids [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4613402
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, Martin, Ivan, Schären, Stefan, , Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, Martin, Ivan, Schären, Stefan, , Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
Lisignoli, Gina, Nalesso, Giovanna, & . (2023). Editorial: Methodologies to improve the performance of chondrocytes for cartilage repair and regeneration. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1335134
Lisignoli, Gina, Nalesso, Giovanna, & . (2023). Editorial: Methodologies to improve the performance of chondrocytes for cartilage repair and regeneration. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1335134
Vignon, Christine, Hilpert, Morgane, Toupet, Karine, Goubaud, Aurélien, Noël, Danièle, de Kalbermatten, Matthieu, Hénon, Philippe, Jorgensen, Christian, , & Garitaonandia, Ibon. (2023). Evaluation of expanded peripheral blood derived CD34+ cells for the treatment of moderate knee osteoarthritis. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1150522
Vignon, Christine, Hilpert, Morgane, Toupet, Karine, Goubaud, Aurélien, Noël, Danièle, de Kalbermatten, Matthieu, Hénon, Philippe, Jorgensen, Christian, , & Garitaonandia, Ibon. (2023). Evaluation of expanded peripheral blood derived CD34+ cells for the treatment of moderate knee osteoarthritis. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1150522
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, Martin, Ivan, Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & . (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells, 11(24). https://doi.org/10.3390/cells11244034
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, Martin, Ivan, Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & . (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells, 11(24). https://doi.org/10.3390/cells11244034
Abou-Jaoude A, Courtes M, Badique L, Elhaj Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M, Lemle A, Awan S, Terrand J, Niemeier A, , Houard X, Boucher P, & Matz RL. (2022). ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation. Osteoarthritis and Cartilage, 30(10), 1365–1375. https://doi.org/10.1016/j.joca.2022.07.001
Abou-Jaoude A, Courtes M, Badique L, Elhaj Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M, Lemle A, Awan S, Terrand J, Niemeier A, , Houard X, Boucher P, & Matz RL. (2022). ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation. Osteoarthritis and Cartilage, 30(10), 1365–1375. https://doi.org/10.1016/j.joca.2022.07.001
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, Martin, Ivan, & . (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/ijms23136900
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, Martin, Ivan, & . (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/ijms23136900
Kasamkattil J, Gryadunova A, Martin I, , Schären S, Krupkova O, & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
Kasamkattil J, Gryadunova A, Martin I, , Schären S, Krupkova O, & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
Mainardi, Andrea, Mainardi, Andrea, Cambria, Elena, Occhetta, Paola, Martin, Ivan, , Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
Mainardi, Andrea, Mainardi, Andrea, Cambria, Elena, Occhetta, Paola, Martin, Ivan, , Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, Krasheninnikov M, Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & . (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates. Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, Krasheninnikov M, Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & . (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates. Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
Schulz, Georg, , Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022). Three-dimensional imaging of porcine joint tissues down to the subcellular level. Proceedings of SPIE - the International Society for Optical Engineering, 12242. https://doi.org/10.1117/12.2635223
Schulz, Georg, , Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022). Three-dimensional imaging of porcine joint tissues down to the subcellular level. Proceedings of SPIE - the International Society for Optical Engineering, 12242. https://doi.org/10.1117/12.2635223
Schulz, Georg, , Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022). Three-dimensional imaging of porcine joint tissues down to the subcellular level [Proceedings-article]. Proceedings of SPIE - the International Society for Optical Engineering, 12242. https://doi.org/10.1117/12.2635223
Schulz, Georg, , Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022). Three-dimensional imaging of porcine joint tissues down to the subcellular level [Proceedings-article]. Proceedings of SPIE - the International Society for Optical Engineering, 12242. https://doi.org/10.1117/12.2635223
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, Martin I, Pelttari K, , & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions. Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, Martin I, Pelttari K, , & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions. Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., Martin I., Scharen S., , Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation. Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., Martin I., Scharen S., , Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation. Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., Martin I., , & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., Martin I., , & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, Martin, Ivan, & . (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/ijms22179581
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, Martin, Ivan, & . (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/ijms22179581
Duverney, Cedric, Abbasi, Hamed, Berkelaar, Majoska, Pelttari, Karoliina, Cattin, Philippe C., , Zam, Azhar, & Rauter, Georg. (2021). Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability. Journal of Medical Devices, Transactions of the ASME, 15(1). https://doi.org/10.1115/1.4049396
Duverney, Cedric, Abbasi, Hamed, Berkelaar, Majoska, Pelttari, Karoliina, Cattin, Philippe C., , Zam, Azhar, & Rauter, Georg. (2021). Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability. Journal of Medical Devices, Transactions of the ASME, 15(1). https://doi.org/10.1115/1.4049396
Power L, Acevedo L, Yamashita R., Rubin D., Martin I., & . (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization. Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
Power L, Acevedo L, Yamashita R., Rubin D., Martin I., & . (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization. Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
Ziadlou R, Rotman S, Teuschl A., Salzer E, , Martin I., Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
Ziadlou R, Rotman S, Teuschl A., Salzer E, , Martin I., Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., Martin I., , & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model. Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., Martin I., , & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model. Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
Gu Y, Schwarz B, Forget A, , , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
Gu Y, Schwarz B, Forget A, , , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
Power LJ, Fasolato C, , Wendt DJ, Wixmerten A, Martin I, & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
Power LJ, Fasolato C, , Wendt DJ, Wixmerten A, Martin I, & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
Abou-Jaoude, A., Courtes, M., Badique, L., Elhaj Mahmoud, D., Abboud, C., Mlih, M., Justiniano, H., Lemle, A., Awan, S., Terrand, J., Niemeier, A., , Houard, X., Boucher, P., & Matz, R. (2020). ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.07.16.206870
Abou-Jaoude, A., Courtes, M., Badique, L., Elhaj Mahmoud, D., Abboud, C., Mlih, M., Justiniano, H., Lemle, A., Awan, S., Terrand, J., Niemeier, A., , Houard, X., Boucher, P., & Matz, R. (2020). ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.07.16.206870
Ziadlou R, , Martin I, Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
Ziadlou R, , Martin I, Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
Acevedo, L., Iselin, L., Berkelaar, M., Salzmann, G., Wolf, F., Feliciano, S., Vogel, N., Pagenstert, G., Martin, I., Pelttari, K., Barbero, A., & Arnold, M. P. (2020). Comparison Of Human Articular Cartilage Tissue And Chondrocytes Isolated From Peripheral vs Central Regions Of Traumatic Lesions [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-24080/v1
Acevedo, L., Iselin, L., Berkelaar, M., Salzmann, G., Wolf, F., Feliciano, S., Vogel, N., Pagenstert, G., Martin, I., Pelttari, K., Barbero, A., & Arnold, M. P. (2020). Comparison Of Human Articular Cartilage Tissue And Chondrocytes Isolated From Peripheral vs Central Regions Of Traumatic Lesions [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-24080/v1
Asnaghi M.A., Power L., , Haug M, Koppl R., Wendt D, & Martin I. (2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
Asnaghi M.A., Power L., , Haug M, Koppl R., Wendt D, & Martin I. (2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, , & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/CH-199236
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, , & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts. Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/CH-199236
Ziadlou R, , Stoddart MJ, Wirth M, Li Z, Martin I, Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules. International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
Ziadlou R, , Stoddart MJ, Wirth M, Li Z, Martin I, Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules. International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, Martin, Ivan, , & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article]. Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, Martin, Ivan, , & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article]. Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
Mumme M, Wixmerten A, Miot S., , Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, & Martin I. (2019). Tissue engineering for paediatric patients. Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
Mumme M, Wixmerten A, Miot S., , Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, & Martin I. (2019). Tissue engineering for paediatric patients. Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
Haeni D.L., Lafosse T., Haggerty C., Plath J., Kida Y., Sanchez-Brass M., Wolf F., Calvo E., Muller A.M., , & Lafosse L. (2019). Tissue on the Transferred Coracoid Graft After Latarjet Procedure: Histological and Morphological Findings. American Journal of Sports Medicine, 47(3), 704–712. https://doi.org/10.1177/0363546518819825
Haeni D.L., Lafosse T., Haggerty C., Plath J., Kida Y., Sanchez-Brass M., Wolf F., Calvo E., Muller A.M., , & Lafosse L. (2019). Tissue on the Transferred Coracoid Graft After Latarjet Procedure: Histological and Morphological Findings. American Journal of Sports Medicine, 47(3), 704–712. https://doi.org/10.1177/0363546518819825
Stüdle C, Occhetta P, Geier F, Mehrkens A, , & Martin I. (2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
Stüdle C, Occhetta P, Geier F, Mehrkens A, , & Martin I. (2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
Gay M.H.P., Mehrkens A., Rittmann M., Haug M., , Martin I., & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc. European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ECM.V037A13
Gay M.H.P., Mehrkens A., Rittmann M., Haug M., , Martin I., & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc. European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ECM.V037A13
Power, Laura, Wixmerten, Anke, Wendt, David, , & Martin, Ivan. (2019). Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10881. https://doi.org/10.1117/12.2507951
Power, Laura, Wixmerten, Anke, Wendt, David, , & Martin, Ivan. (2019). Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10881. https://doi.org/10.1117/12.2507951
Sarem M., Heizmann M., , Martin I., & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
Sarem M., Heizmann M., , Martin I., & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, , & Martin I. (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, , & Martin I. (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., , & Martin I. (2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., , & Martin I. (2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
Sarem M., Arya N., Heizmann M., Neffe A.T., , Gebauer T.P., Martin I., Lendlein A., & Shastri V.P. (2018). Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomaterialia, 69, 83–94. https://doi.org/10.1016/j.actbio.2018.01.025
Sarem M., Arya N., Heizmann M., Neffe A.T., , Gebauer T.P., Martin I., Lendlein A., & Shastri V.P. (2018). Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomaterialia, 69, 83–94. https://doi.org/10.1016/j.actbio.2018.01.025
Burger, Maximilian G., Steinitz, Amir, Geurts, Jeroen, Pippenger, Benjamin E., Schaefer, Dirk J., Martin, Ivan, , & Pelttari, Karoliina. (2017). Ascorbic acid attenuates senescence of human osteoarthritic osteoblasts. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122517
Burger, Maximilian G., Steinitz, Amir, Geurts, Jeroen, Pippenger, Benjamin E., Schaefer, Dirk J., Martin, Ivan, , & Pelttari, Karoliina. (2017). Ascorbic acid attenuates senescence of human osteoarthritic osteoblasts. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122517
Nusspaumer, Gretel, Jaiswal, Sumit, , Reinhardt, Robert, Ishay Ronen, Dana, Haumer, Alexander, Lufkin, Thomas, Martin, Ivan, & Zeller, Rolf. (2017). Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Reports, 9(4), 1124–1138. https://doi.org/10.1016/j.stemcr.2017.08.007
Nusspaumer, Gretel, Jaiswal, Sumit, , Reinhardt, Robert, Ishay Ronen, Dana, Haumer, Alexander, Lufkin, Thomas, Martin, Ivan, & Zeller, Rolf. (2017). Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Reports, 9(4), 1124–1138. https://doi.org/10.1016/j.stemcr.2017.08.007
Pelttari, Karoliina, Mumme, Marcus, , & Martin, Ivan. (2017). Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Current Opinion in Biotechnology, 47, 1–6. https://doi.org/10.1016/j.copbio.2017.05.007
Pelttari, Karoliina, Mumme, Marcus, , & Martin, Ivan. (2017). Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Current Opinion in Biotechnology, 47, 1–6. https://doi.org/10.1016/j.copbio.2017.05.007
Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, Fleury-Cappellesso S, , Murphy M, & Lisignoli G. (2017). Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthritis and Cartilage, 25(7), 1161–1171. https://doi.org/10.1016/j.joca.2017.01.011
Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, Fleury-Cappellesso S, , Murphy M, & Lisignoli G. (2017). Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthritis and Cartilage, 25(7), 1161–1171. https://doi.org/10.1016/j.joca.2017.01.011
Todorov A., Scotti C., , Scherberich A., Scherberich A., Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity. Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
Todorov A., Scotti C., , Scherberich A., Scherberich A., Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity. Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
Manferdini, C., Paolella, F., Gabusi, E., Gambari, L., Piacentini, A., Fleury-Cappellesso, S., , Murphy, M., & Lisignoli, G. (2017). ADIPOSE STROMAL CELLS EXERT SPECIFIC EFFECTS ON OSTEOARTHRITIC SYNOVIAL MACROPHAGES [BMJ PUBLISHING GROUP]. 76, 1069. https://doi.org/10.1136/annrheumdis-2017-eular.6081
Manferdini, C., Paolella, F., Gabusi, E., Gambari, L., Piacentini, A., Fleury-Cappellesso, S., , Murphy, M., & Lisignoli, G. (2017). ADIPOSE STROMAL CELLS EXERT SPECIFIC EFFECTS ON OSTEOARTHRITIC SYNOVIAL MACROPHAGES [BMJ PUBLISHING GROUP]. 76, 1069. https://doi.org/10.1136/annrheumdis-2017-eular.6081
Marmotti, A., Mattia, S., Castoldi, F., , Mangiavini, L., Bonasia, D. E., Bruzzone, M., Dettoni, F., Scurati, R., & Peretti, G. M. (2017). Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An in Vitro Study. Stem Cells International, 2017. https://doi.org/10.1155/2017/1732094
Marmotti, A., Mattia, S., Castoldi, F., , Mangiavini, L., Bonasia, D. E., Bruzzone, M., Dettoni, F., Scurati, R., & Peretti, G. M. (2017). Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An in Vitro Study. Stem Cells International, 2017. https://doi.org/10.1155/2017/1732094
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, , Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & Marsano, Anna. (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, , Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & Marsano, Anna. (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
Mueller, S., Acevedo, L., Karim, M., Matta, A., Mehrkens, A., Schaeren, S., Jakob, M., Martin, I., , & Erwin, M. (2016). NOTOCHORDAL CELL CONDITIONED MEDIUM ENHANCES THE CARTILAGE MATRIX PRODUCTION AND REDUCES CATABOLISM BY HUMAN ARTICULAR CHONDROCYTES [ELSEVIER SCI LTD]. 24, S169–S169. https://doi.org/10.1016/j.joca.2016.01.331
Mueller, S., Acevedo, L., Karim, M., Matta, A., Mehrkens, A., Schaeren, S., Jakob, M., Martin, I., , & Erwin, M. (2016). NOTOCHORDAL CELL CONDITIONED MEDIUM ENHANCES THE CARTILAGE MATRIX PRODUCTION AND REDUCES CATABOLISM BY HUMAN ARTICULAR CHONDROCYTES [ELSEVIER SCI LTD]. 24, S169–S169. https://doi.org/10.1016/j.joca.2016.01.331
Pelttari, K., , & Martin, I. (2016). DEVELOPMENT OF HUMAN TISSUE ENGINEERED CARTILAGINOUS GRAFTS IN A 3D-MODEL MIMICKING OSTEOARTHRITIC CONDITIONS IN VIVO [ELSEVIER SCI LTD]. 24, S376–S377. https://doi.org/10.1016/j.joca.2016.01.672
Pelttari, K., , & Martin, I. (2016). DEVELOPMENT OF HUMAN TISSUE ENGINEERED CARTILAGINOUS GRAFTS IN A 3D-MODEL MIMICKING OSTEOARTHRITIC CONDITIONS IN VIVO [ELSEVIER SCI LTD]. 24, S376–S377. https://doi.org/10.1016/j.joca.2016.01.672
Marsano, Anna, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, , Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
Marsano, Anna, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, , Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
Müller, Sebastian, Acevedo, Lina, Wang, Xiaomei, Karim, M. Zia, Matta, Ajay, Mehrkens, Arne, Schaeren, Stefan, Feliciano, Sandra, Jakob, Marcel, Martin, Ivan, Barbero, Andrea, & Erwin, W. Mark. (2016). Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Research and Therapy, 18(1), 125. https://doi.org/10.1186/s13075-016-1026-x
Müller, Sebastian, Acevedo, Lina, Wang, Xiaomei, Karim, M. Zia, Matta, Ajay, Mehrkens, Arne, Schaeren, Stefan, Feliciano, Sandra, Jakob, Marcel, Martin, Ivan, Barbero, Andrea, & Erwin, W. Mark. (2016). Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Research and Therapy, 18(1), 125. https://doi.org/10.1186/s13075-016-1026-x
Mumme, Marcus, , Miot, Sylvie, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Asnaghi, Adelaide M., Baumhoer, Daniel, Bieri, Oliver, Kretzschmar, Martin, Pagenstert, Geert, Haug, Martin, Schaefer, Dirk J., Martin, Ivan, & Jakob, Marcel. (2016). Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet, 388(10055), 1985–1994. https://doi.org/10.1016/s0140-6736(16)31658-0
Mumme, Marcus, , Miot, Sylvie, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Asnaghi, Adelaide M., Baumhoer, Daniel, Bieri, Oliver, Kretzschmar, Martin, Pagenstert, Geert, Haug, Martin, Schaefer, Dirk J., Martin, Ivan, & Jakob, Marcel. (2016). Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet, 388(10055), 1985–1994. https://doi.org/10.1016/s0140-6736(16)31658-0
Mumme, Marcus, Steinitz, Amir, Nuss, Katja M., Klein, Karina, Feliciano, Sandra, Kronen, Peter, Jakob, Marcel, von Rechenberg, Brigitte, Martin, Ivan, , & Pelttari, Karoliina. (2016). Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects. Tissue Engineering, 22(21-22), 1286–1295. https://doi.org/10.1089/ten.tea.2016.0159
Mumme, Marcus, Steinitz, Amir, Nuss, Katja M., Klein, Karina, Feliciano, Sandra, Kronen, Peter, Jakob, Marcel, von Rechenberg, Brigitte, Martin, Ivan, , & Pelttari, Karoliina. (2016). Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects. Tissue Engineering, 22(21-22), 1286–1295. https://doi.org/10.1089/ten.tea.2016.0159
Occhetta, Paola, Stüdle, Chiara, , & Martin, Ivan. (2016). Learn, simplify and implement: developmental re-engineering strategies for cartilage repair. Swiss Medical Weekly, 146, w14346. https://doi.org/10.4414/smw.2016.14346
Occhetta, Paola, Stüdle, Chiara, , & Martin, Ivan. (2016). Learn, simplify and implement: developmental re-engineering strategies for cartilage repair. Swiss Medical Weekly, 146, w14346. https://doi.org/10.4414/smw.2016.14346
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, , Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & Scherberich, Arnaud. (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification. Stem Cells Translational Medicine, 5(8), 7–1090. https://doi.org/10.5966/sctm.2015-0256
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, , Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & Scherberich, Arnaud. (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification. Stem Cells Translational Medicine, 5(8), 7–1090. https://doi.org/10.5966/sctm.2015-0256
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Piccinini, Elia, Todorov, Atanas, Centola, Matteo, , & Martin, Ivan. (2016). Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells. Methods in Molecular Biology, 1416, 24–413. https://doi.org/10.1007/978-1-4939-3584-0_24
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Piccinini, Elia, Todorov, Atanas, Centola, Matteo, , & Martin, Ivan. (2016). Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells. Methods in Molecular Biology, 1416, 24–413. https://doi.org/10.1007/978-1-4939-3584-0_24
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, , Bourgine, Paul E., Scherberich, Arnaud, Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix. Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, , Bourgine, Paul E., Scherberich, Arnaud, Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix. Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
Barandun, Marina, Iselin, Lukas Daniel, Santini, Francesco, Pansini, Michele, Scotti, Celeste, Baumhoer, Daniel, Bieri, Oliver, Studler, Ueli, Wirz, Dieter, Haug, Martin, Jakob, Marcel, Schaefer, Dirk Johannes, Martin, Ivan, & . (2015). Generation and characterization of osteochondral grafts with human nasal chondrocytes. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 33(8), 9–1111. https://doi.org/10.1002/jor.22865
Barandun, Marina, Iselin, Lukas Daniel, Santini, Francesco, Pansini, Michele, Scotti, Celeste, Baumhoer, Daniel, Bieri, Oliver, Studler, Ueli, Wirz, Dieter, Haug, Martin, Jakob, Marcel, Schaefer, Dirk Johannes, Martin, Ivan, & . (2015). Generation and characterization of osteochondral grafts with human nasal chondrocytes. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 33(8), 9–1111. https://doi.org/10.1002/jor.22865
Bhattacharjee, Maumita, Coburn, Jeannine, Centola, Matteo, Murab, Sumit, , Kaplan, David L., Martin, Ivan, & Ghosh, Sourabh. (2015). Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 84, 22–107. https://doi.org/10.1016/j.addr.2014.08.010
Bhattacharjee, Maumita, Coburn, Jeannine, Centola, Matteo, Murab, Sumit, , Kaplan, David L., Martin, Ivan, & Ghosh, Sourabh. (2015). Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 84, 22–107. https://doi.org/10.1016/j.addr.2014.08.010
Bocelli-Tyndall, Chiara, Trella, Emanuele, Frachet, Audrey, Zajac, Paul, Pfaff, Dennis, Geurts, Jeroen, Heiler, Stefan, , Mumme, Marcus, Resink, Therese J, Schaeren, Stefan, Spagnoli, Giulio C, & Tyndall, Alan. (2015). FGF2 induces RANKL gene expression as well as IL1beta regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells. Annals of the Rheumatic Diseases, 74(1), 6–260. https://doi.org/10.1136/annrheumdis-2013-204235
Bocelli-Tyndall, Chiara, Trella, Emanuele, Frachet, Audrey, Zajac, Paul, Pfaff, Dennis, Geurts, Jeroen, Heiler, Stefan, , Mumme, Marcus, Resink, Therese J, Schaeren, Stefan, Spagnoli, Giulio C, & Tyndall, Alan. (2015). FGF2 induces RANKL gene expression as well as IL1beta regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells. Annals of the Rheumatic Diseases, 74(1), 6–260. https://doi.org/10.1136/annrheumdis-2013-204235
Centola, Matteo, Tonnarelli, Beatrice, Hendriks, Jeanine, van den Doel, Mirella, Feliciano, Sandra, Papadimitropoulos, Adam, Piccinini, Elia, Geurts, Jeroen, Martin, Ivan, & . (2015). An improved cartilage digestion method for research and clinical applications. Tissue Engineering. Part C, Methods, 21(4), 394–403. https://doi.org/10.1089/ten.tec.2014.0393
Centola, Matteo, Tonnarelli, Beatrice, Hendriks, Jeanine, van den Doel, Mirella, Feliciano, Sandra, Papadimitropoulos, Adam, Piccinini, Elia, Geurts, Jeroen, Martin, Ivan, & . (2015). An improved cartilage digestion method for research and clinical applications. Tissue Engineering. Part C, Methods, 21(4), 394–403. https://doi.org/10.1089/ten.tec.2014.0393
Pelttari, Karoliina, , & Martin, Ivan. (2015). A potential role of homeobox transcription factors in osteoarthritis. Annals of Translational Medicine, 3(17), 254. https://doi.org/10.3978/j.issn.2305-5839.2015.09.44
Pelttari, Karoliina, , & Martin, Ivan. (2015). A potential role of homeobox transcription factors in osteoarthritis. Annals of Translational Medicine, 3(17), 254. https://doi.org/10.3978/j.issn.2305-5839.2015.09.44
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, Scherberich, Arnaud, Walboomers, X. Frank, , & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes. Journal of Cellular and Molecular Medicine, 19(6), 9–1390. https://doi.org/10.1111/jcmm.12526
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, Scherberich, Arnaud, Walboomers, X. Frank, , & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes. Journal of Cellular and Molecular Medicine, 19(6), 9–1390. https://doi.org/10.1111/jcmm.12526
Sabatino, Maria Antonietta, Santoro, Rosaria, Gueven, Sinan, Jaquiery, Claude, Wendt, David James, Martin, Ivan, Moretti, Matteo, & . (2015). Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 9(12), 403–1394. https://doi.org/10.1002/term.1661
Sabatino, Maria Antonietta, Santoro, Rosaria, Gueven, Sinan, Jaquiery, Claude, Wendt, David James, Martin, Ivan, Moretti, Matteo, & . (2015). Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 9(12), 403–1394. https://doi.org/10.1002/term.1661
Sesia, Sergio B., Duhr, Ralph, Medeiros da Cunha, Carolina, Todorov, Atanas, Schaeren, Stefan, Padovan, Elisabetta, Spagnoli, Giulio, Martin, Ivan, & . (2015). Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells. Journal of Cellular Physiology, 230(6), 69–1258. https://doi.org/10.1002/jcp.24861
Sesia, Sergio B., Duhr, Ralph, Medeiros da Cunha, Carolina, Todorov, Atanas, Schaeren, Stefan, Padovan, Elisabetta, Spagnoli, Giulio, Martin, Ivan, & . (2015). Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells. Journal of Cellular Physiology, 230(6), 69–1258. https://doi.org/10.1002/jcp.24861
Tonnarelli, Beatrice, Centola, Matteo, , Zeller, Rolf, & Martin, Ivan. (2014). Re-engineering development to instruct tissue regeneration. In Galliot, Brigitte (Ed.), Mechanisms of regeneration (Vol. 108, pp. 319–338). Academic Press. https://doi.org/10.1016/b978-0-12-391498-9.00005-x
Tonnarelli, Beatrice, Centola, Matteo, , Zeller, Rolf, & Martin, Ivan. (2014). Re-engineering development to instruct tissue regeneration. In Galliot, Brigitte (Ed.), Mechanisms of regeneration (Vol. 108, pp. 319–338). Academic Press. https://doi.org/10.1016/b978-0-12-391498-9.00005-x
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., , Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, Marsano, Anna, Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. The Lancet, 384(9940), 46–337. https://doi.org/10.1016/s0140-6736(14)60544-4
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., , Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, Marsano, Anna, Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. The Lancet, 384(9940), 46–337. https://doi.org/10.1016/s0140-6736(14)60544-4
Papadimitropoulos, Adam, Piccinini, Elia, Brachat, Sophie, Braccini, Alessandra, Wendt, David, , Jacobi, Carsten, & Martin, Ivan. (2014). Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion. PLoS ONE, 9(7), e102359. https://doi.org/10.1371/journal.pone.0102359
Papadimitropoulos, Adam, Piccinini, Elia, Brachat, Sophie, Braccini, Alessandra, Wendt, David, , Jacobi, Carsten, & Martin, Ivan. (2014). Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion. PLoS ONE, 9(7), e102359. https://doi.org/10.1371/journal.pone.0102359
Peñuela, Leonardo, Wolf, Francine, Raiteri, Roberto, Wendt, David, Martin, Ivan, & . (2014). Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity. Journal of Biomechanics, 47(9), 64–2157. https://doi.org/10.1016/j.jbiomech.2013.10.056
Peñuela, Leonardo, Wolf, Francine, Raiteri, Roberto, Wendt, David, Martin, Ivan, & . (2014). Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity. Journal of Biomechanics, 47(9), 64–2157. https://doi.org/10.1016/j.jbiomech.2013.10.056
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, , Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & Marsano, Anna. (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Engineering. Part A, 19(17-18), 71–1960. https://doi.org/10.1089/ten.tea.2012.0455
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, , Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & Marsano, Anna. (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Engineering. Part A, 19(17-18), 71–1960. https://doi.org/10.1089/ten.tea.2012.0455
Centola, Matteo, Tonnarelli, Beatrice, Schären, Stefan, Glaser, Nicolas, Barbero, Andrea, & Martin, Ivan. (2013). Priming 3D cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways. Stem Cells and Development, 22(21), 58–2849. https://doi.org/10.1089/scd.2013.0216
Centola, Matteo, Tonnarelli, Beatrice, Schären, Stefan, Glaser, Nicolas, Barbero, Andrea, & Martin, Ivan. (2013). Priming 3D cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways. Stem Cells and Development, 22(21), 58–2849. https://doi.org/10.1089/scd.2013.0216
Scotti, Celeste, Piccinini, Elia, Takizawa, Hitoshi, Todorov, Atanas, Bourgine, Paul, Papadimitropoulos, Adam, , Manz, Markus G, & Martin, Ivan. (2013). Engineering of a functional bone organ through endochondral ossification. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3997–4002. https://doi.org/10.1073/pnas.1220108110
Scotti, Celeste, Piccinini, Elia, Takizawa, Hitoshi, Todorov, Atanas, Bourgine, Paul, Papadimitropoulos, Adam, , Manz, Markus G, & Martin, Ivan. (2013). Engineering of a functional bone organ through endochondral ossification. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3997–4002. https://doi.org/10.1073/pnas.1220108110
Vonwil D, Trussel A., Haupt O., Gobaa S., , Shastri VP, & Martin I. (2012). Substrate elasticity modulates TGF beta stimulated re-differentiation of expanded human articular chondrocytes. Drug Delivery and Translational Research, 2(5), 351–362. https://doi.org/10.1007/s13346-012-0080-4
Vonwil D, Trussel A., Haupt O., Gobaa S., , Shastri VP, & Martin I. (2012). Substrate elasticity modulates TGF beta stimulated re-differentiation of expanded human articular chondrocytes. Drug Delivery and Translational Research, 2(5), 351–362. https://doi.org/10.1007/s13346-012-0080-4
Acharya, Chitrangada, Adesida, Adetola, Zajac, Paul, Mumme, Marcus, Riesle, Jens, Martin, Ivan, & . (2012). Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. Journal of Cellular Physiology, 227(1), 88–97. https://doi.org/10.1002/jcp.22706
Acharya, Chitrangada, Adesida, Adetola, Zajac, Paul, Mumme, Marcus, Riesle, Jens, Martin, Ivan, & . (2012). Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. Journal of Cellular Physiology, 227(1), 88–97. https://doi.org/10.1002/jcp.22706
Mumme, M., Scotti, C., Hoffmann, W., Papadimitropoulos, A., Todorov, A., Gueven, S., Jakob, M., Wendt, D., Martin, I., & (2012). IL-1β modulates in vitro remodeling and in vivo bone formation by endochondral primed human bone marrow mesenchymal stromal cells. European Cells and Materials, 24(SUPPL. 1), 30.
Mumme, M., Scotti, C., Hoffmann, W., Papadimitropoulos, A., Todorov, A., Gueven, S., Jakob, M., Wendt, D., Martin, I., & (2012). IL-1β modulates in vitro remodeling and in vivo bone formation by endochondral primed human bone marrow mesenchymal stromal cells. European Cells and Materials, 24(SUPPL. 1), 30.
Mumme M., Scotti C., Papadimitropoulos A, Todorov A., Hoffmann W., Bocelli-Tyndall C., Jakob M., Wendt D, Martin I., & . (2012). Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells. European Cells and Materials, 24, 224–236. https://doi.org/10.22203/eCM.v024a16
Mumme M., Scotti C., Papadimitropoulos A, Todorov A., Hoffmann W., Bocelli-Tyndall C., Jakob M., Wendt D, Martin I., & . (2012). Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells. European Cells and Materials, 24, 224–236. https://doi.org/10.22203/eCM.v024a16
Scotti, Celeste, Osmokrovic, Andrea, Wolf, Francine, Miot, Sylvie, Peretti, Giuseppe M, , & Martin, Ivan. (2012). Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1? and low oxygen. Tissue engineering. Part A, 18(3-4), 72–362. https://doi.org/10.1089/ten.tea.2011.0234
Scotti, Celeste, Osmokrovic, Andrea, Wolf, Francine, Miot, Sylvie, Peretti, Giuseppe M, , & Martin, Ivan. (2012). Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1? and low oxygen. Tissue engineering. Part A, 18(3-4), 72–362. https://doi.org/10.1089/ten.tea.2011.0234
Scotti, Celeste, Leumann, Andre, Candrian, Christian, , Croci, Davide, Schaefer, Dirk J., Jakob, Marcel, Valderrabano, Victor, & Martin, Ivan. (2011). Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: State-of-the-art and future perspectives. Techniques in Foot and Ankle Surgery, 10(4), 163–168. https://doi.org/10.1097/BTF.0b013e318237c196
Scotti, Celeste, Leumann, Andre, Candrian, Christian, , Croci, Davide, Schaefer, Dirk J., Jakob, Marcel, Valderrabano, Victor, & Martin, Ivan. (2011). Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: State-of-the-art and future perspectives. Techniques in Foot and Ankle Surgery, 10(4), 163–168. https://doi.org/10.1097/BTF.0b013e318237c196
Francioli, Silvia, Cavallo, Carola, Grigolo, Brunella, Martin, Ivan, & . (2011). Engineered cartilage maturation regulates cytokine production and interleukin-1beta response. Clinical Orthopaedics and Related Research, 469(10), 84–2773. https://doi.org/10.1007/s11999-011-1826-x
Francioli, Silvia, Cavallo, Carola, Grigolo, Brunella, Martin, Ivan, & . (2011). Engineered cartilage maturation regulates cytokine production and interleukin-1beta response. Clinical Orthopaedics and Related Research, 469(10), 84–2773. https://doi.org/10.1007/s11999-011-1826-x
Grote, Marcus J, Palumberi, Viviana, Wagner, Barbara, , & Martin, Ivan. (2011). Dynamic formation of oriented patches in chondrocyte cell cultures. Journal of Mathematical Biology, 63(4), 77–757. https://doi.org/10.1007/s00285-010-0390-4
Grote, Marcus J, Palumberi, Viviana, Wagner, Barbara, , & Martin, Ivan. (2011). Dynamic formation of oriented patches in chondrocyte cell cultures. Journal of Mathematical Biology, 63(4), 77–757. https://doi.org/10.1007/s00285-010-0390-4
, & Grosse-Wentrup M. (2010). Biased feedback in brain-computer interfaces. Journal of NeuroEngineering and Rehabilitation, 7(1), 34. https://doi.org/10.1186/1743-0003-7-34
, & Grosse-Wentrup M. (2010). Biased feedback in brain-computer interfaces. Journal of NeuroEngineering and Rehabilitation, 7(1), 34. https://doi.org/10.1186/1743-0003-7-34
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, Scherberich, Arnaud, , Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis & Rheumatism, 62(12), 25–3815. https://doi.org/10.1002/art.27736
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, Scherberich, Arnaud, , Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis & Rheumatism, 62(12), 25–3815. https://doi.org/10.1002/art.27736
Candrian, C, Miot, S, Wolf, F, Bonacina, E, Dickinson, S, Wirz, D, Jakob, M, Valderrabano, V, , & Martin, I. (2010). Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair? Osteoarthritis and cartilage, 18(8), 76–1067. https://doi.org/10.1016/j.joca.2010.04.010
Candrian, C, Miot, S, Wolf, F, Bonacina, E, Dickinson, S, Wirz, D, Jakob, M, Valderrabano, V, , & Martin, I. (2010). Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair? Osteoarthritis and cartilage, 18(8), 76–1067. https://doi.org/10.1016/j.joca.2010.04.010
Francioli, Silvia E, Candrian, Christian, Martin, Katja, Heberer, Michael, Martin, Ivan, & . (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Journal of Biomedical Materials Research. Part A, 95(3), 31–924. https://doi.org/10.1002/jbm.a.32917
Francioli, Silvia E, Candrian, Christian, Martin, Katja, Heberer, Michael, Martin, Ivan, & . (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Journal of Biomedical Materials Research. Part A, 95(3), 31–924. https://doi.org/10.1002/jbm.a.32917
Miot, Sylvie, Gianni-Barrera, Roberto, Pelttari, Karoliina, Acharya, Chitrangada, Mainil-Varlet, Pierre, Juelke, Henriette, Jaquiery, Claude, Candrian, Christian, , & Martin, Ivan. (2010). In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction. Tissue engineering. Part C, Methods, 16(1), 11–21. https://doi.org/10.1089/ten.tec.2008.0698
Miot, Sylvie, Gianni-Barrera, Roberto, Pelttari, Karoliina, Acharya, Chitrangada, Mainil-Varlet, Pierre, Juelke, Henriette, Jaquiery, Claude, Candrian, Christian, , & Martin, Ivan. (2010). In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction. Tissue engineering. Part C, Methods, 16(1), 11–21. https://doi.org/10.1089/ten.tec.2008.0698
Schaeren, Stefan, Jaquiéry, Claude, Wolf, Francine, Papadimitropoulos, Adam, , Schultz-Thater, Elke, Heberer, Michael, & Martin, Ivan. (2010). Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation. Journal of Biomedical Materials Research. Part A, 92(4), 7–1461. https://doi.org/10.1002/jbm.a.32459
Schaeren, Stefan, Jaquiéry, Claude, Wolf, Francine, Papadimitropoulos, Adam, , Schultz-Thater, Elke, Heberer, Michael, & Martin, Ivan. (2010). Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation. Journal of Biomedical Materials Research. Part A, 92(4), 7–1461. https://doi.org/10.1002/jbm.a.32459
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Scherberich, Arnaud, Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, , & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy of Sciences, 107(16), 6–7251. https://doi.org/10.1073/pnas.1000302107
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Scherberich, Arnaud, Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, , & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy of Sciences, 107(16), 6–7251. https://doi.org/10.1073/pnas.1000302107
Scotti, Celeste, Wirz, Dieter, Wolf, Francine, Schaefer, Dirk J., Bürgin, Vivienne, Daniels, Alma U., Valderrabano, Victor, Candrian, Christian, Jakob, Marcel, Martin, Ivan, & . (2010). Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials, 31(8), 9–2252. https://doi.org/10.1016/j.biomaterials.2009.11.110
Scotti, Celeste, Wirz, Dieter, Wolf, Francine, Schaefer, Dirk J., Bürgin, Vivienne, Daniels, Alma U., Valderrabano, Victor, Candrian, Christian, Jakob, Marcel, Martin, Ivan, & . (2010). Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials, 31(8), 9–2252. https://doi.org/10.1016/j.biomaterials.2009.11.110
Ströbel, Simon, Loparic, Marko, Wendt, David, Schenk, Andreas D, Candrian, Christian, Lindberg, Raija L P, Moldovan, Florina, , & Martin, Ivan. (2010). Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages. Arthritis Research & Therapy, 12(2), R34. https://doi.org/10.1186/ar2942
Ströbel, Simon, Loparic, Marko, Wendt, David, Schenk, Andreas D, Candrian, Christian, Lindberg, Raija L P, Moldovan, Florina, , & Martin, Ivan. (2010). Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages. Arthritis Research & Therapy, 12(2), R34. https://doi.org/10.1186/ar2942
Vonwil, Daniel, Schuler, Martin, , Ströbel, Simon, Wendt, David, Textor, Marcus, Aebi, Ueli, & Martin, Ivan. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. European cells & materials, 20, 28–316. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21069635
Vonwil, Daniel, Schuler, Martin, , Ströbel, Simon, Wendt, David, Textor, Marcus, Aebi, Ueli, & Martin, Ivan. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. European cells & materials, 20, 28–316. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21069635
Vonwil D, Schuler M., , Ströbel S, Wendt D., Textor M., Aebi U, & Martin I. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. European Cells and Materials, 20, 316–328. https://doi.org/10.22203/eCM.v020a26
Vonwil D, Schuler M., , Ströbel S, Wendt D., Textor M., Aebi U, & Martin I. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. European Cells and Materials, 20, 316–328. https://doi.org/10.22203/eCM.v020a26
Candrian, C, , Bonacina, E, Francioli, S, Hirschmann, M T, Milz, S, Valderrabano, V, Heberer, M, Martin, I, & Jakob, M. (2009). A novel implantation technique for engineered osteo-chondral grafts. Knee Surgery, Sports Traumatology, Arthroscopy : Official Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA), 17(11), 83–1377. https://doi.org/10.1007/s00167-009-0766-4
Candrian, C, , Bonacina, E, Francioli, S, Hirschmann, M T, Milz, S, Valderrabano, V, Heberer, M, Martin, I, & Jakob, M. (2009). A novel implantation technique for engineered osteo-chondral grafts. Knee Surgery, Sports Traumatology, Arthroscopy : Official Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA), 17(11), 83–1377. https://doi.org/10.1007/s00167-009-0766-4