Publications
118 found
Show per page
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, Martin, Ivan, & Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
. (2024). Engineered human osteoarthritic cartilage organoids [Journal-article].
Dönges, Laura, Damle, Atharva, Mainardi, Andrea, Bock, Thomas, Schönenberger, Monica, Martin, Ivan, & Biomaterials, 308, 122549. https://doi.org/10.1016/j.biomaterials.2024.122549
. (2024). Engineered human osteoarthritic cartilage organoids [Journal-article].
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, Martin, Ivan, ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
, & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article].
Majumder, Nilotpal, Roy, Chandrashish, Doenges, Laura, Martin, Ivan, ACS Applied Materials and Interfaces, 16(8), 9925–9943. https://doi.org/10.1021/acsami.3c18903
, & Ghosh, Sourabh. (2024). Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage [Journal-article].
Mumme, M., Wixmerten, A., Ivkovic, A., Peretti, G. M., Yilmaz, T., Reppenhagen, S., Pullig, O., Miot, S., Jakob, M., Mangiavini, L., Sosio, C., Bieri, O., Biguzzi, S., Gahl, B., Lehoczky, G., Vukojevic, R., Häusner, S., Gryadunova, A., Haug, M., et al. (2024). Engineered Cartilage from Nasal Chondrocytes for Knee Repair: Clinical Relevance of Tissue Maturation in a Randomized, Multicenter Phase 2 Trial [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4797651
Mumme, M., Wixmerten, A., Ivkovic, A., Peretti, G. M., Yilmaz, T., Reppenhagen, S., Pullig, O., Miot, S., Jakob, M., Mangiavini, L., Sosio, C., Bieri, O., Biguzzi, S., Gahl, B., Lehoczky, G., Vukojevic, R., Häusner, S., Gryadunova, A., Haug, M., et al. (2024). Engineered Cartilage from Nasal Chondrocytes for Knee Repair: Clinical Relevance of Tissue Maturation in a Randomized, Multicenter Phase 2 Trial [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4797651
Mainardi, A., Börsch, A., Occhetta, P., Ivanek, R., Ehrbar, M., Krattiger, L., Oertle, P., Loparic, M., Martin, I., Rasponi, M., & Barbero, A. (2023). Modelling Osteoarthritis pathogenesis through Mechanical Loading in an Osteochondral Unit-on-Chip [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.29.555292
Mainardi, A., Börsch, A., Occhetta, P., Ivanek, R., Ehrbar, M., Krattiger, L., Oertle, P., Loparic, M., Martin, I., Rasponi, M., & Barbero, A. (2023). Modelling Osteoarthritis pathogenesis through Mechanical Loading in an Osteochondral Unit-on-Chip [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.29.555292
Dönges, L., Damle, A., Bock, T., Schönenberger, M., Martin, I., & Barbero, A. (2023). Engineered Human Osteoarthritic Cartilage Organoids [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4613402
Dönges, L., Damle, A., Bock, T., Schönenberger, M., Martin, I., & Barbero, A. (2023). Engineered Human Osteoarthritic Cartilage Organoids [Posted-content]. Elsevier BV. https://doi.org/10.2139/ssrn.4613402
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, Advanced Healthcare Materials, 12. https://doi.org/10.1002/adhm.202202550
, Martin, Ivan, & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs.
Gu, Yawei, Pigeot, Sebastien, Ahrens, Lucas, Tribukait-Riemenschneider, Fabian, Sarem, Melika, Wolf, Francine, García-García, Andres, Advanced Healthcare Materials, 12. https://doi.org/10.1002/adhm.202202550
, Martin, Ivan, & Shastri, V. Prasad. (2023). Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs.
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, Martin, Ivan, Schären, Stefan, Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
, Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc.
Kasamkattil, Jesil, Gryadunova, Anna, Schmid, Raphael, Gay-Dujak, Max Hans Peter, Dasen, Boris, Hilpert, Morgane, Pelttari, Karoliina, Martin, Ivan, Schären, Stefan, Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1119009
, Krupkova, Olga, & Mehrkens, Arne. (2023). Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc.
Lisignoli, Gina, Nalesso, Giovanna, & Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1335134
. (2023). Editorial: Methodologies to improve the performance of chondrocytes for cartilage repair and regeneration.
Lisignoli, Gina, Nalesso, Giovanna, & Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1335134
. (2023). Editorial: Methodologies to improve the performance of chondrocytes for cartilage repair and regeneration.
Vignon, Christine, Hilpert, Morgane, Toupet, Karine, Goubaud, Aurélien, Noël, Danièle, de Kalbermatten, Matthieu, Hénon, Philippe, Jorgensen, Christian, Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1150522
, & Garitaonandia, Ibon. (2023). Evaluation of expanded peripheral blood derived CD34+ cells for the treatment of moderate knee osteoarthritis.
Vignon, Christine, Hilpert, Morgane, Toupet, Karine, Goubaud, Aurélien, Noël, Danièle, de Kalbermatten, Matthieu, Hénon, Philippe, Jorgensen, Christian, Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1150522
, & Garitaonandia, Ibon. (2023). Evaluation of expanded peripheral blood derived CD34+ cells for the treatment of moderate knee osteoarthritis.
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, Martin, Ivan, Pullig, Oliver, & Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
. (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study.
Wixmerten, Anke, Miot, Sylvie, Bittorf, Patrick, Wolf, Francine, Feliciano, Sandra, Hackenberg, Stephan, Häusner, Sebastian, Krenger, Werner, Haug, Martin, Martin, Ivan, Pullig, Oliver, & Cytotherapy, 25(5), 548–558. https://doi.org/10.1016/j.jcyt.2023.01.003
. (2023). Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study.
Schulz, Georg, Developments in X-Ray Tomography XIV. https://doi.org/10.1117/12.2635223
, Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022). Three-dimensional imaging of porcine joints down to the subcellular level [Proceedings-article].
Schulz, Georg, Developments in X-Ray Tomography XIV. https://doi.org/10.1117/12.2635223
, Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022). Three-dimensional imaging of porcine joints down to the subcellular level [Proceedings-article].
Abou-Jaoude A, Courtes M, Badique L, Elhaj Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M, Lemle A, Awan S, Terrand J, Niemeier A, Osteoarthritis and Cartilage, 30(10), 1365–1375. https://doi.org/10.1016/j.joca.2022.07.001
, Houard X, Boucher P, & Matz RL. (2022). ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation.
Abou-Jaoude A, Courtes M, Badique L, Elhaj Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M, Lemle A, Awan S, Terrand J, Niemeier A, Osteoarthritis and Cartilage, 30(10), 1365–1375. https://doi.org/10.1016/j.joca.2022.07.001
, Houard X, Boucher P, & Matz RL. (2022). ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation.
Kasamkattil J, Gryadunova A, Martin I, International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
, Schären S, Krupkova O, & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc.
Kasamkattil J, Gryadunova A, Martin I, International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052530
, Schären S, Krupkova O, & Mehrkens A. (2022). Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc.
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, Krasheninnikov M, Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
. (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.
Baranovskii D, Demner J, Nürnberger S, Lyundup A, Redl H, Hilpert M, Pigeot S, Krasheninnikov M, Krasilnikova O, Klabukov I, Parshin V, Martin I, Lardinois D, & Cartilage, 13(1), 19476035221075951. https://doi.org/10.1177/19476035221075951
. (2022). Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, Martin, Ivan, Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & Cells, 11. https://doi.org/10.3390/cells11244034
. (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies.
Chawla, Shikha, Mainardi, Andrea, Majumder, Nilotpal, Dönges, Laura, Kumar, Bhupendra, Occhetta, Paola, Martin, Ivan, Egloff, Christian, Ghosh, Sourabh, Bandyopadhyay, Amitabha, & Cells, 11. https://doi.org/10.3390/cells11244034
. (2022). Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies.
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, Martin, Ivan, & International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23136900
. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy.
Lehoczky, Gyözö, Trofin, Raluca Elena, Vallmajo-Martin, Queralt, Chawla, Shikha, Pelttari, Karoliina, Mumme, Marcus, Haug, Martin, Egloff, Christian, Jakob, Marcel, Ehrbar, Martin, Martin, Ivan, & International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23136900
. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy.
Mainardi, Andrea, Mainardi, Andrea, Cambria, Elena, Occhetta, Paola, Martin, Ivan, Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
, Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective.
Mainardi, Andrea, Mainardi, Andrea, Cambria, Elena, Occhetta, Paola, Martin, Ivan, Frontiers in Bioengineering and Biotechnology, 9, 826867. https://doi.org/10.3389/fbioe.2021.826867
, Schären, Stefan, Mehrkens, Arne, & Krupkova, Olga. (2022). Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective.
Schulz, Georg, Three-dimensional imaging of porcine joint tissues down to the subcellular level. 12242. https://doi.org/10.1117/12.2635223
, Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022).
Schulz, Georg, Three-dimensional imaging of porcine joint tissues down to the subcellular level. 12242. https://doi.org/10.1117/12.2635223
, Wolf, Francine, Rodgers, Griffin, Tanner, Christine, Weitkamp, Timm, Mumme, Marcus, Morawska, Marta, Beer, Daniel, & Müller, Bert. (2022).
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, Martin I, Pelttari K, Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
, & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions.
Acevedo L., Iselin L., Berkelaar MHM, Salzmann G.M., Wolf F, Feliciano S., Vogel N., Pagenstert G, Martin I, Pelttari K, Cartilage, 13(2_suppl), 68S–81S. https://doi.org/10.1177/1947603520958154
, & Arnold MP. (2021). Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions.
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., Martin I., Scharen S., Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
, Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation.
Gryadunova A., Kasamkattil J., Gay M.H.P., Dasen B, Pelttari K, Mironov V., Martin I., Scharen S., Acta Biomaterialia, 134, 240–251. https://doi.org/10.1016/j.actbio.2021.07.064
, Krupkova O., & Mehrkens A. (2021). Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation.
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., Martin I., Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
, & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects.
Rua L.A., Mumme M, Manferdini C., Darwiche S., Khalil A, Hilpert M., Buchner D.A., Lisignoli G., Occhetta P, von Rechenberg B., Haug M, Schaefer DJ, Jakob M., Caplan A., Martin I., Science Translational Medicine, 13(609), eaaz4499. https://doi.org/10.1126/scitranslmed.aaz4499
, & Pelttari K. (2021). Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects.
Duverney, Cedric, Abbasi, Hamed, Berkelaar, Majoska, Pelttari, Karoliina, Cattin, Philippe C., Journal of Medical Devices, Transactions of the ASME, 15(1). https://doi.org/10.1115/1.4049396
, Zam, Azhar, & Rauter, Georg. (2021). Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability.
Duverney, Cedric, Abbasi, Hamed, Berkelaar, Majoska, Pelttari, Karoliina, Cattin, Philippe C., Journal of Medical Devices, Transactions of the ASME, 15(1). https://doi.org/10.1115/1.4049396
, Zam, Azhar, & Rauter, Georg. (2021). Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability.
Power L, Acevedo L, Yamashita R., Rubin D., Martin I., & Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
. (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization.
Power L, Acevedo L, Yamashita R., Rubin D., Martin I., & Osteoarthritis and Cartilage, 29(3), 433–443. https://doi.org/10.1016/j.joca.2020.12.018
. (2021). Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization.
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, Martin, Ivan, & International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22179581
. (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells.
Pirosa, Alessandro, Tankus, Esma Bahar, Mainardi, Andrea, Occhetta, Paola, Dönges, Laura, Baum, Cornelia, Rasponi, Marco, Martin, Ivan, & International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22179581
. (2021). Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells.
Ziadlou R, Rotman S, Teuschl A., Salzer E, Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
, Martin I., Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.
Ziadlou R, Rotman S, Teuschl A., Salzer E, Materials Science and Engineering C, 120, 111701. https://doi.org/10.1016/j.msec.2020.111701
, Martin I., Alini M., Eglin D., & Grad S. (2021). Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., Martin I., Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
, & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model.
Chawla S, Berkelaar MHM, Dasen B, Halleux C, Guth-Gundel S., Kramer I, Ghosh S., Martin I., Journal of Cell Science, 133(23). https://doi.org/10.1242/jcs.249094
, & Occhetta P. (2020). Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model.
Gu Y, Schwarz B, Forget A, Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
, , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness.
Gu Y, Schwarz B, Forget A, Bioengineering, 7(4), 1–15. https://doi.org/10.3390/bioengineering7040141
, , Martin I, & Shastri VP. (2020). Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness.
Power LJ, Fasolato C, Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
, Wendt DJ, Wixmerten A, Martin I, & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays.
Power LJ, Fasolato C, Biosensors and Bioelectronics, 166, 112467. https://doi.org/10.1016/j.bios.2020.112467
, Wendt DJ, Wixmerten A, Martin I, & Asnaghi MA. (2020). Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays.
Abou-Jaoude, A., Courtes, M., Badique, L., Elhaj Mahmoud, D., Abboud, C., Mlih, M., Justiniano, H., Lemle, A., Awan, S., Terrand, J., Niemeier, A., ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.07.16.206870
, Houard, X., Boucher, P., & Matz, R. (2020).
Abou-Jaoude, A., Courtes, M., Badique, L., Elhaj Mahmoud, D., Abboud, C., Mlih, M., Justiniano, H., Lemle, A., Awan, S., Terrand, J., Niemeier, A., ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.07.16.206870
, Houard, X., Boucher, P., & Matz, R. (2020).
Ziadlou R, Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
, Martin I, Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes.
Ziadlou R, Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060932
, Martin I, Wang X, Qin L, Alini M, & Grad S. (2020). Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes.
Acevedo, L., Iselin, L., Berkelaar, M., Salzmann, G., Wolf, F., Feliciano, S., Vogel, N., Pagenstert, G., Martin, I., Pelttari, K., Barbero, A., & Arnold, M. P. (2020). Comparison Of Human Articular Cartilage Tissue And Chondrocytes Isolated From Peripheral vs Central Regions Of Traumatic Lesions [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-24080/v1
Acevedo, L., Iselin, L., Berkelaar, M., Salzmann, G., Wolf, F., Feliciano, S., Vogel, N., Pagenstert, G., Martin, I., Pelttari, K., Barbero, A., & Arnold, M. P. (2020). Comparison Of Human Articular Cartilage Tissue And Chondrocytes Isolated From Peripheral vs Central Regions Of Traumatic Lesions [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-24080/v1
Asnaghi M.A., Power L., Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
, Haug M, Koppl R., Wendt D, & Martin I. (2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage.
Asnaghi M.A., Power L., Frontiers in Bioengineering and Biotechnology, 8, 283. https://doi.org/10.3389/fbioe.2020.00283
, Haug M, Koppl R., Wendt D, & Martin I. (2020). Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage.
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/CH-199236
, & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts.
Lehoczky G, Wolf F, Mumme M, Gehmert S, Miot S, Haug M, Jakob M, Martin I, Clinical Hemorheology and Microcirculation, 74(1), 67–78. https://doi.org/10.3233/CH-199236
, & . (2020). Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts.
Ziadlou R, International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
, Stoddart MJ, Wirth M, Li Z, Martin I, Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules.
Ziadlou R, International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225745
, Stoddart MJ, Wirth M, Li Z, Martin I, Wang XL, Qin L, Alini M, & Grad S. (2019). Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules.
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, Martin, Ivan, Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
, & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article].
Occhetta, Paola, Mainardi, Andrea, Votta, Emiliano, Vallmajo-Martin, Queralt, Ehrbar, Martin, Martin, Ivan, Nature Biomedical Engineering, 3(7), 545–557. https://doi.org/10.1038/s41551-019-0406-3
, & Rasponi, Marco. (2019). Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model [Journal-article].
Mumme M, Wixmerten A, Miot S., Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
, Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, & Martin I. (2019). Tissue engineering for paediatric patients.
Mumme M, Wixmerten A, Miot S., Swiss Medical Weekly, 149, w20032. https://doi.org/10.4414/smw.2019.20032
, Kaempfen A., Saxer F., Gehmert S, Krieg A., Schaefer D.J., Jakob M, & Martin I. (2019). Tissue engineering for paediatric patients.
Haeni D.L., Lafosse T., Haggerty C., Plath J., Kida Y., Sanchez-Brass M., Wolf F., Calvo E., Muller A.M., American Journal of Sports Medicine, 47(3), 704–712. https://doi.org/10.1177/0363546518819825
, & Lafosse L. (2019). Tissue on the Transferred Coracoid Graft After Latarjet Procedure: Histological and Morphological Findings.
Haeni D.L., Lafosse T., Haggerty C., Plath J., Kida Y., Sanchez-Brass M., Wolf F., Calvo E., Muller A.M., American Journal of Sports Medicine, 47(3), 704–712. https://doi.org/10.1177/0363546518819825
, & Lafosse L. (2019). Tissue on the Transferred Coracoid Graft After Latarjet Procedure: Histological and Morphological Findings.
Stüdle C, Occhetta P, Geier F, Mehrkens A, Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
, & Martin I. (2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.
Stüdle C, Occhetta P, Geier F, Mehrkens A, Stem Cells Translational Medicine, 8(2), 194–204. https://doi.org/10.1002/sctm.18-0147
, & Martin I. (2019). Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.
Gay M.H.P., Mehrkens A, Rittmann M., Haug M, European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ecm.v037a13
, Martin I., & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc.
Gay M.H.P., Mehrkens A, Rittmann M., Haug M, European Cells and Materials, 37, 214–323. https://doi.org/10.22203/ecm.v037a13
, Martin I., & Schaeren S. (2019). Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc.
Power, Laura, Wixmerten, Anke, Wendt, David, Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. 10881. https://doi.org/10.1117/12.2507951
, & Martin, Ivan. (2019).
Power, Laura, Wixmerten, Anke, Wendt, David, Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage. 10881. https://doi.org/10.1117/12.2507951
, & Martin, Ivan. (2019).
Sarem M., Heizmann M., Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
, Martin I., & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R.
Sarem M., Heizmann M., Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6135–E6144. https://doi.org/10.1073/pnas.1805159115
, Martin I., & Prasad Shastri V. (2018). Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R.
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
, & Martin I. (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Biomaterials, 171, 219–229. https://doi.org/10.1016/j.biomaterials.2018.04.025
, & Martin I. (2018). Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
, & Martin I. (2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.
Occhetta P., Pigeot S., Rasponi M., Dasen B., Mehrkens A., Ullrich T., Kramer I., Guth-Gundel S., Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4625–4630. https://doi.org/10.1073/pnas.1720658115
, & Martin I. (2018). Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.
Sarem M., Arya N., Heizmann M., Neffe A.T., Acta Biomaterialia, 69, 83–94. https://doi.org/10.1016/j.actbio.2018.01.025
, Gebauer T.P., Martin I., Lendlein A., & Shastri V.P. (2018). Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.
Sarem M., Arya N., Heizmann M., Neffe A.T., Acta Biomaterialia, 69, 83–94. https://doi.org/10.1016/j.actbio.2018.01.025
, Gebauer T.P., Martin I., Lendlein A., & Shastri V.P. (2018). Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.
Pelttari, Karoliina, Mumme, Marcus, Current opinion in biotechnology, 47, 1–6. https://doi.org/10.1016/j.copbio.2017.05.007
, & Martin, Ivan. (2017). Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine.
Pelttari, Karoliina, Mumme, Marcus, Current opinion in biotechnology, 47, 1–6. https://doi.org/10.1016/j.copbio.2017.05.007
, & Martin, Ivan. (2017). Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine.
Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, Fleury-Cappellesso S, Osteoarthritis and cartilage, 25(7), 1161–1171. https://doi.org/10.1016/j.joca.2017.01.011
, Murphy M, & Lisignoli G. (2017). Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation.
Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, Fleury-Cappellesso S, Osteoarthritis and cartilage, 25(7), 1161–1171. https://doi.org/10.1016/j.joca.2017.01.011
, Murphy M, & Lisignoli G. (2017). Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation.
Todorov A., Scotti C., Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
, Scherberich A., Scherberich A., Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity.
Todorov A., Scotti C., Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
, Scherberich A., Scherberich A., Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity.
Manferdini, C., Paolella, F., Gabusi, E., Gambari, L., Piacentini, A., Fleury-Cappellesso, S., ADIPOSE STROMAL CELLS EXERT SPECIFIC EFFECTS ON OSTEOARTHRITIC SYNOVIAL MACROPHAGES [BMJ PUBLISHING GROUP]. 76, 1069. https://doi.org/10.1136/annrheumdis-2017-eular.6081
, Murphy, M., & Lisignoli, G. (2017).
Manferdini, C., Paolella, F., Gabusi, E., Gambari, L., Piacentini, A., Fleury-Cappellesso, S., ADIPOSE STROMAL CELLS EXERT SPECIFIC EFFECTS ON OSTEOARTHRITIC SYNOVIAL MACROPHAGES [BMJ PUBLISHING GROUP]. 76, 1069. https://doi.org/10.1136/annrheumdis-2017-eular.6081
, Murphy, M., & Lisignoli, G. (2017).
Burger, Maximilian G., Steinitz, Amir, Geurts, Jeroen, Pippenger, Benjamin E., Schaefer, Dirk J., Martin, Ivan, International Journal of Molecular Sciences, 18. https://doi.org/10.3390/ijms18122517
, & Pelttari, Karoliina. (2017). Ascorbic acid attenuates senescence of human osteoarthritic osteoblasts.
Burger, Maximilian G., Steinitz, Amir, Geurts, Jeroen, Pippenger, Benjamin E., Schaefer, Dirk J., Martin, Ivan, International Journal of Molecular Sciences, 18. https://doi.org/10.3390/ijms18122517
, & Pelttari, Karoliina. (2017). Ascorbic acid attenuates senescence of human osteoarthritic osteoblasts.
Marmotti, A., Mattia, S., Castoldi, F., STEM CELLS INTERNATIONAL. https://doi.org/10.1155/2017/1732094
, Mangiavini, L., Bonasia, D. E., Bruzzone, M., Dettoni, F., Scurati, R., & Peretti, G. M. (2017). Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study.
Marmotti, A., Mattia, S., Castoldi, F., STEM CELLS INTERNATIONAL. https://doi.org/10.1155/2017/1732094
, Mangiavini, L., Bonasia, D. E., Bruzzone, M., Dettoni, F., Scurati, R., & Peretti, G. M. (2017). Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study.
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
, Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & Marsano, Anna. (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation.
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
, Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & Marsano, Anna. (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation.
Nusspaumer, Gretel, Jaiswal, Sumit, Stem Cell Reports, 9, 1124–1138. https://doi.org/10.1016/j.stemcr.2017.08.007
, Reinhardt, Robert, Ishay Ronen, Dana, Haumer, Alexander, Lufkin, Thomas, Martin, Ivan, & Zeller, Rolf. (2017). Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development.
Nusspaumer, Gretel, Jaiswal, Sumit, Stem Cell Reports, 9, 1124–1138. https://doi.org/10.1016/j.stemcr.2017.08.007
, Reinhardt, Robert, Ishay Ronen, Dana, Haumer, Alexander, Lufkin, Thomas, Martin, Ivan, & Zeller, Rolf. (2017). Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development.
Mueller, S., Acevedo, L., Karim, M., Matta, A., Mehrkens, A., Schaeren, S., Jakob, M., Martin, I., NOTOCHORDAL CELL CONDITIONED MEDIUM ENHANCES THE CARTILAGE MATRIX PRODUCTION AND REDUCES CATABOLISM BY HUMAN ARTICULAR CHONDROCYTES. 24, S169–S169. ELSEVIER SCI LTD.
, & Erwin, M. (2016).
Mueller, S., Acevedo, L., Karim, M., Matta, A., Mehrkens, A., Schaeren, S., Jakob, M., Martin, I., NOTOCHORDAL CELL CONDITIONED MEDIUM ENHANCES THE CARTILAGE MATRIX PRODUCTION AND REDUCES CATABOLISM BY HUMAN ARTICULAR CHONDROCYTES. 24, S169–S169. ELSEVIER SCI LTD.
, & Erwin, M. (2016).
Pelttari, K., DEVELOPMENT OF HUMAN TISSUE ENGINEERED CARTILAGINOUS GRAFTS IN A 3D-MODEL MIMICKING OSTEOARTHRITIC CONDITIONS IN VIVO. 24, S376–S377. ELSEVIER SCI LTD.
, & Martin, I. (2016).
Pelttari, K., DEVELOPMENT OF HUMAN TISSUE ENGINEERED CARTILAGINOUS GRAFTS IN A 3D-MODEL MIMICKING OSTEOARTHRITIC CONDITIONS IN VIVO. 24, S376–S377. ELSEVIER SCI LTD.
, & Martin, I. (2016).
Marsano, Anna, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.
Marsano, Anna, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.
Müller, Sebastian, Acevedo, Lina, Wang, Xiaomei, Karim, M. Zia, Matta, Ajay, Mehrkens, Arne, Schaeren, Stefan, Feliciano, Sandra, Jakob, Marcel, Martin, Ivan, Barbero, Andrea, & Erwin, W. Mark. (2016). Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Research and Therapy, 18(1), 125. https://doi.org/10.1186/s13075-016-1026-x
Müller, Sebastian, Acevedo, Lina, Wang, Xiaomei, Karim, M. Zia, Matta, Ajay, Mehrkens, Arne, Schaeren, Stefan, Feliciano, Sandra, Jakob, Marcel, Martin, Ivan, Barbero, Andrea, & Erwin, W. Mark. (2016). Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Research and Therapy, 18(1), 125. https://doi.org/10.1186/s13075-016-1026-x
Mumme, Marcus, Lancet, 388(10055), 1985–1994. https://doi.org/10.1016/s0140-6736(16)31658-0
, Miot, Sylvie, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Asnaghi, Adelaide M., Baumhoer, Daniel, Bieri, Oliver, Kretzschmar, Martin, Pagenstert, Geert, Haug, Martin, Schaefer, Dirk J., Martin, Ivan, & Jakob, Marcel. (2016). Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.
Mumme, Marcus, Lancet, 388(10055), 1985–1994. https://doi.org/10.1016/s0140-6736(16)31658-0
, Miot, Sylvie, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Asnaghi, Adelaide M., Baumhoer, Daniel, Bieri, Oliver, Kretzschmar, Martin, Pagenstert, Geert, Haug, Martin, Schaefer, Dirk J., Martin, Ivan, & Jakob, Marcel. (2016). Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.
Mumme, Marcus, Steinitz, Amir, Nuss, Katja M., Klein, Karina, Feliciano, Sandra, Kronen, Peter, Jakob, Marcel, von Rechenberg, Brigitte, Martin, Ivan, Tissue Engineering, 22(21-22), 1286–1295. https://doi.org/10.1089/ten.tea.2016.0159
, & Pelttari, Karoliina. (2016). Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects.
Mumme, Marcus, Steinitz, Amir, Nuss, Katja M., Klein, Karina, Feliciano, Sandra, Kronen, Peter, Jakob, Marcel, von Rechenberg, Brigitte, Martin, Ivan, Tissue Engineering, 22(21-22), 1286–1295. https://doi.org/10.1089/ten.tea.2016.0159
, & Pelttari, Karoliina. (2016). Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects.
Occhetta, Paola, Stüdle, Chiara, Swiss Medical Weekly, 146, w14346. https://doi.org/10.4414/smw.2016.14346
, & Martin, Ivan. (2016). Learn, simplify and implement: developmental re-engineering strategies for cartilage repair.
Occhetta, Paola, Stüdle, Chiara, Swiss Medical Weekly, 146, w14346. https://doi.org/10.4414/smw.2016.14346
, & Martin, Ivan. (2016). Learn, simplify and implement: developmental re-engineering strategies for cartilage repair.
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, Stem Cells Translational Medicine, 5(8), 1090–1097. https://doi.org/10.5966/sctm.2015-0256
, Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & Scherberich, Arnaud. (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, Stem Cells Translational Medicine, 5(8), 1090–1097. https://doi.org/10.5966/sctm.2015-0256
, Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & Scherberich, Arnaud. (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Piccinini, Elia, Todorov, Atanas, Centola, Matteo, Methods in Molecular Biology, 1416, 413–424. https://doi.org/10.1007/978-1-4939-3584-0_24
, & Martin, Ivan. (2016). Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells.
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Piccinini, Elia, Todorov, Atanas, Centola, Matteo, Methods in Molecular Biology, 1416, 413–424. https://doi.org/10.1007/978-1-4939-3584-0_24
, & Martin, Ivan. (2016). Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells.
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
, Bourgine, Paul E., Scherberich, Arnaud, Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
, Bourgine, Paul E., Scherberich, Arnaud, Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
Barandun, Marina, Iselin, Lukas Daniel, Santini, Francesco, Pansini, Michele, Scotti, Celeste, Baumhoer, Daniel, Bieri, Oliver, Studler, Ueli, Wirz, Dieter, Haug, Martin, Jakob, Marcel, Schaefer, Dirk Johannes, Martin, Ivan, & Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 33(8), 1111–1119. https://doi.org/10.1002/jor.22865
. (2015). Generation and characterization of osteochondral grafts with human nasal chondrocytes.
Barandun, Marina, Iselin, Lukas Daniel, Santini, Francesco, Pansini, Michele, Scotti, Celeste, Baumhoer, Daniel, Bieri, Oliver, Studler, Ueli, Wirz, Dieter, Haug, Martin, Jakob, Marcel, Schaefer, Dirk Johannes, Martin, Ivan, & Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 33(8), 1111–1119. https://doi.org/10.1002/jor.22865
. (2015). Generation and characterization of osteochondral grafts with human nasal chondrocytes.
Bhattacharjee, Maumita, Coburn, Jeannine, Centola, Matteo, Murab, Sumit, Advanced Drug Delivery Reviews, 84, 107–122. https://doi.org/10.1016/j.addr.2014.08.010
, Kaplan, David L., Martin, Ivan, & Ghosh, Sourabh. (2015). Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bhattacharjee, Maumita, Coburn, Jeannine, Centola, Matteo, Murab, Sumit, Advanced Drug Delivery Reviews, 84, 107–122. https://doi.org/10.1016/j.addr.2014.08.010
, Kaplan, David L., Martin, Ivan, & Ghosh, Sourabh. (2015). Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bocelli-Tyndall, Chiara, Trella, Emanuele, Frachet, Audrey, Zajac, Paul, Pfaff, Dennis, Geurts, Jeroen, Heiler, Stefan, Annals of the Rheumatic Diseases, 74(1), 260–266. https://doi.org/10.1136/annrheumdis-2013-204235
, Mumme, Marcus, Resink, Therese J, Schaeren, Stefan, Spagnoli, Giulio C, & Tyndall, Alan. (2015). FGF2 induces RANKL gene expression as well as IL1beta regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells.
Bocelli-Tyndall, Chiara, Trella, Emanuele, Frachet, Audrey, Zajac, Paul, Pfaff, Dennis, Geurts, Jeroen, Heiler, Stefan, Annals of the Rheumatic Diseases, 74(1), 260–266. https://doi.org/10.1136/annrheumdis-2013-204235
, Mumme, Marcus, Resink, Therese J, Schaeren, Stefan, Spagnoli, Giulio C, & Tyndall, Alan. (2015). FGF2 induces RANKL gene expression as well as IL1beta regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells.
Centola, Matteo, Tonnarelli, Beatrice, Hendriks, Jeanine, van den Doel, Mirella, Feliciano, Sandra, Papadimitropoulos, Adam, Piccinini, Elia, Geurts, Jeroen, Martin, Ivan, & Tissue Engineering. Part C, Methods, 21(4), 394–403. https://doi.org/10.1089/ten.tec.2014.0393
. (2015). An improved cartilage digestion method for research and clinical applications.
Centola, Matteo, Tonnarelli, Beatrice, Hendriks, Jeanine, van den Doel, Mirella, Feliciano, Sandra, Papadimitropoulos, Adam, Piccinini, Elia, Geurts, Jeroen, Martin, Ivan, & Tissue Engineering. Part C, Methods, 21(4), 394–403. https://doi.org/10.1089/ten.tec.2014.0393
. (2015). An improved cartilage digestion method for research and clinical applications.
Pelttari, Karoliina, Annals of Translational Medicine, 3(17), 254. https://doi.org/10.3978/j.issn.2305-5839.2015.09.44
, & Martin, Ivan. (2015). A potential role of homeobox transcription factors in osteoarthritis.
Pelttari, Karoliina, Annals of Translational Medicine, 3(17), 254. https://doi.org/10.3978/j.issn.2305-5839.2015.09.44
, & Martin, Ivan. (2015). A potential role of homeobox transcription factors in osteoarthritis.
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, Scherberich, Arnaud, Walboomers, X. Frank, Journal of Cellular and Molecular Medicine, 19(6), 1390–1399. https://doi.org/10.1111/jcmm.12526
, & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes.
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, Scherberich, Arnaud, Walboomers, X. Frank, Journal of Cellular and Molecular Medicine, 19(6), 1390–1399. https://doi.org/10.1111/jcmm.12526
, & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes.
Sabatino, Maria Antonietta, Santoro, Rosaria, Gueven, Sinan, Jaquiery, Claude, Wendt, David James, Martin, Ivan, Moretti, Matteo, & Journal of Tissue Engineering and Regenerative Medicine, 9(12), 1394–1403. https://doi.org/10.1002/term.1661
. (2015). Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells.
Sabatino, Maria Antonietta, Santoro, Rosaria, Gueven, Sinan, Jaquiery, Claude, Wendt, David James, Martin, Ivan, Moretti, Matteo, & Journal of Tissue Engineering and Regenerative Medicine, 9(12), 1394–1403. https://doi.org/10.1002/term.1661
. (2015). Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells.
Sesia, Sergio B., Duhr, Ralph, Medeiros da Cunha, Carolina, Todorov, Atanas, Schaeren, Stefan, Padovan, Elisabetta, Spagnoli, Giulio, Martin, Ivan, & Journal of Cellular Physiology, 230(6), 1258–1269. https://doi.org/10.1002/jcp.24861
. (2015). Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells.
Sesia, Sergio B., Duhr, Ralph, Medeiros da Cunha, Carolina, Todorov, Atanas, Schaeren, Stefan, Padovan, Elisabetta, Spagnoli, Giulio, Martin, Ivan, & Journal of Cellular Physiology, 230(6), 1258–1269. https://doi.org/10.1002/jcp.24861
. (2015). Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells.
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., The Lancet, 384(9940), 337–346. https://doi.org/10.1016/s0140-6736(14)60544-4
, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, Marsano, Anna, Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial.
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., The Lancet, 384(9940), 337–346. https://doi.org/10.1016/s0140-6736(14)60544-4
, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, Marsano, Anna, Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial.
Papadimitropoulos, Adam, Piccinini, Elia, Brachat, Sophie, Braccini, Alessandra, Wendt, David, PLoS ONE, 9(7), e102359. https://doi.org/10.1371/journal.pone.0102359
, Jacobi, Carsten, & Martin, Ivan. (2014). Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.
Papadimitropoulos, Adam, Piccinini, Elia, Brachat, Sophie, Braccini, Alessandra, Wendt, David, PLoS ONE, 9(7), e102359. https://doi.org/10.1371/journal.pone.0102359
, Jacobi, Carsten, & Martin, Ivan. (2014). Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.
Peñuela, Leonardo, Wolf, Francine, Raiteri, Roberto, Wendt, David, Martin, Ivan, & Journal of Biomechanics, 47(9), 2157–2164. https://doi.org/10.1016/j.jbiomech.2013.10.056
. (2014). Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity.
Peñuela, Leonardo, Wolf, Francine, Raiteri, Roberto, Wendt, David, Martin, Ivan, & Journal of Biomechanics, 47(9), 2157–2164. https://doi.org/10.1016/j.jbiomech.2013.10.056
. (2014). Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity.
Tonnarelli, Beatrice, Centola, Matteo, Mechanisms of regeneration (Vol. 108, pp. 319–338). Academic Press. https://doi.org/10.1016/b978-0-12-391498-9.00005-x
, Zeller, Rolf, & Martin, Ivan. (2014). Re-engineering development to instruct tissue regeneration. In Galliot, Brigitte (Ed.),
Tonnarelli, Beatrice, Centola, Matteo, Mechanisms of regeneration (Vol. 108, pp. 319–338). Academic Press. https://doi.org/10.1016/b978-0-12-391498-9.00005-x
, Zeller, Rolf, & Martin, Ivan. (2014). Re-engineering development to instruct tissue regeneration. In Galliot, Brigitte (Ed.),
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, Tissue Engineering. Part A, 19(17-18), 1960–1971. https://doi.org/10.1089/ten.tea.2012.0455
, Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & Marsano, Anna. (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage.
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, Tissue Engineering. Part A, 19(17-18), 1960–1971. https://doi.org/10.1089/ten.tea.2012.0455
, Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & Marsano, Anna. (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage.
Centola, Matteo, Tonnarelli, Beatrice, Schären, Stefan, Glaser, Nicolas, Barbero, Andrea, & Martin, Ivan. (2013). Priming 3D cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways. Stem Cells and Development, 22(21), 2849–2858. https://doi.org/10.1089/scd.2013.0216
Centola, Matteo, Tonnarelli, Beatrice, Schären, Stefan, Glaser, Nicolas, Barbero, Andrea, & Martin, Ivan. (2013). Priming 3D cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways. Stem Cells and Development, 22(21), 2849–2858. https://doi.org/10.1089/scd.2013.0216
Scotti, Celeste, Piccinini, Elia, Takizawa, Hitoshi, Todorov, Atanas, Bourgine, Paul, Papadimitropoulos, Adam, Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3997–4002. https://doi.org/10.1073/pnas.1220108110
, Manz, Markus G, & Martin, Ivan. (2013). Engineering of a functional bone organ through endochondral ossification.
Scotti, Celeste, Piccinini, Elia, Takizawa, Hitoshi, Todorov, Atanas, Bourgine, Paul, Papadimitropoulos, Adam, Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3997–4002. https://doi.org/10.1073/pnas.1220108110
, Manz, Markus G, & Martin, Ivan. (2013). Engineering of a functional bone organ through endochondral ossification.
Vonwil D, Trussel A., Haupt O., Gobaa S., Drug Delivery and Translational Research, 2(5), 351–362. https://doi.org/10.1007/s13346-012-0080-4
, Shastri VP, & Martin I. (2012). Substrate elasticity modulates TGF beta stimulated re-differentiation of expanded human articular chondrocytes.
Vonwil D, Trussel A., Haupt O., Gobaa S., Drug Delivery and Translational Research, 2(5), 351–362. https://doi.org/10.1007/s13346-012-0080-4
, Shastri VP, & Martin I. (2012). Substrate elasticity modulates TGF beta stimulated re-differentiation of expanded human articular chondrocytes.
Mumme M., Scotti C., Papadimitropoulos A, Todorov A., Hoffmann W., Bocelli-Tyndall C., Jakob M., Wendt D, Martin I., & European Cells & Materials, 24, 224–236. https://doi.org/10.22203/ecm.v024a16
. (2012). Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells.
Mumme M., Scotti C., Papadimitropoulos A, Todorov A., Hoffmann W., Bocelli-Tyndall C., Jakob M., Wendt D, Martin I., & European Cells & Materials, 24, 224–236. https://doi.org/10.22203/ecm.v024a16
. (2012). Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells.
Acharya, Chitrangada, Adesida, Adetola, Zajac, Paul, Mumme, Marcus, Riesle, Jens, Martin, Ivan, & Journal of Cellular Physiology, 227(1), 88–97. https://doi.org/10.1002/jcp.22706
. (2012). Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation.
Acharya, Chitrangada, Adesida, Adetola, Zajac, Paul, Mumme, Marcus, Riesle, Jens, Martin, Ivan, & Journal of Cellular Physiology, 227(1), 88–97. https://doi.org/10.1002/jcp.22706
. (2012). Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation.
Mumme, M., Scotti, C., Hoffmann, W., Papadimitropoulos, A., Todorov, A., Gueven, S., Jakob, M., Wendt, D., Martin, I., & European Cells and Materials, 24, 30.
(2012). IL-1β modulates in vitro remodeling and in vivo bone formation by endochondral primed human bone marrow mesenchymal stromal cells.
Mumme, M., Scotti, C., Hoffmann, W., Papadimitropoulos, A., Todorov, A., Gueven, S., Jakob, M., Wendt, D., Martin, I., & European Cells and Materials, 24, 30.
(2012). IL-1β modulates in vitro remodeling and in vivo bone formation by endochondral primed human bone marrow mesenchymal stromal cells.
Scotti, Celeste, Osmokrovic, Andrea, Wolf, Francine, Miot, Sylvie, Peretti, Giuseppe M, Tissue engineering. Part A, 18(3-4), 362–372. https://doi.org/10.1089/ten.tea.2011.0234
, & Martin, Ivan. (2012). Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1? and low oxygen.
Scotti, Celeste, Osmokrovic, Andrea, Wolf, Francine, Miot, Sylvie, Peretti, Giuseppe M, Tissue engineering. Part A, 18(3-4), 362–372. https://doi.org/10.1089/ten.tea.2011.0234
, & Martin, Ivan. (2012). Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1? and low oxygen.
Francioli, Silvia, Cavallo, Carola, Grigolo, Brunella, Martin, Ivan, & Clinical Orthopaedics and Related Research, 469(10), 2773–2784. https://doi.org/10.1007/s11999-011-1826-x
. (2011). Engineered cartilage maturation regulates cytokine production and interleukin-1beta response.
Francioli, Silvia, Cavallo, Carola, Grigolo, Brunella, Martin, Ivan, & Clinical Orthopaedics and Related Research, 469(10), 2773–2784. https://doi.org/10.1007/s11999-011-1826-x
. (2011). Engineered cartilage maturation regulates cytokine production and interleukin-1beta response.
Grote, Marcus J, Palumberi, Viviana, Wagner, Barbara, Journal of Mathematical Biology, 63(4), 757–777. https://doi.org/10.1007/s00285-010-0390-4
, & Martin, Ivan. (2011). Dynamic formation of oriented patches in chondrocyte cell cultures.
Grote, Marcus J, Palumberi, Viviana, Wagner, Barbara, Journal of Mathematical Biology, 63(4), 757–777. https://doi.org/10.1007/s00285-010-0390-4
, & Martin, Ivan. (2011). Dynamic formation of oriented patches in chondrocyte cell cultures.
Scotti, Celeste, Leumann, Andre, Candrian, Christian, Techniques in Foot and Ankle Surgery, 10, 163–168. https://doi.org/10.1097/btf.0b013e318237c196
, Croci, Davide, Schaefer, Dirk J., Jakob, Marcel, Valderrabano, Victor, & Martin, Ivan. (2011). Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: State-of-the-art and future perspectives.
Scotti, Celeste, Leumann, Andre, Candrian, Christian, Techniques in Foot and Ankle Surgery, 10, 163–168. https://doi.org/10.1097/btf.0b013e318237c196
, Croci, Davide, Schaefer, Dirk J., Jakob, Marcel, Valderrabano, Victor, & Martin, Ivan. (2011). Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: State-of-the-art and future perspectives.
Vonwil D, Schuler M., European Cells & Materials, 20, 316–328. https://doi.org/10.22203/ecm.v020a26
, Ströbel S, Wendt D., Textor M., Aebi U, & Martin I. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes.
Vonwil D, Schuler M., European Cells & Materials, 20, 316–328. https://doi.org/10.22203/ecm.v020a26
, Ströbel S, Wendt D., Textor M., Aebi U, & Martin I. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes.
Journal of neuroengineering and rehabilitation, 7, 34. https://doi.org/10.1186/1743-0003-7-34
, & Grosse-Wentrup M. (2010). Biased feedback in brain-computer interfaces.
Journal of neuroengineering and rehabilitation, 7, 34. https://doi.org/10.1186/1743-0003-7-34
, & Grosse-Wentrup M. (2010). Biased feedback in brain-computer interfaces.
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, Scherberich, Arnaud, Arthritis & Rheumatism, 62(12), 3815–3825. https://doi.org/10.1002/art.27736
, Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells.
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, Scherberich, Arnaud, Arthritis & Rheumatism, 62(12), 3815–3825. https://doi.org/10.1002/art.27736
, Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells.
Candrian, C, Miot, S, Wolf, F, Bonacina, E, Dickinson, S, Wirz, D, Jakob, M, Valderrabano, V, Osteoarthritis and cartilage, 18(8), 1067–1076. https://doi.org/10.1016/j.joca.2010.04.010
, & Martin, I. (2010). Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair?
Candrian, C, Miot, S, Wolf, F, Bonacina, E, Dickinson, S, Wirz, D, Jakob, M, Valderrabano, V, Osteoarthritis and cartilage, 18(8), 1067–1076. https://doi.org/10.1016/j.joca.2010.04.010
, & Martin, I. (2010). Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair?
Francioli, Silvia E, Candrian, Christian, Martin, Katja, Heberer, Michael, Martin, Ivan, & Journal of Biomedical Materials Research. Part A, 95(3), 924–931. https://doi.org/10.1002/jbm.a.32917
. (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges.
Francioli, Silvia E, Candrian, Christian, Martin, Katja, Heberer, Michael, Martin, Ivan, & Journal of Biomedical Materials Research. Part A, 95(3), 924–931. https://doi.org/10.1002/jbm.a.32917
. (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges.
Miot, Sylvie, Gianni-Barrera, Roberto, Pelttari, Karoliina, Acharya, Chitrangada, Mainil-Varlet, Pierre, Juelke, Henriette, Jaquiery, Claude, Candrian, Christian, Tissue engineering. Part C, Methods, 16(1), 11–21. https://doi.org/10.1089/ten.tec.2008.0698
, & Martin, Ivan. (2010). In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction.
Miot, Sylvie, Gianni-Barrera, Roberto, Pelttari, Karoliina, Acharya, Chitrangada, Mainil-Varlet, Pierre, Juelke, Henriette, Jaquiery, Claude, Candrian, Christian, Tissue engineering. Part C, Methods, 16(1), 11–21. https://doi.org/10.1089/ten.tec.2008.0698
, & Martin, Ivan. (2010). In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction.
Schaeren, Stefan, Jaquiéry, Claude, Wolf, Francine, Papadimitropoulos, Adam, Journal of Biomedical Materials Research. Part A, 92(4), 1461–1467. https://doi.org/10.1002/jbm.a.32459
, Schultz-Thater, Elke, Heberer, Michael, & Martin, Ivan. (2010). Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation.
Schaeren, Stefan, Jaquiéry, Claude, Wolf, Francine, Papadimitropoulos, Adam, Journal of Biomedical Materials Research. Part A, 92(4), 1461–1467. https://doi.org/10.1002/jbm.a.32459
, Schultz-Thater, Elke, Heberer, Michael, & Martin, Ivan. (2010). Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation.
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Scherberich, Arnaud, Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, Proceedings of the National Academy of Sciences, 107(16), 7251–7256. https://doi.org/10.1073/pnas.1000302107
, & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering.
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Scherberich, Arnaud, Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, Proceedings of the National Academy of Sciences, 107(16), 7251–7256. https://doi.org/10.1073/pnas.1000302107
, & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering.
Scotti, Celeste, Wirz, Dieter, Wolf, Francine, Schaefer, Dirk J., Bürgin, Vivienne, Daniels, Alma U., Valderrabano, Victor, Candrian, Christian, Jakob, Marcel, Martin, Ivan, & Biomaterials, 31(8), 2252–2259. https://doi.org/10.1016/j.biomaterials.2009.11.110
. (2010). Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds.
Scotti, Celeste, Wirz, Dieter, Wolf, Francine, Schaefer, Dirk J., Bürgin, Vivienne, Daniels, Alma U., Valderrabano, Victor, Candrian, Christian, Jakob, Marcel, Martin, Ivan, & Biomaterials, 31(8), 2252–2259. https://doi.org/10.1016/j.biomaterials.2009.11.110
. (2010). Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds.
Ströbel, Simon, Loparic, Marko, Wendt, David, Schenk, Andreas D, Candrian, Christian, Lindberg, Raija L P, Moldovan, Florina, Arthritis Research & Therapy, 12(2), R34. https://doi.org/10.1186/ar2942
, & Martin, Ivan. (2010). Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages.
Ströbel, Simon, Loparic, Marko, Wendt, David, Schenk, Andreas D, Candrian, Christian, Lindberg, Raija L P, Moldovan, Florina, Arthritis Research & Therapy, 12(2), R34. https://doi.org/10.1186/ar2942
, & Martin, Ivan. (2010). Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages.
Vonwil, Daniel, Schuler, Martin, European cells & materials, 20, 316–328. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21069635
, Ströbel, Simon, Wendt, David, Textor, Marcus, Aebi, Ueli, & Martin, Ivan. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes.
Vonwil, Daniel, Schuler, Martin, European cells & materials, 20, 316–328. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21069635
, Ströbel, Simon, Wendt, David, Textor, Marcus, Aebi, Ueli, & Martin, Ivan. (2010). An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes.
Candrian, C, Knee Surgery, Sports Traumatology, Arthroscopy : Official Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA), 17(11), 1377–1383. https://doi.org/10.1007/s00167-009-0766-4
, Bonacina, E, Francioli, S, Hirschmann, M T, Milz, S, Valderrabano, V, Heberer, M, Martin, I, & Jakob, M. (2009). A novel implantation technique for engineered osteo-chondral grafts.
Candrian, C, Knee Surgery, Sports Traumatology, Arthroscopy : Official Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA), 17(11), 1377–1383. https://doi.org/10.1007/s00167-009-0766-4
, Bonacina, E, Francioli, S, Hirschmann, M T, Milz, S, Valderrabano, V, Heberer, M, Martin, I, & Jakob, M. (2009). A novel implantation technique for engineered osteo-chondral grafts.
Candrian, C, Bonacina, E, Frueh, J A, Vonwil, D, Dickinson, S, Wirz, D, Heberer, M, Jakob, M, Martin, I, & Osteoarthritis and Cartilage, 17(4), 489–496. https://doi.org/10.1016/j.joca.2008.05.023
. (2009). Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair.
Candrian, C, Bonacina, E, Frueh, J A, Vonwil, D, Dickinson, S, Wirz, D, Heberer, M, Jakob, M, Martin, I, & Osteoarthritis and Cartilage, 17(4), 489–496. https://doi.org/10.1016/j.joca.2008.05.023
. (2009). Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair.
Spagnoli, G. C. (2009). Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Annals of the Rheumatic Diseases : ARD, 68(8), 1352–1359. https://doi.org/10.1136/ard.2008.094003
Spagnoli, G. C. (2009). Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Annals of the Rheumatic Diseases : ARD, 68(8), 1352–1359. https://doi.org/10.1136/ard.2008.094003
Wolf F, Candrian C, Wendt D, Farhadi J, Heberer M, Martin I, & European Cells & Materials, 16, 92–99. https://doi.org/10.22203/ecm.v016a10
. (2008). Cartilage tissue engineering using pre-aggregated human articular chondrocytes.
Wolf F, Candrian C, Wendt D, Farhadi J, Heberer M, Martin I, & European Cells & Materials, 16, 92–99. https://doi.org/10.22203/ecm.v016a10
. (2008). Cartilage tissue engineering using pre-aggregated human articular chondrocytes.