Publications
63 found
Show per page
Bosco, Stefano, Geyer, Simon, Camenzind, Leon C., Eggli, Rafael S., Fuhrer, Andreas, Warburton, Richard J., Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2303.03350
, Egues, J. Carlos, Kuhlmann, Andreas V., & Loss, Daniel. (2023). Phase driving hole spin qubits. In
Bosco, Stefano, Geyer, Simon, Camenzind, Leon C., Eggli, Rafael S., Fuhrer, Andreas, Warburton, Richard J., Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2303.03350
, Egues, J. Carlos, Kuhlmann, Andreas V., & Loss, Daniel. (2023). Phase driving hole spin qubits. In
Bosco, Stefano, Geyer, Simon, Camenzind, Leon C, Eggli, Rafael S, Fuhrer, Andreas, Warburton, Richard J, Physical Review Letters, 131(19). https://doi.org/10.1103/physrevlett.131.197001
, Egues, J. Carlos, Kuhlmann, Andreas V, & Loss, Daniel. (2023). Phase-Driving Hole Spin Qubits.
Bosco, Stefano, Geyer, Simon, Camenzind, Leon C, Eggli, Rafael S, Fuhrer, Andreas, Warburton, Richard J, Physical Review Letters, 131(19). https://doi.org/10.1103/physrevlett.131.197001
, Egues, J. Carlos, Kuhlmann, Andreas V, & Loss, Daniel. (2023). Phase-Driving Hole Spin Qubits.
Camenzind, Leon C., Geyer, Simon, Fuhrer, Andreas, Warburton, Richard J., Nature electronics, 5(3), 178–183. https://doi.org/10.1038/s41928-022-00722-0
, & Kuhlmann, Andreas V. (2021). A hole spin qubit in a fin field-effect transistor above 4 kelvin.
Camenzind, Leon C., Geyer, Simon, Fuhrer, Andreas, Warburton, Richard J., Nature electronics, 5(3), 178–183. https://doi.org/10.1038/s41928-022-00722-0
, & Kuhlmann, Andreas V. (2021). A hole spin qubit in a fin field-effect transistor above 4 kelvin.
Camenzind, Timothy N., Elsayed, Asser, Mohiyaddin, Fahd A., Li, Ruoyu, Kubicek, Stefan, Jussot, Julien, Van Dorpe, Pol, Govoreanu, Bogdan, Radu, Iuliana, & Materials for Quantum Technology, 1(4), 41001. https://doi.org/10.1088/2633-4356/ac40f4
(2021). High mobility SiMOSFETs fabricated in a full 300mm CMOS process.
Camenzind, Timothy N., Elsayed, Asser, Mohiyaddin, Fahd A., Li, Ruoyu, Kubicek, Stefan, Jussot, Julien, Van Dorpe, Pol, Govoreanu, Bogdan, Radu, Iuliana, & Materials for Quantum Technology, 1(4), 41001. https://doi.org/10.1088/2633-4356/ac40f4
(2021). High mobility SiMOSFETs fabricated in a full 300mm CMOS process.
Carballido, Miguel J., Kloeffel, Christoph, Physical Review B, 103(19), 195444. https://doi.org/10.1103/physrevb.102.195401
, & Loss, Daniel. (2021). Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction.
Carballido, Miguel J., Kloeffel, Christoph, Physical Review B, 103(19), 195444. https://doi.org/10.1103/physrevb.102.195401
, & Loss, Daniel. (2021). Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction.
Craig, D. L., Moon, H., Fedele, F., Lennon, D. T., Van Straaten, B., Vigneau, F., Camenzind, L. C., Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2111.11285
, Briggs, G. A. D., & Osborne, M. A. (2021). Bridging the reality gap in quantum devices with physics-aware machine learning. In
Craig, D. L., Moon, H., Fedele, F., Lennon, D. T., Van Straaten, B., Vigneau, F., Camenzind, L. C., Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2111.11285
, Briggs, G. A. D., & Osborne, M. A. (2021). Bridging the reality gap in quantum devices with physics-aware machine learning. In
Froning, Florian N. M., Camenzind, Leon C., van der Molen, Orson A. H., Li, Ang, Bakkers, Erik P. A. M., Nature Nanotechnology, 16(3), 308–312. https://doi.org/10.1038/s41565-020-00828-6
, & Braakman, Floris R. (2021). Ultrafast hole spin qubit with gate-tunable spin-orbit switch functionality.
Froning, Florian N. M., Camenzind, Leon C., van der Molen, Orson A. H., Li, Ang, Bakkers, Erik P. A. M., Nature Nanotechnology, 16(3), 308–312. https://doi.org/10.1038/s41565-020-00828-6
, & Braakman, Floris R. (2021). Ultrafast hole spin qubit with gate-tunable spin-orbit switch functionality.
Froning, F. N. M., Ranvci`c, M. J., Hetényi, B., Bosco, S., Rehmann, M. K., Li, A., Bakkers, E. P. A. M., Zwanenburg, F. A., Loss, D., & Physical Review Research, 3(1), 13081. https://doi.org/10.1103/physrevresearch.3.013081
(2021). Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots.
Froning, F. N. M., Ranvci`c, M. J., Hetényi, B., Bosco, S., Rehmann, M. K., Li, A., Bakkers, E. P. A. M., Zwanenburg, F. A., Loss, D., & Physical Review Research, 3(1), 13081. https://doi.org/10.1103/physrevresearch.3.013081
(2021). Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots.
Geyer, Simon, Camenzind, Leon C., Czornomaz, Lukas, Deshpande, Veeresh, Fuhrer, Andreas, Warburton, Richard J., Applied Physics Letters, 118(10), 104004. https://doi.org/10.1063/5.0036520
, & Kuhlmann, Andreas V. (2021). Self-aligned gates for scalable silicon quantum computing.
Geyer, Simon, Camenzind, Leon C., Czornomaz, Lukas, Deshpande, Veeresh, Fuhrer, Andreas, Warburton, Richard J., Applied Physics Letters, 118(10), 104004. https://doi.org/10.1063/5.0036520
, & Kuhlmann, Andreas V. (2021). Self-aligned gates for scalable silicon quantum computing.
Haley, Richard, Prance, Jonathan, & Europhysics News, 52(4), 26–29. https://doi.org/10.1051/epn/2021406
. (2021). Breaking the millikelvin barrier in nanoelectronics.
Haley, Richard, Prance, Jonathan, & Europhysics News, 52(4), 26–29. https://doi.org/10.1051/epn/2021406
. (2021). Breaking the millikelvin barrier in nanoelectronics.
Nguyen, V., Orbell, S. B., Lennon, Dominic T., Moon, Hyungil, Vigneau, Florian, Camenzind, Leon C., Yu, Liuqi, Npj Quantum Information, 7(1), 100–100. https://doi.org/10.1038/s41534-021-00434-x
, Briggs, G. Andrew D., & Osborne, Michael A. (2021). Deep reinforcement learning for efficient measurement of quantum devices.
Nguyen, V., Orbell, S. B., Lennon, Dominic T., Moon, Hyungil, Vigneau, Florian, Camenzind, Leon C., Yu, Liuqi, Npj Quantum Information, 7(1), 100–100. https://doi.org/10.1038/s41534-021-00434-x
, Briggs, G. Andrew D., & Osborne, Michael A. (2021). Deep reinforcement learning for efficient measurement of quantum devices.
Samani, Mohammad, Scheller, Christian P., Yurttagül, Nikolai, Grigoras, Kestutis, Gunnarsson, David, Sedeh, Omid Sharifi, Jones, Alexander T., Prance, Jonathan R., Haley, Richard P., Prunnila, Mika, & Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2110.06293
(2021). Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer. In
Samani, Mohammad, Scheller, Christian P., Yurttagül, Nikolai, Grigoras, Kestutis, Gunnarsson, David, Sedeh, Omid Sharifi, Jones, Alexander T., Prance, Jonathan R., Haley, Richard P., Prunnila, Mika, & Arxiv. Cornell University. https://doi.org/10.48550/arxiv.2110.06293
(2021). Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer. In
Severin, B., Lennon, D. T., Camenzind, L. C., Vigneau, F., Fedele, F., Jirovec, D., Ballabio, A., Chrastina, D., Isella, G., de Kruijf, M., Carballido, M. J., Svab, S., Kuhlmann, A. V., Braakman, F. R., Geyer, S., Froning, F. N. M., Hoon, H., Osborne, M. A., Sejdinovic, D., et al. (2021). Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning. In Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2107.12975
Severin, B., Lennon, D. T., Camenzind, L. C., Vigneau, F., Fedele, F., Jirovec, D., Ballabio, A., Chrastina, D., Isella, G., de Kruijf, M., Carballido, M. J., Svab, S., Kuhlmann, A. V., Braakman, F. R., Geyer, S., Froning, F. N. M., Hoon, H., Osborne, M. A., Sejdinovic, D., et al. (2021). Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning. In Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2107.12975
Sifrig, Dominik, Martin, Sascha, Cryogenics, 114, 103239. https://doi.org/10.1016/j.cryogenics.2020.103239
, Schönenberger, Christian, & Marot, Laurent. (2021). Reducing the hydrogen content in liquid helium.
Sifrig, Dominik, Martin, Sascha, Cryogenics, 114, 103239. https://doi.org/10.1016/j.cryogenics.2020.103239
, Schönenberger, Christian, & Marot, Laurent. (2021). Reducing the hydrogen content in liquid helium.
Camenzind, Leon C., Svab, Simon, Stano, Peter, Yu, Liuqi, Zimmerman, Jeramy D., Gossard, Arthur C., Loss, Daniel, & Physical Review Letters, 127(5), 57701. https://doi.org/10.1103/physrevlett.127.057701
(2020). Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots.
Camenzind, Leon C., Svab, Simon, Stano, Peter, Yu, Liuqi, Zimmerman, Jeramy D., Gossard, Arthur C., Loss, Daniel, & Physical Review Letters, 127(5), 57701. https://doi.org/10.1103/physrevlett.127.057701
(2020). Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots.
Ferguson, Michael S., Camenzind, Leon C., Müller, Clemens, Biesinger, Daniel E. F., Scheller, Christian P., Braunecker, Bernd, arXiv, 2010, 4635. https://arxiv.org/abs/2010.04635
, & Zilberberg, Oded. (2020). Quantum measurement induces a many-body transition.
Ferguson, Michael S., Camenzind, Leon C., Müller, Clemens, Biesinger, Daniel E. F., Scheller, Christian P., Braunecker, Bernd, arXiv, 2010, 4635. https://arxiv.org/abs/2010.04635
, & Zilberberg, Oded. (2020). Quantum measurement induces a many-body transition.
Friedl, Martin, Cerveny, Kris, Huang, Chunyi, Dede, Didem, Samani, Mohammad, Hill, Megan O., Morgan, Nicholas, Kim, Wonjong, Güniat, Lucas, Segura-Ruiz, Jaime, Lauhon, Lincoln J., Nano Letters, 20(5), 3577–3584. https://doi.org/10.1021/acs.nanolett.0c00517
, & Fontcuberta i Morral, Anna. (2020). Remote Doping of Scalable Nanowire Branches.
Friedl, Martin, Cerveny, Kris, Huang, Chunyi, Dede, Didem, Samani, Mohammad, Hill, Megan O., Morgan, Nicholas, Kim, Wonjong, Güniat, Lucas, Segura-Ruiz, Jaime, Lauhon, Lincoln J., Nano Letters, 20(5), 3577–3584. https://doi.org/10.1021/acs.nanolett.0c00517
, & Fontcuberta i Morral, Anna. (2020). Remote Doping of Scalable Nanowire Branches.
Jones, A. T., Scheller, C. P., Prance, J. R., Kalyoncu, Y. B., Journal of Low Temperature Physics, 201(5), 772–802. https://doi.org/10.1007/s10909-020-02472-9
, & Haley, R. P. (2020). Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures.
Jones, A. T., Scheller, C. P., Prance, J. R., Kalyoncu, Y. B., Journal of Low Temperature Physics, 201(5), 772–802. https://doi.org/10.1007/s10909-020-02472-9
, & Haley, R. P. (2020). Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures.
Moon, H., Lennon, D. T., Kirkpatrick, J., van Esbroeck, N. M., Camenzind, L. C., Yu, Liuqi, Vigneau, F., Nature Communications, 11(1), 4161. https://doi.org/10.1038/s41467-020-17835-9
, Briggs, G. A. D., Osborne, M. A., Sejdinovic, D., Laird, E. A., & Ares, N. (2020). Machine learning enables completely automatic tuning of a quantum device faster than human experts.
Moon, H., Lennon, D. T., Kirkpatrick, J., van Esbroeck, N. M., Camenzind, L. C., Yu, Liuqi, Vigneau, F., Nature Communications, 11(1), 4161. https://doi.org/10.1038/s41467-020-17835-9
, Briggs, G. A. D., Osborne, M. A., Sejdinovic, D., Laird, E. A., & Ares, N. (2020). Machine learning enables completely automatic tuning of a quantum device faster than human experts.
Patlatiuk, T., Scheller, C. P., Hill, D., Tserkovnyak, Y., Egues, J. C., Barak, G., Yacoby, A., Pfeiffer, L. N., West, K. W., & Physical Review Letters, 125(8), 87701. https://doi.org/10.1103/physrevlett.125.087701
(2020). Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy.
Patlatiuk, T., Scheller, C. P., Hill, D., Tserkovnyak, Y., Egues, J. C., Barak, G., Yacoby, A., Pfeiffer, L. N., West, K. W., & Physical Review Letters, 125(8), 87701. https://doi.org/10.1103/physrevlett.125.087701
(2020). Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy.
Schupp, F. J., Vigneau, F., Wen, Y., Mavalankar, A., Griffiths, J., Jones, G. A. C., Farrer, I., Ritchie, D. A., Smith, C. G., Camenzind, L. C., Yu, L., Journal of Applied Physics, 127(24), 244503. https://doi.org/10.1063/5.0005886
, Briggs, G. A. D., Ares, N., & Laird, E. A. (2020). Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier.
Schupp, F. J., Vigneau, F., Wen, Y., Mavalankar, A., Griffiths, J., Jones, G. A. C., Farrer, I., Ritchie, D. A., Smith, C. G., Camenzind, L. C., Yu, L., Journal of Applied Physics, 127(24), 244503. https://doi.org/10.1063/5.0005886
, Briggs, G. A. D., Ares, N., & Laird, E. A. (2020). Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier.
van Esbroeck, N. M., Lennon, D. T., Moon, H., Nguyen, V., Vigneau, F., Camenzind, L. C., Yu, L., New Journal of Physics, 22(9), 95003. https://doi.org/10.1088/1367-2630/abb64c
, Briggs, G. A. D., Sejdinovic, D., & Ares, N. (2020). Quantum device fine-tuning using unsupervised embedding learning.
van Esbroeck, N. M., Lennon, D. T., Moon, H., Nguyen, V., Vigneau, F., Camenzind, L. C., Yu, L., New Journal of Physics, 22(9), 95003. https://doi.org/10.1088/1367-2630/abb64c
, Briggs, G. A. D., Sejdinovic, D., & Ares, N. (2020). Quantum device fine-tuning using unsupervised embedding learning.
Weigele, Pirmin J., Marinescu, D. C., Dettwiler, Florian, Fu, Jiyong, Mack, Shawn, Egues, J. Carlos, Awschalom, David D., & Physical Review B, 101, 35414. https://doi.org/10.1103/physrevb.101.035414
(2020). Symmetry breaking of the persistent spin helix in quantum transport.
Weigele, Pirmin J., Marinescu, D. C., Dettwiler, Florian, Fu, Jiyong, Mack, Shawn, Egues, J. Carlos, Awschalom, David D., & Physical Review B, 101, 35414. https://doi.org/10.1103/physrevb.101.035414
(2020). Symmetry breaking of the persistent spin helix in quantum transport.
Camenzind, Leon C., Yu, Liuqi, Stano, Peter, Zimmerman, Jeramy D., Gossard, Arthur C., Loss, Daniel, & Physical Review Letters, 122(20), 207701. https://doi.org/10.1103/physrevlett.122.207701
(2019). Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields.
Camenzind, Leon C., Yu, Liuqi, Stano, Peter, Zimmerman, Jeramy D., Gossard, Arthur C., Loss, Daniel, & Physical Review Letters, 122(20), 207701. https://doi.org/10.1103/physrevlett.122.207701
(2019). Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields.
Lennon, D. T., Moon, H., Camenzind, L. C., Yu, Liuqi, Npj Quantum Information, 5, 79. https://doi.org/10.1038/s41534-019-0193-4
, Briggs, G. A. D., Osborne, M. A., Laird, E. A., & Ares, N. (2019). Efficiently measuring a quantum device using machine learning.
Lennon, D. T., Moon, H., Camenzind, L. C., Yu, Liuqi, Npj Quantum Information, 5, 79. https://doi.org/10.1038/s41534-019-0193-4
, Briggs, G. A. D., Osborne, M. A., Laird, E. A., & Ares, N. (2019). Efficiently measuring a quantum device using machine learning.
Marinescu, D. C., Weigele, Pirmin J., Physical Review Letters, 122(15), 156601. https://doi.org/10.1103/physrevlett.122.156601
, & Egues, J. Carlos. (2019). Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions.
Marinescu, D. C., Weigele, Pirmin J., Physical Review Letters, 122(15), 156601. https://doi.org/10.1103/physrevlett.122.156601
, & Egues, J. Carlos. (2019). Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions.
Rehmann, Mirko K., Kalyoncu, Yemliha B., Kisiel, Marcin, Pascher, Nikola, Giessibl, Franz J., Müller, Fabian, Kenji Watanabe, Kenji, Takashi Taniguchi, Takashi, Ernst Meyer, Ernst, Ming-Hao Liu, Ming-Hao, & Carbon, 150, 417–424. https://doi.org/10.1016/j.carbon.2019.05.015
(2019). Characterization of hydrogen plasma defined graphene edges.
Rehmann, Mirko K., Kalyoncu, Yemliha B., Kisiel, Marcin, Pascher, Nikola, Giessibl, Franz J., Müller, Fabian, Kenji Watanabe, Kenji, Takashi Taniguchi, Takashi, Ernst Meyer, Ernst, Ming-Hao Liu, Ming-Hao, & Carbon, 150, 417–424. https://doi.org/10.1016/j.carbon.2019.05.015
(2019). Characterization of hydrogen plasma defined graphene edges.
Stano, Peter, Hsu, Chen-Hsuan, Camenzind, Leon C., Yu, Liuqi, Physical Review B, 99(8), 85308. https://doi.org/10.1103/physrevb.99.085308
, & Loss, Daniel. (2019). Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot.
Stano, Peter, Hsu, Chen-Hsuan, Camenzind, Leon C., Yu, Liuqi, Physical Review B, 99(8), 85308. https://doi.org/10.1103/physrevb.99.085308
, & Loss, Daniel. (2019). Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot.
Camenzind, Leon C., Yu, Liuqi, Stano, Peter, Zimmerman, Jeramy D., Gossard, Arthur C., Loss, Daniel, & Nature communications, 9(1), 3454. https://doi.org/10.1038/s41467-018-05879-x
(2018). Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot.
Camenzind, Leon C., Yu, Liuqi, Stano, Peter, Zimmerman, Jeramy D., Gossard, Arthur C., Loss, Daniel, & Nature communications, 9(1), 3454. https://doi.org/10.1038/s41467-018-05879-x
(2018). Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot.
Friedl, Martin, Cerveny, Kris, Weigele, Pirmin, Tutuncuoglu, Gozde, Marti-Sanchez, Sara, Huang, Chunyi, Patlatiuk, Taras, Potts, Heidi, Sun, Zhiyuan, Hill, Megan O., Guniat, Lucas, Kim, Wonjong, Zamani, Mahdi, Dubrovskii, Vladimir G., Arbiol, Jordi, Lauhon, Lincoln J., Nano Letters, 18(4), 2666–2671. https://doi.org/10.1021/acs.nanolett.8b00554
, & Fontcuberta i Morral, Anna. (2018). Template-Assisted Scalable Nanowire Networks.
Friedl, Martin, Cerveny, Kris, Weigele, Pirmin, Tutuncuoglu, Gozde, Marti-Sanchez, Sara, Huang, Chunyi, Patlatiuk, Taras, Potts, Heidi, Sun, Zhiyuan, Hill, Megan O., Guniat, Lucas, Kim, Wonjong, Zamani, Mahdi, Dubrovskii, Vladimir G., Arbiol, Jordi, Lauhon, Lincoln J., Nano Letters, 18(4), 2666–2671. https://doi.org/10.1021/acs.nanolett.8b00554
, & Fontcuberta i Morral, Anna. (2018). Template-Assisted Scalable Nanowire Networks.
Froning, F. N. M., Rehmann, M. K., Ridderbos, J., Brauns, M., Zwanenburg, F. A., Li, A., Bakkers, E. P. A. M., Applied Physics Letters, 113. https://doi.org/10.1063/1.5042501
, & Braakman, F. R. (2018). Single, double, and triple quantum dots in Ge/Si nanowires.
Froning, F. N. M., Rehmann, M. K., Ridderbos, J., Brauns, M., Zwanenburg, F. A., Li, A., Bakkers, E. P. A. M., Applied Physics Letters, 113. https://doi.org/10.1063/1.5042501
, & Braakman, F. R. (2018). Single, double, and triple quantum dots in Ge/Si nanowires.
Kuhlmann, Andreas V., Deshpande, Veeresh, Camenzind, Leon C., Applied Physics Letters, 113(12). https://doi.org/10.1063/1.5048097
, & Fuhrer, Andreas. (2018). Ambipolar quantum dots in undoped silicon fin field-effect transistors.
Kuhlmann, Andreas V., Deshpande, Veeresh, Camenzind, Leon C., Applied Physics Letters, 113(12). https://doi.org/10.1063/1.5048097
, & Fuhrer, Andreas. (2018). Ambipolar quantum dots in undoped silicon fin field-effect transistors.
Patlatiuk, T., Scheller, C. P., Hill, D., Tserkovnyak, Y., Barak, G., Yacoby, A., Pfeiffer, L. N., West, K. W., & Nature Communications, 9. https://doi.org/10.1038/s41467-018-06025-3
(2018). Evolution of the quantum Hall bulk spectrum into chiral edge states.
Patlatiuk, T., Scheller, C. P., Hill, D., Tserkovnyak, Y., Barak, G., Yacoby, A., Pfeiffer, L. N., West, K. W., & Nature Communications, 9. https://doi.org/10.1038/s41467-018-06025-3
(2018). Evolution of the quantum Hall bulk spectrum into chiral edge states.
Stano, Peter, Hsu, Chen-Hsuan, Serina, Marcel, Camenzind, Leon C., Physical Review B, 98(19). https://doi.org/10.1103/physrevb.98.195314
, & Loss, Daniel. (2018). g-factor of electrons in gate-defined quantum dots in a strong in-plane magnetic field.
Stano, Peter, Hsu, Chen-Hsuan, Serina, Marcel, Camenzind, Leon C., Physical Review B, 98(19). https://doi.org/10.1103/physrevb.98.195314
, & Loss, Daniel. (2018). g-factor of electrons in gate-defined quantum dots in a strong in-plane magnetic field.
Dettwiler, Florian, Fu, Jiyong, Mack, Shawn, Weigele, Pirmin J., Egues, J. Carlos, Awschalom, David D., & Physical Review X, 7(3), 31010. https://doi.org/10.1103/physrevx.7.031010
(2017). Stretchable Persistent Spin Helices in GaAs Quantum Wells.
Dettwiler, Florian, Fu, Jiyong, Mack, Shawn, Weigele, Pirmin J., Egues, J. Carlos, Awschalom, David D., & Physical Review X, 7(3), 31010. https://doi.org/10.1103/physrevx.7.031010
(2017). Stretchable Persistent Spin Helices in GaAs Quantum Wells.
Hug, Dorothee, Zihlmann, Simon, Rehmann, Mirko K., Kalyoncu, Yemliha B., Camenzind, Timothy N., Marot, Laurent, Watanabe, K., Taniguchi, T., & npj 2D Materials and Applications, 1, 21. https://doi.org/10.1038/s41699-017-0021-7
(2017). Anisotropic etching of graphite and graphene in a remote hydrogen plasma.
Hug, Dorothee, Zihlmann, Simon, Rehmann, Mirko K., Kalyoncu, Yemliha B., Camenzind, Timothy N., Marot, Laurent, Watanabe, K., Taniguchi, T., & npj 2D Materials and Applications, 1, 21. https://doi.org/10.1038/s41699-017-0021-7
(2017). Anisotropic etching of graphite and graphene in a remote hydrogen plasma.
Palma, Mario, Maradan, Dario, Casparis, Lucas, Liu, Tai-Min, Froning, Florian N. M., & Review of Scientific Instruments, 88(4), 43902. https://doi.org/10.1063/1.4979929
(2017). Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.
Palma, Mario, Maradan, Dario, Casparis, Lucas, Liu, Tai-Min, Froning, Florian N. M., & Review of Scientific Instruments, 88(4), 43902. https://doi.org/10.1063/1.4979929
(2017). Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.
Palma, Mario, Scheller, Christian P., Maradan, Dario, Feshchenko, Anna V., Meschke, Matthias, & Applied Physics Letters, 111, 253105. https://doi.org/10.1063/1.5002565
(2017). On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK.
Palma, Mario, Scheller, Christian P., Maradan, Dario, Feshchenko, Anna V., Meschke, Matthias, & Applied Physics Letters, 111, 253105. https://doi.org/10.1063/1.5002565
(2017). On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK.
Biesinger, D E F, Scheller, C P, Braunecker, B, Zimmerman, J, Gossard, A C, & Physical Review Letters, 115(10), 106804. https://doi.org/10.1103/physrevlett.115.106804
. (2015). Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot.
Biesinger, D E F, Scheller, C P, Braunecker, B, Zimmerman, J, Gossard, A C, & Physical Review Letters, 115(10), 106804. https://doi.org/10.1103/physrevlett.115.106804
. (2015). Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot.
Feshchenko, A. V., Casparis, L., Khaymovich, I. M., Maradan, D., Saira, O. -P., Palma, M., Meschke, M., Pekola, J. P., & Physical Review Applied, 4(3), 34001. https://doi.org/10.1103/physrevapplied.4.034001
(2015). Tunnel junction thermometry down to millikelvin temperatures.
Feshchenko, A. V., Casparis, L., Khaymovich, I. M., Maradan, D., Saira, O. -P., Palma, M., Meschke, M., Pekola, J. P., & Physical Review Applied, 4(3), 34001. https://doi.org/10.1103/physrevapplied.4.034001
(2015). Tunnel junction thermometry down to millikelvin temperatures.
Dettwiler, F., Fallahi, P., Scholz, D., Reiger, E., Schuh, D., Badolato, A., Wegscheider, W., & arxiv.org [Cond-Mat.Mes-Hall], 1403. http://arxiv.org/abs/1403.7775
(2014). Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics.
Dettwiler, F., Fallahi, P., Scholz, D., Reiger, E., Schuh, D., Badolato, A., Wegscheider, W., & arxiv.org [Cond-Mat.Mes-Hall], 1403. http://arxiv.org/abs/1403.7775
(2014). Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics.
Dettwiler, F., Fu, J., Mack, S., Weigele, P. J., Egues, J. C., Awschalom, D. D., & arxiv.org [Cond-Mat.Mes-Hall]. http://arxiv.org/abs/1403.3518
(2014). Electrical spin protection and manipulation via gate-locked spin-orbit fields.
Dettwiler, F., Fu, J., Mack, S., Weigele, P. J., Egues, J. C., Awschalom, D. D., & arxiv.org [Cond-Mat.Mes-Hall]. http://arxiv.org/abs/1403.3518
(2014). Electrical spin protection and manipulation via gate-locked spin-orbit fields.
Maradan, D., Casparis, L., Liu, T. -M., Biesinger, D. E. F., Scheller, C. P., Journal of Low Temperature Physics, 175(5-6), 784–798. https://doi.org/10.1007/s10909-014-1169-6
, Zimmerman, J. D., & Gossard, A. C. (2014). GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing.
Maradan, D., Casparis, L., Liu, T. -M., Biesinger, D. E. F., Scheller, C. P., Journal of Low Temperature Physics, 175(5-6), 784–798. https://doi.org/10.1007/s10909-014-1169-6
, Zimmerman, J. D., & Gossard, A. C. (2014). GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing.
Scheller, Christian P., Heizmann, Sarah, Bedner, Kristine, Giss, Dominic, Meschke, Matthias, Applied Physics Letters, 104(21), 211106. https://doi.org/10.1063/1.4880099
, Zimmerman, Jeramy D., & Gossard, Arthur C. (2014). Silver-Epoxy Microwave Filters and Thermalizers for Millikelvin Experiments.
Scheller, Christian P., Heizmann, Sarah, Bedner, Kristine, Giss, Dominic, Meschke, Matthias, Applied Physics Letters, 104(21), 211106. https://doi.org/10.1063/1.4880099
, Zimmerman, Jeramy D., & Gossard, Arthur C. (2014). Silver-Epoxy Microwave Filters and Thermalizers for Millikelvin Experiments.
Scheller, C. P., Braunecker, B., Loss, D., & SPG Mitteilungen, 44, 23. http://www.sps.ch/uploads/media/Mitteilungen_Progress_44.pdf
(2014). Spontaneous Helical Order of Electron and Nuclear Spins in a Luttinger Liquid.
Scheller, C. P., Braunecker, B., Loss, D., & SPG Mitteilungen, 44, 23. http://www.sps.ch/uploads/media/Mitteilungen_Progress_44.pdf
(2014). Spontaneous Helical Order of Electron and Nuclear Spins in a Luttinger Liquid.
Scheller, C P, Liu, T-M, Barak, G, Yacoby, A, Pfeiffer, L N, West, K W, & Physical Review Letters, 112(6), 66801. https://doi.org/10.1103/physrevlett.112.066801
. (2014). Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires.
Scheller, C P, Liu, T-M, Barak, G, Yacoby, A, Pfeiffer, L N, West, K W, & Physical Review Letters, 112(6), 66801. https://doi.org/10.1103/physrevlett.112.066801
. (2014). Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires.
Casparis, L., Hug, D., Kölbl, D., & arxiv.org [Cond-Mat.Mes-Hall]. http://arxiv.org/abs/1301.2727
(2013). Evidence for Disorder Induced Delocalization in Graphite.
Casparis, L., Hug, D., Kölbl, D., & arxiv.org [Cond-Mat.Mes-Hall]. http://arxiv.org/abs/1301.2727
(2013). Evidence for Disorder Induced Delocalization in Graphite.
Casparis, L, Meschke, M, Maradan, D, Clark, A C, Scheller, C P, Schwarzwälder, K K, Pekola, J P, & Review of Scientific Instruments, 83(8), 83903. https://doi.org/10.1063/1.4744944
. (2012). Metallic Coulomb Blockade Thermometry down to 10 mK and below.
Casparis, L, Meschke, M, Maradan, D, Clark, A C, Scheller, C P, Schwarzwälder, K K, Pekola, J P, & Review of Scientific Instruments, 83(8), 83903. https://doi.org/10.1063/1.4744944
. (2012). Metallic Coulomb Blockade Thermometry down to 10 mK and below.
Eren, B., Hug, D., Marot, L., Pawlak, R., Kisiel, M., Steiner, R., Beilstein Journal of Nanotechnology, 3, 852–859. https://doi.org/10.3762/bjnano.3.96
, & Meyer, E. (2012). Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?
Eren, B., Hug, D., Marot, L., Pawlak, R., Kisiel, M., Steiner, R., Beilstein Journal of Nanotechnology, 3, 852–859. https://doi.org/10.3762/bjnano.3.96
, & Meyer, E. (2012). Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?
Kölbl, Dominikus, Physical Review Letters, 109(8), 86601. https://doi.org/10.1103/physrevlett.109.086601
, Fuhrer, Andreas, Salis, Gian, & Alvarado, Santos F. (2012). Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs.
Kölbl, Dominikus, Physical Review Letters, 109(8), 86601. https://doi.org/10.1103/physrevlett.109.086601
, Fuhrer, Andreas, Salis, Gian, & Alvarado, Santos F. (2012). Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs.
Kölbl, D., & arxiv.org [Cond-Mat.Mes-Hall], 6. https://doi.org/arxiv:1307.8163
(2012). Transport spectroscopy of disordered graphene quantum dots etched into a single graphene flake.
Kölbl, D., & arxiv.org [Cond-Mat.Mes-Hall], 6. https://doi.org/arxiv:1307.8163
(2012). Transport spectroscopy of disordered graphene quantum dots etched into a single graphene flake.
Clark, A C, Schwarzwälder, K K, Bandi, T, Maradan, D, & Review of Scientific Instruments, 81(10), 103904. https://doi.org/10.1063/1.3489892
. (2010). Method for Cooling Nanostructures to Microkelvin Temperatures.
Clark, A C, Schwarzwälder, K K, Bandi, T, Maradan, D, & Review of Scientific Instruments, 81(10), 103904. https://doi.org/10.1063/1.3489892
. (2010). Method for Cooling Nanostructures to Microkelvin Temperatures.
Amasha, S., MacLean, K., Radu, Iuliana P., Physical Review B, 78(4), 041306R. https://doi.org/10.1103/physrevb.78.041306
, Kastner, M. A., Hanson, M. P., & Gossard, A. C. (2008). Spin-dependent tunneling of single electrons into an empty quantum dot.
Amasha, S., MacLean, K., Radu, Iuliana P., Physical Review B, 78(4), 041306R. https://doi.org/10.1103/physrevb.78.041306
, Kastner, M. A., Hanson, M. P., & Gossard, A. C. (2008). Spin-dependent tunneling of single electrons into an empty quantum dot.
Amasha, S, Maclean, K, Radu, Iuliana P, Physical Review Letters, 100(4), 46803. https://doi.org/10.1103/physrevlett.100.046803
, Kastner, M A, Hanson, M P, & Gossard, A C. (2008). Electrical control of spin relaxation in a quantum dot.
Amasha, S, Maclean, K, Radu, Iuliana P, Physical Review Letters, 100(4), 46803. https://doi.org/10.1103/physrevlett.100.046803
, Kastner, M A, Hanson, M P, & Gossard, A C. (2008). Electrical control of spin relaxation in a quantum dot.
MacLean, K, Amasha, S, Radu, Iuliana P, Physical Review Letters, 98(3), 36802. https://doi.org/10.1103/physrevlett.98.036802
, Kastner, M A, Hanson, M P, & Gossard, A C. (2007). Energy dependent tunneling in a quantum dot.
MacLean, K, Amasha, S, Radu, Iuliana P, Physical Review Letters, 98(3), 36802. https://doi.org/10.1103/physrevlett.98.036802
, Kastner, M A, Hanson, M P, & Gossard, A C. (2007). Energy dependent tunneling in a quantum dot.
Gelfand, Ian J., Amasha, S., Applied Physics Letters, 88(25), 252105. https://doi.org/10.1063/1.2210289
, Kastner, M. A., Kadow, C., & Gossard, A. C. (2006). Suface-gated quantum Hall effect in an InAs heterostructure.
Gelfand, Ian J., Amasha, S., Applied Physics Letters, 88(25), 252105. https://doi.org/10.1063/1.2210289
, Kastner, M. A., Kadow, C., & Gossard, A. C. (2006). Suface-gated quantum Hall effect in an InAs heterostructure.
Physical Review Letters, 96(20), 206802. https://doi.org/10.1103/physrevlett.96.206802
, Marcus, C M, Hanson, M P, & Gossard, A C. (2006). Asymmetry of nonlinear transport and electron interactions in quantum dots.
Physical Review Letters, 96(20), 206802. https://doi.org/10.1103/physrevlett.96.206802
, Marcus, C M, Hanson, M P, & Gossard, A C. (2006). Asymmetry of nonlinear transport and electron interactions in quantum dots.
Physical Review B, 72(8), 81305. https://doi.org/10.1103/physrevb.72.081305
, Miller, JB, Marcus, CM, Goldhaber-Gordon, D, Harris, JS, Campman, K, & Gossard, AC. (2005). Conductance Fluctuations and partially broken Spin Symmetries in Quantum Dots.
Physical Review B, 72(8), 81305. https://doi.org/10.1103/physrevb.72.081305
, Miller, JB, Marcus, CM, Goldhaber-Gordon, D, Harris, JS, Campman, K, & Gossard, AC. (2005). Conductance Fluctuations and partially broken Spin Symmetries in Quantum Dots.
Physical Review Letters, 93(25), 256801. https://doi.org/10.1103/physrevlett.93.256801
, Marcus, C M, Hanson, M P, & Gossard, A C. (2004). Cotunneling spectroscopy in few-electron quantum dots.
Physical Review Letters, 93(25), 256801. https://doi.org/10.1103/physrevlett.93.256801
, Marcus, C M, Hanson, M P, & Gossard, A C. (2004). Cotunneling spectroscopy in few-electron quantum dots.
Physical Review B, 69(12), 121305. https://doi.org/10.1103/physrevb.69.121305
, Miller, JB, Marcus, CM, Fal’ko, VI, Jungwirth, T, & Harris, JS. (2004). Orbital effects of in-plane magnetic fields probed by mesoscopic conductance fluctuations.
Physical Review B, 69(12), 121305. https://doi.org/10.1103/physrevb.69.121305
, Miller, JB, Marcus, CM, Fal’ko, VI, Jungwirth, T, & Harris, JS. (2004). Orbital effects of in-plane magnetic fields probed by mesoscopic conductance fluctuations.
Miller, J B, Physical Review Letters, 90(7), 76807. https://doi.org/10.1103/physrevlett.90.076807
, Marcus, C M, Lyanda-Geller, Y B, Goldhaber-Gordon, D, Campman, K, & Gossard, A C. (2003). Gate-controlled spin-orbit quantum interference effects in lateral transport.
Miller, J B, Physical Review Letters, 90(7), 76807. https://doi.org/10.1103/physrevlett.90.076807
, Marcus, C M, Lyanda-Geller, Y B, Goldhaber-Gordon, D, Campman, K, & Gossard, A C. (2003). Gate-controlled spin-orbit quantum interference effects in lateral transport.
Physical Review Letters, 89(27), 276803. https://doi.org/10.1103/physrevlett.89.276803
, Miller, J B, Marcus, C M, Campman, K, & Gossard, A C. (2002). Spin-orbit coupling, antilocalization and parallel magnetic fields in quantum dots.
Physical Review Letters, 89(27), 276803. https://doi.org/10.1103/physrevlett.89.276803
, Miller, J B, Marcus, C M, Campman, K, & Gossard, A C. (2002). Spin-orbit coupling, antilocalization and parallel magnetic fields in quantum dots.
Kartner, FX, Physical Review Letters, 82(22), 4428–4431. https://doi.org/10.1103/physrevlett.82.4428
, & Matuschek, N. (1999). Turbulence in mode-locked lasers.
Kartner, FX, Physical Review Letters, 82(22), 4428–4431. https://doi.org/10.1103/physrevlett.82.4428
, & Matuschek, N. (1999). Turbulence in mode-locked lasers.