Publications
133 found
Show per page
Boillat, Marc-Aurèle, & Hardware, 2(4), 273–278. https://doi.org/10.3390/hardware2040013
(2024). High Impedance Active Probe for High Voltages [Journal-article]. Boillat, Marc-Aurèle, & Analyst, 149(16), 4213–4221 . https://doi.org/10.1039/d4an00356j
(2024). Study of a microwave induced plasma as a universal ion source for inorganic and organic mass spectrometry. Obma, Apinya, Nookaew, Keerada, Songsaeng, Ruamsiri, Phonchai, Apichai, Arabian Journal of Chemistry, 16(11), 105255. https://doi.org/10.1016/j.arabjc.2023.105255
, Wilairat, Prapin, & Chantiwas, Rattikan. (2023). Measurement of sweat lactate levels in exercise and non-exercise activities using capillary electrophoresis system with contactless conductivity detection and cyclodextrin-modified buffer [Journal-article]. Boillat, Marc-Aurèle, Rakus, Julian M., & Analytical Chemistry, 95(28), 10777–10784. https://doi.org/10.1021/acs.analchem.3c01898
(2023). Electrospray Ion Mobility Spectrometer Based on Flexible Printed-Circuit Board Electrodes with Improved Resolving Power [Journal-article]. Barreto, Diandra Nunes, Martins, Gabriel, Analytica Chimica Acta, 1236, 340596. https://doi.org/10.1016/j.aca.2022.340596
, Mizaikoff, Boris, & da Silveira Petruci, Joao Flavio. (2022). Reagent-less and sub-minute quantification of sulfite in food samples using substrate-integrated hollow waveguide gas sensors coupled to deep-UV LED. Boillat, Marc-Aurèle, & HardwareX, 12, e00338. https://doi.org/10.1016/j.ohx.2022.e00338
(2022). CO2-measuring dongle. Chantipmanee, Nattapong, Boillat, Marc-Aurèle, & Review of Scientific Instruments, 93(7), 74703. https://doi.org/10.1063/5.0093479
(2022). High voltage pulser for ion shutters in ion mobility spectrometry based on an optocoupler. Chantipmanee, Nattapong, Furter, Jasmine S., & Analytica Chimica Acta, 1195, 339432. https://doi.org/10.1016/j.aca.2022.339432
(2022). Ambient ionization source based on a dielectric barrier discharge for direct testing of pharmaceuticals using ion mobility spectrometry. Chantipmanee, Nattapong, & Analytical and Bioanalytical Chemistry, 414(14), 4059–4066. https://doi.org/10.1007/s00216-022-04050-2
(2022). Determination of tobramycin in eye drops with an open-source hardware ion mobility spectrometer. Keeratirawee, Kanchalar, Furter, Jasmine S., & HardwareX, 11, e00280. https://doi.org/10.1016/j.ohx.2022.e00280
(2022). Low-cost electronic circuitry for photoacoustic gas sensing. Keeratirawee, Kanchalar, & Sensors, 22(4), 1691. https://doi.org/10.3390/s22041691
(2022). Determination of Binary Gas Mixtures by Measuring the Resonance Frequency in a Piezoelectric Tube. Chantipmanee, Nattapong, & Analytica Chimica Acta, 1170, 338626. https://doi.org/10.1016/j.aca.2021.338626
(2021). Development of simple drift tube design for ion mobility spectrometry based on flexible printed circuit board material. Fukana, Nutnaree, Sonsa-ard, Thitaporn, Chantipmanee, Nattapong, Sensors and Actuators B: Chemical, 339. https://doi.org/10.1016/j.snb.2021.129838
, Wilairat, Prapin, & Nacapricha, Duangjai. (2021). Contactless conductivity sensor as detector for microfluidic paper-based analytical device with application to unique rapid method for quantifying sulfite preservative. Furter, Jasmine S., & Journal of Chromatography A, 1656, 462533. https://doi.org/10.1016/j.chroma.2021.462533
(2021). Compact automated capillary electrophoresis instrument for coupling with mass spectrometry by using sheathless electrospray ionization. Hutanu, Andrei, Electrophoresis, 42(11), 1209–1216. https://doi.org/10.1002/elps.202000355
, Moritz, Bernd, Kiessig, Steffen, Noel, Aurelie, Stracke, Jan O., Wild, Markus, & Schwarz, Maria A. (2021). Methionine oxidation of proteins analyzed by affinity capillary electrophoresis in presence of silver(I) and gold(III) ions. Keeratirawee, Kanchalar, & Analytica Chimica Acta, 1147, 165–169. https://doi.org/10.1016/j.aca.2020.12.063
(2021). Piezoelectric tube as resonant transducer for gas-phase photoacoustics. Keeratirawee, Kanchalar, & Talanta, 223(Pt 2), 121890. https://doi.org/10.1016/j.talanta.2020.121890
(2021). Photoacoustic detection of ozone with a red laser diode. Chantipmanee, Nattapong, & International journal for ion mobility spectrometry, 23(2), 161–166. https://doi.org/10.1007/s12127-020-00267-y
(2020). Determination of ethylene by field asymmetric ion mobility spectrometry. Chantipmanee, Nattapong, Sonsa-ard, Thitaporn, Fukana, Nutnaree, Kotakanok, Kamolchanok, Mantim, Thitirat, Wilairat, Prapin, Talanta, 206, 120227. https://doi.org/10.1016/j.talanta.2019.120227
, & Nacapricha, Duangjai. (2020). Contactless conductivity detector from printed circuit board for paper-based analytical systems. Furter, Jasmine S., Boillat, Marc-Aurele, & Electrophoresis, 41(24), 2075–2082. https://doi.org/10.1002/elps.202000211
(2020). Low-cost automated capillary electrophoresis instrument assembled from commercially available parts. Journal of Chromatography A, 1632, 461616. https://doi.org/10.1016/j.chroma.2020.461616
, & Kuban, Pavel. (2020). Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020. Le, Thai Binh, Electrophoresis, 41(23), 1980–1990. https://doi.org/10.1002/elps.202000163
, Pham, Thi Ngoc Mai, Kieu, Thi Lan Phuong, Le, Thi Phuong Quynh, Hoang, Quoc Anh, Le, Dinh Chi, Nguyen, Thi Anh Huong, & Mai, Thanh Duc. (2020). Low-cost and versatile analytical tool with purpose-made capillary electrophoresis coupled to contactless conductivity detection: Application to antibiotics quality control in Vietnam. Lienard-Mayor, Theo, Furter, Jasmine S., Taverna, Myriam, Pham, Hung Viet, Analytica Chimica Acta, 1135, 47–54. https://doi.org/10.1016/j.aca.2020.08.025
, & Mai, Thanh Duc. (2020). Modular instrumentation for capillary electrophoresis with laser induced fluorescence detection using plug-and-play microfluidic, electrophoretic and optic modules. Mantim, Thitirat, Chaisiwamongkhol, Korbua, Uraisin, Kanchana, Molecules, 25(10), ARTN 2284. https://doi.org/10.3390/molecules25102284
, Wilairat, Prapin, & Nacapricha, Duangjai. (2020). Dual-Purpose Photometric-Conductivity Detector for Simultaneous and Sequential Measurements in Flow Analysis. Pham, Thi Ngoc Mai, Le, Thai Binh, Le, Duc Dung, Ha, Tran Hung, Nguyen, Ngoc Son, Pham, Tien Duc, Journal of Pharmaceutical and Biomedical Analysis, 178, 112906. https://doi.org/10.1016/j.jpba.2019.112906
, Nguyen, Thi Anh Huong, & Mai, Thanh Duc. (2020). Determination of carbapenem antibiotics using a purpose-made capillary electrophoresis instrument with contactless conductivity detection. Sonsa-ard, Thitaporn, Chantipmanee, Nattapong, Fukana, Nutnaree, Analytica Chimica Acta, 1118, 44–51. https://doi.org/10.1016/j.aca.2020.04.044
, Wilairat, Prapin, & Nacapricha, Duangjai. (2020). Contactless conductivity sensor employing moist paper as absorbent for in-situ detection of generated carbon dioxide gas. Fuiko, Roland, Saracevic, Ernis, Koenka, Israel Joel, Talanta, 195, 366–371. https://doi.org/10.1016/j.talanta.2018.11.056
, & Krampe, Joerg. (2019). Capillary electrophoresis for continuous nitrogen quantification in wastewater treatment processes. Furter, Jasmine S., & Analytica Chimica Acta, 1058, 18–28. https://doi.org/10.1016/j.aca.2018.10.071
(2019). Interactive control of purpose built analytical instruments with Forth on microcontrollers - A tutorial. Furter, Jasmine S., & Electrophoresis, 40(3), 410–413. https://doi.org/10.1002/elps.201800250
(2019). Injection system for fast capillary electrophoresis based on pressure regulation with flow restrictors. Kuban, Pavel, & Electrophoresis, 40(1), 124–139. https://doi.org/10.1002/elps.201800248
(2019). Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018. Mai, Thanh Duc, ANALYTICA CHIMICA ACTA, 1062, 156–164. https://doi.org/10.1016/j.aca.2019.02.006
, Descroix, Stephanie, de Lassichere, Cedric Crosnier, Taverna, Myriam, & Smadja, Claire. (2019). In-capillary immuno-preconcentration with circulating bio-functionalized magnetic beads for capillary electrophoresis. Nguyen, Thi Anh Huong, Pham, Thi Ngoc Mai, Le, Thai Binh, Le, Dinh Chi, Tran, Thi Thanh Phuong, Nguyen, Thi Quynh Hoa, Nguyen, Thi Kim Thuong, Journal of Chromatography A, 1605, 360356. https://doi.org/10.1016/j.chroma.2019.07.010
, & Mai, Thanh Duc. (2019). Cost-effective capillary electrophoresis with contactless conductivity detection for quality control of beta-lactam antibiotics. da Silveira Petruci, Joao Flavio, Sensors and Actuators. B, Chemical, 268, 392–397. https://doi.org/10.1016/j.snb.2018.04.101
, & Cardoso, Arnaldo Alves. (2018). Colorimetric paper-based device for gaseous hydrogen cyanide quantification based on absorbance measurements. Furter, Jasmine S., & Analytical Methods, 10(23), 2701–2711. https://doi.org/10.1039/c8ay00446c
(2018). A low-cost ambient desorption/ionization source for mass-spectrometry based on a dielectric barrier discharge. Kuban, Pavel, & Trends in Analytical Chemistry, 102, 311–321. https://doi.org/10.1016/j.trac.2018.03.007
(2018). 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. See, Hong Heng, Mamat, Nor Akma, & Molecules, 23(5), 1000. https://doi.org/10.3390/molecules23051000
(2018). Flow Injection Analysis with Direct UV Detection Following Electric Field Driven Membrane Extraction. Steinsberger, Thomas, Kathriner, Patrick, Meier, Philipp, Mistretta, Alexander, Sensors and Actuators B: Chemical, 255, 3558–3563. https://doi.org/10.1016/j.snb.2017.09.191
, & Müller, Beat. (2018). A portable low cost coulometric micro-titrator for the determination of alkalinity in lake and sediment porewaters. Bui, Duy Anh, Kraiczek, Karsten G., & Analytica Chimica Acta, 986, 95–100. https://doi.org/10.1016/j.aca.2017.07.007
(2017). Molecular absorption measurements with an optical fibre coupled array of ultra-violet light-emitting diodes. Koenka, Israel Joel, & Electrophoresis, 38(21), 2721–2724. https://doi.org/10.1002/elps.201700071
(2017). Background conductivity independent counter flow preconcentration method for capillary electrophoresis. Kuban, Pavel, & Electrophoresis, 38(1), 95–114. https://doi.org/10.1002/elps.201600280
(2017). Contactless conductivity detection for analytical techniques Developments from 2014 to 2016. Petruci, Joao Flavio da Silveira, Liebetanz, Michael G., Cardoso, Arnaldo Alves, & Journal of Chromatography A, 1512, 143–146. https://doi.org/10.1016/j.chroma.2017.07.029
(2017). Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235 nm. Vu, Anh Phuong, Nguyen, Thi Ngan, Do, Thi Trang, Doan, Thu Ha, Ha, Tran Hung, Ta, Thi Thao, Nguyen, Hung Long, Journal of Chromatography B, 1060, 111–117. https://doi.org/10.1016/j.jchromb.2017.06.010
, Nguyen, Thi Anh Huong, & Mai, Thanh Duc. (2017). Clinical screening of paraquat in plasma samples using capillary electrophoresis with contactless conductivity detection: Towards rapid diagnosis and therapeutic treatment of acute paraquat poisoning in Vietnam. Lead: Its Effects on Environment and Health (Vol. 17, pp. 49–59). De Gruyter. https://doi.org/10.1515/9783110434330-003
(2017). Analytical Methods for the Determination of Lead in the Environment. In Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. (ed.), Caslavska, Jitka, Koenka, Israel Joel, Electrophoresis, 37(5-6), 699–710. https://doi.org/10.1002/elps.201500424
, & Thormann, Wolfgang. (2016). Validation of CE modeling with a contactless conductivity array detector. Duy Anh Bui, & Sensors and Actuators B: Chemical, 235, 622–626. https://doi.org/10.1016/j.snb.2016.05.122
(2016). A deep-UV light-emitting diode-based absorption detector for benzene, toluene, ethylbenzene, and the xylene compounds. Koenka, Israel Joel, Kung, Nina, Kuban, Pavel, Chwalek, Thomas, Furrer, Gerhard, Wehrli, Bernhard, Muller, Beat, & Electrophoresis, 37(17-18), 2368–2375. https://doi.org/10.1002/elps.201600235
(2016). Thermostatted dual-channel portable capillary electrophoresis instrument. Koenka, Israel Joel, Mai, Thanh Duc, Analytical Methods, 8(7), 1452–1456. https://doi.org/10.1039/c5ay02917a
, & Sáiz, Jorge. (2016). Simultaneous separation of cations and anions in capillary electrophoresis - recent applications. Koenka, Israel Joel, Sáiz, Jorge, Rempel, Paul, & Analytical Chemistry, 88(7), 3761–3767. https://doi.org/10.1021/acs.analchem.5b04666
(2016). Microfluidic Breadboard Approach to Capillary Electrophoresis. Mai, Thanh Duc, Le, Minh Duc, Sáiz, Jorge, Duong, Hong Anh, Koenka, Israel Joel, Pham, Hung Viet, & Analytica Chimica Acta, 911, 121–128. https://doi.org/10.1016/j.aca.2016.01.029
. (2016). Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species. Nguyen, Thi Anh Huong, Nguyen, Van Ri, Le, Duc Dung, Nguyen, Thi Thanh Binh, Cao, Van Hoang, Nguyen, Thi Kim Dung, Sáiz, Jorge, Journal of Chromatography A, 1457, 151–158. https://doi.org/10.1016/j.chroma.2016.06.050
, & Mai, Thanh Duc. (2016). Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection. Torres, Natascha T., Steinsberger, Thomas, Droz-Georget, Helen, Muller, Beat, Brandl, Helmut, AIMS Geosciences, 2(3), 245–258. https://doi.org/10.3934/geosci.2016.3.245
, & Furrer, Gerhard. (2016). A Novel Method to Quantify Bioavailable Elements and Mobile ATP on Rock Surfaces and Lichens. Alkali Metal Ions: Their Role for Life (pp. 11–25). Springer. https://doi.org/10.1007/978-3-319-21756-7_2
(2016). Determination of Alkali Ions in Biological and Environmental Samples. In Sigel, A.; Sigel, H.; Sigel, R. K. O. (Ed.), Bui, D. A., & Analytica Chimica Acta, 853, 46–58. https://doi.org/10.1016/j.aca.2014.09.044
(2015). Analytical devices based on light-emitting diodes - a review of the state-of-the-art. Bui, Duy Anh, & Chimia, 69(12), 806. https://doi.org/10.2533/chimia.2015.806
. (2015). Deep UV-LED Based Absorbance Detectors for Narrow-Bore HPLC and Capillary Electrophoresis. Bui, Duy Anh, & Journal of Chromatography A, 1421, 203–208. https://doi.org/10.1016/j.chroma.2015.06.005
. (2015). Absorbance detector for capillary electrophoresis based on light-emitting diodes and photodiodes for the deep-ultraviolet range. Duong, H. A., Le, M. D., Nguyen, K. D. M., Environmental Science: Processes & Impacts, 17(11), 1941–1951. https://doi.org/10.1039/c5em00362h
, Pham, H. V., & Mai, T. D. (2015). In-house-made capillary electrophoresis instruments coupled with contactless conductivity detection as a simple and inexpensive solution for water analysis: a case study in Vietnam. Koenka, Israel Joel, Sáiz, Jorge, & Chimia, 69(4), 172–175. https://doi.org/10.2533/chimia.2015.172
. (2015). Instrumentino: An Open-Source Software for Scientific Instruments. Kuban, P., & Contactless conductivity detection for analytical techniques-Developments from 2012 to 2014]. Electrophoresis, 36, Article 1. https://doi.org/10.1002/elps.201400336
(2015). Contactless conductivity detection for analytical techniques-Developments from 2012 to 2014 [Review of Nguyen, Thi Anh Huong, Pham, Thi Ngoc Mai, Ta, Thi Thao, Nguyen, Xuan Truong, Nguyen, Thi Lien, Le, Thi Hong Hao, Koenka, Israel Joel, Sáiz, Jorge, Science & Justice, 55(6), 481–486. https://doi.org/10.1016/j.scijus.2015.09.001
, & Mai, Thanh Duc. (2015). Screening determination of four amphetamine-type drugs in street-grade illegal tablets and urine samples by portable capillary electrophoresis with contactless conductivity detection. Saiz, J., Koenka, I. J., Garcia-Ruiz, C., Muller, B., Chwalek, T., & Electrophoresis, 36(16), 1941–1944. https://doi.org/10.1002/elps.201400589
(2015). Micro-injector for capillary electrophoresis. Seitz, Peter, Senesky, Debbie G, Schöning, Michael J, Sensors, 15(9), 24458–24465. https://doi.org/10.3390/s150924458
, Moser, Roland, Herzig, Hans Peter, Melesse, Assefa M, Broderick, Patricia A, & Eugster, Patrick Thomas. (2015). 4th International Symposium on Sensor Science (I3S2015): Conference Report. Vontobel, S. F., Abad-Villar, E. M., Kaufmann, C., Zinkernagel, A. S., Journal of Clinical & Experimental Ophthalmology, 1000430. https://doi.org/10.4172/2155-9570.1000430
, & Thiel, M. A. (2015). Corneal Penetration of Polyhexamethylene Biguanide and Chlorhexidine Digluconate. Koenka, Israel Joel, Saiz, Jorge, & Computer Physics Communications, 185(10), 2724–2729. https://doi.org/10.1016/j.cpc.2014.06.007
(2014). Instrumentino: An open-source modular Python framework for controlling Arduino based experimental instruments. Sáiz, Jorge, Duc, Mai Thanh, Koenka, Israel Joel, Martín-Alberca, Carlos, Journal of Chromatography A, 1372C, 245–252. https://doi.org/10.1016/j.chroma.2014.10.085
, & García-Ruiz, Carmen. (2014). Concurrent determination of anions and cations in consumer fireworks with a portable dual-capillary electrophoresis system. Saiz, Jorge, Koenka, Israel Joel, Thanh Duc Mai, Trends in Analytical Chemistry, 62, 162–172. https://doi.org/10.1016/j.trac.2014.07.015
, & Garcia-Ruiz, Carmen. (2014). Simultaneous separation of cations and anions in capillary electrophoresis. See, Hong Heng, & Analytical Chemistry, 86(17), 8665–8670. https://doi.org/10.1021/ac5015589
. (2014). Automated Electric-Field-Driven Membrane Extraction System Coupled to Liquid Chromatography-Mass Spectrometry. See, Hong Heng, & Journal of Membrane Science, 450, 147–152. https://doi.org/10.1016/j.memsci.2013.08.043
(2014). Electro-driven extraction of low levels of lipophilic organic anions and cations across plasticized cellulose triacetate membranes : effect of the membrane composition. Stojkovic, Marko, Koenka, Israel Joel, Thormann, Wolfgang, & Electrophoresis, 35(4), 482–486. https://doi.org/10.1002/elps.201300457
(2014). Contactless conductivity detector array for capillary electrophoresis. Thi Anh Huong Nguyen, Thi Ngoc Mai Pham, Thi Tuoi Doan, Thi Thao Ta, Saiz, Jorge, Thi Quynh Hoa Nguyen, Journal of Chromatography A, 1360, 305–311. https://doi.org/10.1016/j.chroma.2014.07.074
, & Thanh Duc Mai. (2014). Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of beta-agonists in pharmaceutical and pig-feed samples. Thi Thanh Thuy Pham, Thanh Duc Mai, Thanh Dam Nguyen, Saiz, Jorge, Hung Viet Pham, & Analytica Chimica Acta, 841, 77–83. https://doi.org/10.1016/j.aca.2014.05.046
(2014). Automated dual capillary electrophoresis system with hydrodynamic injeciton for the concurrent determination of cations and anions. Torres, Natascha T., Och, Lawrence M., Environmental Science : Processes & Impacts, 16(4), 879–889. https://doi.org/10.1039/c3em00676j
, Furrer, Gerhard, Brandl, Helmut, Vologina, Elena, Sturm, Michael, Buergmann, Helmut, & Müller, Beat. (2014). Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Anh Bui, Duy, & Talanta, 116, 1073–1078. https://doi.org/10.1016/j.talanta.2013.08.007
. (2013). Absorbance measurements with light-emitting diodes as sources: Silicon photodiodes or light-emitting diodes as detectors? Ansari, Kambiz, Ying, Jasmine Yuen Shu, Electrophoresis, 34(9-10), 1390–1399. https://doi.org/10.1002/elps.201200592
, de Rooij, Nico F., & Rodriguez, Isabel. (2013). A portable lab-on-a-chip instrument based on MCE with dual topbottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. Buglione, Lucia, See, Hong Heng, & Electrophoresis, 34(14), 2072–2077. https://doi.org/10.1002/elps.201300028
. (2013). Rapid separation of fatty acids using a poly(vinyl alcohol) coated capillary in nonaqueous capillary electrophoresis with contactless conductivity detection. Buglione, Lucia, See, Hong Heng, & Electrophoresis, 34(2), 317–323. https://doi.org/10.1002/elps.201200397
. (2013). Study on the effects of electrolytes and solvents in the determination of quaternary ammonium ions by nonaqueous capillary electrophoresis with contactless conductivity detection. Bui, Duy Anh, Bomastyk, Benjamin, & Journal of Separation Science, 36(19), 3152–3157. https://doi.org/10.1002/jssc.201300598
. (2013). Absorbance detector based on a deep UV light emitting diode for narrow-column HPLC. Kamaruzaman, Sazlinda, Analytica Chimica Acta, 783, 24–30. https://doi.org/10.1016/j.aca.2013.04.042
, Sanagi, Mohd Marsin, Ibrahim, Wan Aini Wan, Endud, Salasiah, & See, Hong Heng. (2013). A simple microextraction and preconcentration approach based on a mixed matrix membrane. Kubáň, Pavel, & Electrophoresis, 34(1), 55–69. https://doi.org/10.1002/elps.201200358
. (2013). Contactless conductivity detection for analytical techniques : developments from 2010 to 2012. Mai, Thanh Duc, & Electrophoresis, 34(12), 1796–1803. https://doi.org/10.1002/elps.201200586
. (2013). Study on the interrelated effects of capillary diameter, background electrolyte concentration, and flow rate in pressure assisted capillary electrophoresis with contactless conductivity detection. Mai, Thanh Duc, Pham, Thi Thanh Thuy, Pham, Hung Viet, Sáiz, Jorge, Ruiz, Carmen García, & Analytical Chemistry, 85(4), 2333–2339. https://doi.org/10.1021/ac303328g
. (2013). Portable Capillary Electrophoresis Instrument with Automated Injector and Contactless Conductivity Detection. Sáiz, Jorge, Mai, Thanh Duc, Electrophoresis, 34(14), 2078–2084. https://doi.org/10.1002/elps.201300054
, & García-Ruiz, Carmen. (2013). Determination of nitrogen mustard degradation products in water samples using a portable capillary electrophoresis instrument. Sáiz, Jorge, Mai, Thanh Duc, López, María López, Bartolomé, Carmen, Science & Justice, 53(4), 409–414. https://doi.org/10.1016/j.scijus.2013.08.001
, & García-Ruiz, Carmen. (2013). Rapid determination of scopolamine in evidence of recreational and predatory use. Schmidt-Marzinkowski, Julia, See, Hong Heng, & Electroanalysis, 25(8), 1879–1886. https://doi.org/10.1002/elan.201300176
(2013). Electric Field Driven Extraction of Inorganic Anions Across a Polymer Inclusion Membrane. See, Hong Heng, Stratz, Simone, & Journal of Chromatography A, 1300, 79–84. https://doi.org/10.1016/j.chroma.2013.01.062
. (2013). Electro-driven extraction across a polymer inclusion membrane in a flow-through cell. Stojkovic, Marko, Mai, Thanh Duc, & Analytica Chimica Acta, 787, 254–259. https://doi.org/10.1016/j.aca.2013.05.039
. (2013). Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping. Stojkovic, Marko, Schlensky, Boris, & Electroanalysis, 25(12), 2645–2650. https://doi.org/10.1002/elan.201300413
(2013). Referenced Capacitively Coupled Conductivity Detector for Capillary Electrophoresis. Stojkovic, M., Uda, N. R., Brodmann, P., & Chimia, 67(6), 428. https://doi.org/10.2533/chimia.2013.428
(2013). Determination of PCR Products by Capillary Electrophoresis with Contactless Conductivity Detection. Torres, Natascha T, Environmental Science, 15(4), 715–720. https://doi.org/10.1039/c3em00068k
, Furrer, Gerhard, Brandl, Helmut, & Müller, Beat. (2013). Sediment porewater extraction and analysis combining filter tube samplers and capillary electrophoresis. Mai, Thanh Duc, Bomastyk, Benjamin, Duong, Hong Anh, Pham, Hung Viet, & Analytica Chimica Acta, 727, 1–7. https://doi.org/10.1016/j.aca.2012.03.035
. (2012). Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection. Mai, Thanh Duc, & The Chemical Record, 12(1), 106–113. https://doi.org/10.1002/tcr.201100039
. (2012). Contactless conductivity detection for electrophoretic microseparation techniques. Mai, Thanh Duc, & Journal of Chromatography A, 1267, 266–272. https://doi.org/10.1016/j.chroma.2012.04.005
. (2012). Simultaneous separations of cations and anions by capillary electrophoresis with contactless conductivity detection employing a sequential injection analysis manifold for flexible manipulation of sample plugs. Mantim, Thitirat, Nacapricha, Duangjai, Wilairat, Prapin, & Electrophoresis, 33(2), 388–394. https://doi.org/10.1002/elps.201100370
. (2012). Enantiomeric separation of some common controlled stimulants by capillary electrophoresis with contactless conductivity detection. Pham, Thi Thanh Thuy, See, Hong Heng, Morand, Réjane, Krähenbühl, Stephan, & Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 907, 74–78. https://doi.org/10.1016/j.jchromb.2012.08.037
. (2012). Determination of free and total valproic acid in human plasma by capillary electrophoresis with contactless conductivity detection. See, Hong Heng, Schmidt-Marzinkowski, Julia, Pormsila, Worapan, Morand, Réjane, Krähenbühl, Stephan, & Analytica Chimica Acta, 727, 78–82. https://doi.org/10.1016/j.aca.2012.03.055
(2012). Determination of creatine and phosphocreatine in muscle biopsy samples by capillary electrophoresis with contactless conductivity detection. Stojkovic, Marko, Uda, Narasimha R, Brodmann, Peter, Popovic, Milica, & Journal of Separation Science, 35(24), 3509–3513. https://doi.org/10.1002/jssc.201200800
. (2012). Determination of PCR products by CE with contactless conductivity detection. Bomastyk, Benjamin, Petrovic, Igor, & Journal of Chromatography A, 1218(24), 3750–3756. https://doi.org/10.1016/j.chroma.2011.04.039
. (2011). Absorbance detector for high-performance liquid chromatography based on light-emitting diodes for the deep-ultraviolet range. Guijt, Rosanne M., Armstrong, James P., Candish, Esme, Lefleur, Veronica, Percey, William J., Shabala, Sergey, Sensors and Actuators B: Chemical, 159(1), 307–313. https://doi.org/10.1016/j.snb.2011.06.023
, & Breadmore, Michael C. (2011). Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Kubáň, Pavel, & Electrophoresis, 32(1), 30–42. https://doi.org/10.1002/elps.201000354
. (2011). Capacitively coupled contactless conductivity detection for microseparation techniques - recent developments. Lau, Hiu Fung, Quek, Ngee Mian, Law, Wai Siang, Zhao, Jian Hong, Electrophoresis, 32(10), 1190–1194. https://doi.org/10.1002/elps.201000603
, & Li, Sam Fong Yau. (2011). Optimization of separation of heavy metals by capillary electrophoresis with contactless conductivity detection. Mai, Thanh Duc, & Electrophoresis, 32(21), 3000–3007. https://doi.org/10.1002/elps.201100200
. (2011). Anion separations with pressure-assisted capillary electrophoresis using a sequential injection analysis manifold and contactless conductivity detection.