Publications
102 found
Show per page
Thoughts on Mentoring Trainees in Neuroscience [Posted-content]. Authorea, Inc. https://doi.org/10.22541/au.172945326.60444509/v1
. (2024).
Thoughts on Mentoring Trainees in Neuroscience [Posted-content]. Authorea, Inc. https://doi.org/10.22541/au.172945326.60444509/v1
. (2024).
Okur, Zeynep, Schlauri, Nadia, Bitsikas, Vassilis, Panopoulou, Myrto, Ortiz, Raul, Schwaiger, Michaela, Karmakar, Kajari, Schreiner, Dietmar, & Nature, 629(8011), 402–409. https://doi.org/10.1038/s41586-024-07317-z
. (2024). Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling.
Okur, Zeynep, Schlauri, Nadia, Bitsikas, Vassilis, Panopoulou, Myrto, Ortiz, Raul, Schwaiger, Michaela, Karmakar, Kajari, Schreiner, Dietmar, & Nature, 629(8011), 402–409. https://doi.org/10.1038/s41586-024-07317-z
. (2024). Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling.
Bartolomei, G. D., Ortiz, R., Schreiner, D., Falkner, S., Creemers, E. E., & Scheiffele, P. (2023). Dilated cardiomyopathy-associated RNA Binding Motif Protein 20 regulates long pre-mRNAs in neurons [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.06.570345
Bartolomei, G. D., Ortiz, R., Schreiner, D., Falkner, S., Creemers, E. E., & Scheiffele, P. (2023). Dilated cardiomyopathy-associated RNA Binding Motif Protein 20 regulates long pre-mRNAs in neurons [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.06.570345
Oleari, R., Lettieri, A., Manzini, S., Paganoni, A., André, V., Grazioli, P., Busnelli, M., Duminuco, P., Vitobello, A., Philippe, C., Bizaoui, V., Storr, H. L., Amoruso, F., Memi, F., Vezzoli, V., Massa, V., Scheiffele, P., Howard, S. R., & Cariboni, A. (2023). Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. DMM Disease Models and Mechanisms, 16(3). https://doi.org/10.1242/dmm.049996
Oleari, R., Lettieri, A., Manzini, S., Paganoni, A., André, V., Grazioli, P., Busnelli, M., Duminuco, P., Vitobello, A., Philippe, C., Bizaoui, V., Storr, H. L., Amoruso, F., Memi, F., Vezzoli, V., Massa, V., Scheiffele, P., Howard, S. R., & Cariboni, A. (2023). Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. DMM Disease Models and Mechanisms, 16(3). https://doi.org/10.1242/dmm.049996
Traunmüller, Lisa, Schulz, Jan, Ortiz, Raul, Feng, Huijuan, Furlanis, Elisabetta, Gomez, Andrea M., Schreiner, Dietmar, Bischofberger, Josef, Zhang, Chaolin, & Cell reports, 42(3), 112173. https://doi.org/10.1016/j.celrep.2023.112173
. (2023). A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner.
Traunmüller, Lisa, Schulz, Jan, Ortiz, Raul, Feng, Huijuan, Furlanis, Elisabetta, Gomez, Andrea M., Schreiner, Dietmar, Bischofberger, Josef, Zhang, Chaolin, & Cell reports, 42(3), 112173. https://doi.org/10.1016/j.celrep.2023.112173
. (2023). A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner.
Zeynep , Okur, Schlauri, Nadia, Bitsikas, Vassilis, Panopoulou, Myrto, Karmakar, Kajari, Schreiner, Dietmar, & Control of neuronal excitation-inhibition balance by BMP-SMAD1 signaling. bioRxiv. https://doi.org/10.1101/2023.03.11.532164
. (2023).
Zeynep , Okur, Schlauri, Nadia, Bitsikas, Vassilis, Panopoulou, Myrto, Karmakar, Kajari, Schreiner, Dietmar, & Control of neuronal excitation-inhibition balance by BMP-SMAD1 signaling. bioRxiv. https://doi.org/10.1101/2023.03.11.532164
. (2023).
Czernecki, Charlotte, Dixit, Shirley, Riezman, Isabelle, Innocenti, Sabrina, Bornmann, Caroline, Pfrieger, Frank W., Riezman, Howard, & Cell type-specific assessment of cholesterol distribution in models of neurodevelopmental disorders. bioRxiv. https://doi.org/10.1101/2022.11.16.516849
. (2022).
Czernecki, Charlotte, Dixit, Shirley, Riezman, Isabelle, Innocenti, Sabrina, Bornmann, Caroline, Pfrieger, Frank W., Riezman, Howard, & Cell type-specific assessment of cholesterol distribution in models of neurodevelopmental disorders. bioRxiv. https://doi.org/10.1101/2022.11.16.516849
. (2022).
Hauser, David, Behr, Katharina, Konno, Kohtarou, Schreiner, Dietmar, Schmidt, Alexander, Watanabe, Masahiko, Bischofberger, Josef, & Neuron, 110(13), 2094–2109. https://doi.org/10.1016/j.neuron.2022.04.017
. (2022). Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition.
Hauser, David, Behr, Katharina, Konno, Kohtarou, Schreiner, Dietmar, Schmidt, Alexander, Watanabe, Masahiko, Bischofberger, Josef, & Neuron, 110(13), 2094–2109. https://doi.org/10.1016/j.neuron.2022.04.017
. (2022). Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition.
Mazille, Maxime, The EMBO Journal, 41(21), e110192. https://doi.org/10.15252/embj.2021110192
, & Mauger, Oriane. (2022). Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts.
Mazille, Maxime, The EMBO Journal, 41(21), e110192. https://doi.org/10.15252/embj.2021110192
, & Mauger, Oriane. (2022). Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts.
Traunmüller, Lisa, Schulz, Jan, Ortiz, Raul, Feng, Huijuan, Furlanis, Elisabetta, Gomez, Andrea M., Schreiner, Dietmar, Bischofberger, Josef, Zhang, Chaolin, & Trans-cellular control of synapse properties by a cell type-specific splicing regulator. bioRxiv. https://doi.org/10.1101/2022.12.07.519444
. (2022).
Traunmüller, Lisa, Schulz, Jan, Ortiz, Raul, Feng, Huijuan, Furlanis, Elisabetta, Gomez, Andrea M., Schreiner, Dietmar, Bischofberger, Josef, Zhang, Chaolin, & Trans-cellular control of synapse properties by a cell type-specific splicing regulator. bioRxiv. https://doi.org/10.1101/2022.12.07.519444
. (2022).
Di Bartolomei, Giulia, & Alternative Splicing: Methods and Protocols (Vol. 2537, pp. 37–49). Springer. https://doi.org/10.1007/978-1-0716-2521-7_3
. (2022). An Optimized Protocol for the Mapping of Cell Type-Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions. In ; Mauger, Oriane (Ed.),
Di Bartolomei, Giulia, & Alternative Splicing: Methods and Protocols (Vol. 2537, pp. 37–49). Springer. https://doi.org/10.1007/978-1-0716-2521-7_3
. (2022). An Optimized Protocol for the Mapping of Cell Type-Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions. In ; Mauger, Oriane (Ed.),
Gomez, Andrea M., Traunmüller, Lisa, & Nature Reviews. Neuroscience, 22(3), 137–151. https://doi.org/10.1038/s41583-020-00415-7
. (2021). Neurexins: molecular codes for shaping neuronal synapses.
Gomez, Andrea M., Traunmüller, Lisa, & Nature Reviews. Neuroscience, 22(3), 137–151. https://doi.org/10.1038/s41583-020-00415-7
. (2021). Neurexins: molecular codes for shaping neuronal synapses.
Hörnberg, H., Perez-Garci, E., Schreiner, D., Hattstatt-Burklé, L., Magara, F., Baudouin, S., Matter, A., Nacro, K., Pecho-Vrieseling, E., & Nature, 584, 252–256. https://doi.org/10.1038/s41586-020-2563-7
(2020). Rescue of oxytocin response and social behaviour in a mouse model of autism .
Hörnberg, H., Perez-Garci, E., Schreiner, D., Hattstatt-Burklé, L., Magara, F., Baudouin, S., Matter, A., Nacro, K., Pecho-Vrieseling, E., & Nature, 584, 252–256. https://doi.org/10.1038/s41586-020-2563-7
(2020). Rescue of oxytocin response and social behaviour in a mouse model of autism .
Luo, Lin, Ambrozkiewicz, Mateusz C., Benseler, Fritz, Chen, Cui, Dumontier, Emilie, Falkner, Susanne, Furlanis, Elisabetta, Gomez, Andrea M., Hoshina, Naosuke, Huang, Wei-Hsiang, Hutchison, Mary Anne, Itoh-Maruoka, Yu, Lavery, Laura A., Li, Wei, Maruo, Tomohiko, Motohashi, Junko, Pai, Emily Ling-Lin, Pelkey, Kenneth A., Pereira, Ariane, et al. (2020). Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 106(1), 37–65. https://doi.org/10.1016/j.neuron.2020.01.008
Luo, Lin, Ambrozkiewicz, Mateusz C., Benseler, Fritz, Chen, Cui, Dumontier, Emilie, Falkner, Susanne, Furlanis, Elisabetta, Gomez, Andrea M., Hoshina, Naosuke, Huang, Wei-Hsiang, Hutchison, Mary Anne, Itoh-Maruoka, Yu, Lavery, Laura A., Li, Wei, Maruo, Tomohiko, Motohashi, Junko, Pai, Emily Ling-Lin, Pelkey, Kenneth A., Pereira, Ariane, et al. (2020). Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 106(1), 37–65. https://doi.org/10.1016/j.neuron.2020.01.008
Vickers, Evan, Osypenko, Denys, Clark, Christopher, Okur, Zeynep, Scientific Reports, 10(1), 10047. https://doi.org/10.1038/s41598-020-66862-5
, & Schneggenburger, Ralf. (2020). LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling.
Vickers, Evan, Osypenko, Denys, Clark, Christopher, Okur, Zeynep, Scientific Reports, 10(1), 10047. https://doi.org/10.1038/s41598-020-66862-5
, & Schneggenburger, Ralf. (2020). LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling.
Falkner, Susanne, & Science, 364(6439), 437–438. https://doi.org/10.1126/science.aax3221
. (2019). Architects of neuronal wiring.
Falkner, Susanne, & Science, 364(6439), 437–438. https://doi.org/10.1126/science.aax3221
. (2019). Architects of neuronal wiring.
Furlanis, Elisabetta, Traunmüller, Lisa, Fucile, Geoffrey, & Nature Neuroscience, 22(10), 1709–1717. https://doi.org/10.1038/s41593-019-0465-5
. (2019). Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs.
Furlanis, Elisabetta, Traunmüller, Lisa, Fucile, Geoffrey, & Nature Neuroscience, 22(10), 1709–1717. https://doi.org/10.1038/s41593-019-0465-5
. (2019). Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs.
Iijima, Yoko, Tanaka, Masami, Suzuki, Satoko, Hauser, David, Tanaka, Masayuki, Okada, Chisa, Ito, Masatoshi, Ayukawa, Noriko, Sato, Yuji, Ohtsuka, Masato, iScience, 22, 318–335. https://doi.org/10.1016/j.isci.2019.11.028
, & Iijima, Takatoshi. (2019). SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3′ UTR Isoforms in the Nervous System.
Iijima, Yoko, Tanaka, Masami, Suzuki, Satoko, Hauser, David, Tanaka, Masayuki, Okada, Chisa, Ito, Masatoshi, Ayukawa, Noriko, Sato, Yuji, Ohtsuka, Masato, iScience, 22, 318–335. https://doi.org/10.1016/j.isci.2019.11.028
, & Iijima, Takatoshi. (2019). SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3′ UTR Isoforms in the Nervous System.
Okur, Zeynep, & Neuron, 102(2), 270–272. https://doi.org/10.1016/j.neuron.2019.04.006
. (2019). The Yin and Yang of Arnt2 in Activity-Dependent Transcription.
Okur, Zeynep, & Neuron, 102(2), 270–272. https://doi.org/10.1016/j.neuron.2019.04.006
. (2019). The Yin and Yang of Arnt2 in Activity-Dependent Transcription.
Stachniak, Tevye Jason, Sylwestrak, Emily Lauren, Journal of Neuroscience, 39(23), 4461–4474. https://doi.org/10.1523/jneurosci.2276-18.2019
, Hall, Benjamin J., & Ghosh, Anirvan. (2019). Elfn1-induced constitutive activation of mGluR7 determines frequency-dependent recruitment of SOM interneurons.
Stachniak, Tevye Jason, Sylwestrak, Emily Lauren, Journal of Neuroscience, 39(23), 4461–4474. https://doi.org/10.1523/jneurosci.2276-18.2019
, Hall, Benjamin J., & Ghosh, Anirvan. (2019). Elfn1-induced constitutive activation of mGluR7 determines frequency-dependent recruitment of SOM interneurons.
Bariselli, Sebastiano, Hörnberg, Hanna, Prévost-Solié, Clément, Musardo, Stefano, Hatstatt-Burklé, Laetitia, Nature Communications, 9(1), 3173. https://doi.org/10.1038/s41467-018-05382-3
, & Bellone, Camilla. (2018). Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction.
Bariselli, Sebastiano, Hörnberg, Hanna, Prévost-Solié, Clément, Musardo, Stefano, Hatstatt-Burklé, Laetitia, Nature Communications, 9(1), 3173. https://doi.org/10.1038/s41467-018-05382-3
, & Bellone, Camilla. (2018). Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction.
Furlanis, Elisabetta, & Annual Review of Cell and Developmental Biology, 34, 451–469. https://doi.org/10.1146/annurev-cellbio-100617-062826
. (2018). Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing.
Furlanis, Elisabetta, & Annual Review of Cell and Developmental Biology, 34, 451–469. https://doi.org/10.1146/annurev-cellbio-100617-062826
. (2018). Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing.
Witte, Harald, Schreiner, Dietmar, & The European Journal of Neuroscience, doi:10. https://doi.org/10.1111/ejn.14332
. (2018). A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes.
Witte, Harald, Schreiner, Dietmar, & The European Journal of Neuroscience, doi:10. https://doi.org/10.1111/ejn.14332
. (2018). A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes.
Xiao, Le, Bornmann, Caroline, Hatstatt-Burklé, Laetitia, & Nature Communications, 9(1), 3133. https://doi.org/10.1038/s41467-018-05565-y
. (2018). Regulation of striatal cells and goal-directed behavior by cerebellar outputs.
Xiao, Le, Bornmann, Caroline, Hatstatt-Burklé, Laetitia, & Nature Communications, 9(1), 3133. https://doi.org/10.1038/s41467-018-05565-y
. (2018). Regulation of striatal cells and goal-directed behavior by cerebellar outputs.
Xiao, Le, & Current Opinion in Neurobiology, 48, 146–152. https://doi.org/10.1016/j.conb.2017.12.016
. (2018). Local and long-range circuit elements for cerebellar function.
Xiao, Le, & Current Opinion in Neurobiology, 48, 146–152. https://doi.org/10.1016/j.conb.2017.12.016
. (2018). Local and long-range circuit elements for cerebellar function.
Mauger, Oriane, & Current Opinion in Neurobiology, 45, 162–168. https://doi.org/10.1016/j.conb.2017.05.012
. (2017). Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics.
Mauger, Oriane, & Current Opinion in Neurobiology, 45, 162–168. https://doi.org/10.1016/j.conb.2017.05.012
. (2017). Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics.
Nguyen, Thi-Minh, Schreiner, Dietmar, Xiao, Le, Traunmüller, Lisa, Bornmann, Caroline, & eLife, 6, e28013. https://doi.org/10.7554/elife.28013
. (2017). Correction: An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus.
Nguyen, Thi-Minh, Schreiner, Dietmar, Xiao, Le, Traunmüller, Lisa, Bornmann, Caroline, & eLife, 6, e28013. https://doi.org/10.7554/elife.28013
. (2017). Correction: An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus.
Tora, David, Gomez, Andrea M., Michaud, Jean-Francois, Yam, Patricia T., Charron, Frédéric, & Journal of Neuroscience, 37(49), 11993–12005. https://doi.org/10.1523/jneurosci.1393-17.2017
. (2017). Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.
Tora, David, Gomez, Andrea M., Michaud, Jean-Francois, Yam, Patricia T., Charron, Frédéric, & Journal of Neuroscience, 37(49), 11993–12005. https://doi.org/10.1523/jneurosci.1393-17.2017
. (2017). Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.
Furlanis, Elisabetta, & Neuron, 90(4), 665–667. https://doi.org/10.1016/j.neuron.2016.05.007
. (2016). Synaptic Ménage à Trois.
Furlanis, Elisabetta, & Neuron, 90(4), 665–667. https://doi.org/10.1016/j.neuron.2016.05.007
. (2016). Synaptic Ménage à Trois.
Iijima, Yoko, Behr, Katharina, Iijima, Takatoshi, Biemans, Barbara, Bischofberger, Josef, & Scientific Reports, 6, 27400. https://doi.org/10.1038/srep27400
. (2016). Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure.
Iijima, Yoko, Behr, Katharina, Iijima, Takatoshi, Biemans, Barbara, Bischofberger, Josef, & Scientific Reports, 6, 27400. https://doi.org/10.1038/srep27400
. (2016). Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure.
Mauger, Oriane, Lemoine, Frédéric, & Neuron, 92(6), 1266–1278. https://doi.org/10.1016/j.neuron.2016.11.032
. (2016). Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity.
Mauger, Oriane, Lemoine, Frédéric, & Neuron, 92(6), 1266–1278. https://doi.org/10.1016/j.neuron.2016.11.032
. (2016). Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity.
Nguyen, Thi-Minh, Schreiner, Dietmar, Xiao, Le, Traunmüller, Lisa, Bornmann, Caroline, & eLife, 5, e22757. https://doi.org/10.7554/elife.22757
. (2016). An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus.
Nguyen, Thi-Minh, Schreiner, Dietmar, Xiao, Le, Traunmüller, Lisa, Bornmann, Caroline, & eLife, 5, e22757. https://doi.org/10.7554/elife.22757
. (2016). An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus.
Singh, Sandeep K, Stogsdill, Jeff A, Pulimood, Nisha S, Dingsdale, Hayley, Kim, Yong Ho, Pilaz, Louis-Jan, Kim, Il Hwan, Manhaes, Alex C, Rodrigues, Wandilson S, Pamukcu, Arin, Enustun, Eray, Ertuz, Zeynep, Cell, 164(1-2), 183–196. https://doi.org/10.1016/j.cell.2015.11.034
, Soderling, Scott H, Silver, Debra L, Ji, Ru-Rong, Medina, Alexandre E, & Eroglu, Cagla. (2016). Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin.
Singh, Sandeep K, Stogsdill, Jeff A, Pulimood, Nisha S, Dingsdale, Hayley, Kim, Yong Ho, Pilaz, Louis-Jan, Kim, Il Hwan, Manhaes, Alex C, Rodrigues, Wandilson S, Pamukcu, Arin, Enustun, Eray, Ertuz, Zeynep, Cell, 164(1-2), 183–196. https://doi.org/10.1016/j.cell.2015.11.034
, Soderling, Scott H, Silver, Debra L, Ji, Ru-Rong, Medina, Alexandre E, & Eroglu, Cagla. (2016). Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin.
Traunmüller, Lisa, Gomez, Andrea M, Nguyen, Thi-Minh, & Science, 352(6288), 982–986. https://doi.org/10.1126/science.aaf2397
. (2016). Control of neuronal synapse specification by a highly dedicated alternative splicing program.
Traunmüller, Lisa, Gomez, Andrea M, Nguyen, Thi-Minh, & Science, 352(6288), 982–986. https://doi.org/10.1126/science.aaf2397
. (2016). Control of neuronal synapse specification by a highly dedicated alternative splicing program.
de la Mata, Manuel, Gaidatzis, Dimos, Vitanescu, Mirela, Stadler, Michael B, Wentzel, Corinna, EMBO Reports, 16(4), 500–511. https://doi.org/10.15252/embr.201540078
, Filipowicz, Witold, & Großhans, Helge. (2015). Potent degradation of neuronal miRNAs induced by highly complementary targets.
de la Mata, Manuel, Gaidatzis, Dimos, Vitanescu, Mirela, Stadler, Michael B, Wentzel, Corinna, EMBO Reports, 16(4), 500–511. https://doi.org/10.15252/embr.201540078
, Filipowicz, Witold, & Großhans, Helge. (2015). Potent degradation of neuronal miRNAs induced by highly complementary targets.
Muhammad, Karzan, Reddy-Alla, Suneel, Driller, Jan H, Schreiner, Dietmar, Rey, Ulises, Böhme, Mathias A, Hollmann, Christina, Ramesh, Niraja, Depner, Harald, Lützkendorf, Janine, Matkovic, Tanja, Götz, Torsten, Bergeron, Dominique D, Schmoranzer, Jan, Goettfert, Fabian, Holt, Mathew, Wahl, Markus C, Hell, Stefan W, Nature communications, 6, 8362. https://doi.org/10.1038/ncomms9362
, et al. (2015). Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function.
Muhammad, Karzan, Reddy-Alla, Suneel, Driller, Jan H, Schreiner, Dietmar, Rey, Ulises, Böhme, Mathias A, Hollmann, Christina, Ramesh, Niraja, Depner, Harald, Lützkendorf, Janine, Matkovic, Tanja, Götz, Torsten, Bergeron, Dominique D, Schmoranzer, Jan, Goettfert, Fabian, Holt, Mathew, Wahl, Markus C, Hell, Stefan W, Nature communications, 6, 8362. https://doi.org/10.1038/ncomms9362
, et al. (2015). Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function.
Schreiner, Dietmar, Simicevic, Jovan, Ahrné, Erik, Schmidt, Alexander, & eLife, 4, e07794. https://doi.org/10.7554/elife.07794
. (2015). Quantitative isoform-profiling of highly diversified recognition molecules.
Schreiner, Dietmar, Simicevic, Jovan, Ahrné, Erik, Schmidt, Alexander, & eLife, 4, e07794. https://doi.org/10.7554/elife.07794
. (2015). Quantitative isoform-profiling of highly diversified recognition molecules.
Iijima, Takatoshi, Iijima, Yoko, Witte, Harald, & Journal of cell biology, 204(3), 331–342. https://doi.org/10.1083/jcb.201310136
. (2014). Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1.
Iijima, Takatoshi, Iijima, Yoko, Witte, Harald, & Journal of cell biology, 204(3), 331–342. https://doi.org/10.1083/jcb.201310136
. (2014). Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1.
Kleijer, Kristel T E, Schmeisser, Michael J, Krueger, Dilja D, Boeckers, Tobias M, Psychopharmacology, 231(6), 1037–1062. https://doi.org/10.1007/s00213-013-3403-3
, Bourgeron, Thomas, Brose, Nils, & Burbach, J Peter H. (2014). Neurobiology of autism gene products : towards pathogenesis and drug targets.
Kleijer, Kristel T E, Schmeisser, Michael J, Krueger, Dilja D, Boeckers, Tobias M, Psychopharmacology, 231(6), 1037–1062. https://doi.org/10.1007/s00213-013-3403-3
, Bourgeron, Thomas, Brose, Nils, & Burbach, J Peter H. (2014). Neurobiology of autism gene products : towards pathogenesis and drug targets.
Schreiner, Dietmar, Nguyen, Thi-Minh, Russo, Giancarlo, Heber, Steffen, Patrignani, Andrea, Ahrné, Erik, & Neuron, 84(2), 386–398. https://doi.org/10.1016/j.neuron.2014.09.011
. (2014). Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins.
Schreiner, Dietmar, Nguyen, Thi-Minh, Russo, Giancarlo, Heber, Steffen, Patrignani, Andrea, Ahrné, Erik, & Neuron, 84(2), 386–398. https://doi.org/10.1016/j.neuron.2014.09.011
. (2014). Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins.
Schreiner, Dietmar, Nguyen, Thi-Minh, & Current Opinion in Neurobiology, 27, 25–30. https://doi.org/10.1016/j.conb.2014.02.009
. (2014). Polymorphic receptors: neuronal functions and molecular mechanisms of diversification.
Schreiner, Dietmar, Nguyen, Thi-Minh, & Current Opinion in Neurobiology, 27, 25–30. https://doi.org/10.1016/j.conb.2014.02.009
. (2014). Polymorphic receptors: neuronal functions and molecular mechanisms of diversification.
Traunmüller, L., Bornmann, C., & Journal of Neuroscience, 34(50), 16755–16761. https://doi.org/10.1523/jneurosci.3395-14.2014
(2014). Alternative Splicing Coupled Nonsense-Mediated Decay Generates Neuronal Cell Type-Specific Expression of SLM Proteins.
Traunmüller, L., Bornmann, C., & Journal of Neuroscience, 34(50), 16755–16761. https://doi.org/10.1523/jneurosci.3395-14.2014
(2014). Alternative Splicing Coupled Nonsense-Mediated Decay Generates Neuronal Cell Type-Specific Expression of SLM Proteins.
Schreiner, D., & Neuroligins and Neurexins (pp. 671–686). Elsevier Inc. https://doi.org/10.1016/b978-0-12-397266-8.00206-4
(2013).
Schreiner, D., & Neuroligins and Neurexins (pp. 671–686). Elsevier Inc. https://doi.org/10.1016/b978-0-12-397266-8.00206-4
(2013).
Budreck, Elaine C, Kwon, Oh-Bin, Jung, Jung Hoon, Baudouin, Stephane, Thommen, Albert, Kim, Hye-Sun, Fukazawa, Yugo, Harada, Harumi, Tabuchi, Katsuhiko, Shigemoto, Ryuichi, Proceedings of the National Academy of Sciences of the United States of America, 110(2), 725–730. https://doi.org/10.1073/pnas.1214718110
, & Kim, Joung-Hun. (2013). Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling.
Budreck, Elaine C, Kwon, Oh-Bin, Jung, Jung Hoon, Baudouin, Stephane, Thommen, Albert, Kim, Hye-Sun, Fukazawa, Yugo, Harada, Harumi, Tabuchi, Katsuhiko, Shigemoto, Ryuichi, Proceedings of the National Academy of Sciences of the United States of America, 110(2), 725–730. https://doi.org/10.1073/pnas.1214718110
, & Kim, Joung-Hun. (2013). Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling.
Burch, Patrick, Binaghi, Massimo, Scherer, Manuel, Wentzel, Corinna, Bossert, David, Eberhardt, Luc, Neuburger, Markus, Chemistry - A European Journal, 19(8), 2589–2591. https://doi.org/10.1002/chem.201203746
, & Gademann, Karl. (2013). Total Synthesis of Gelsemiol.
Burch, Patrick, Binaghi, Massimo, Scherer, Manuel, Wentzel, Corinna, Bossert, David, Eberhardt, Luc, Neuburger, Markus, Chemistry - A European Journal, 19(8), 2589–2591. https://doi.org/10.1002/chem.201203746
, & Gademann, Karl. (2013). Total Synthesis of Gelsemiol.
Kiebler, Michael A, Frontiers in Neuroscience, 7, 192. https://doi.org/10.3389/fnins.2013.00192
, & Ule, Jernej. (2013). What, where, and when: the importance of post-transcriptional regulation in the brain.
Kiebler, Michael A, Frontiers in Neuroscience, 7, 192. https://doi.org/10.3389/fnins.2013.00192
, & Ule, Jernej. (2013). What, where, and when: the importance of post-transcriptional regulation in the brain.
Neuron, 78(5), 751–752. https://doi.org/10.1016/j.neuron.2013.05.031
. (2013). Preparing for your future as you grow.
Neuron, 78(5), 751–752. https://doi.org/10.1016/j.neuron.2013.05.031
. (2013). Preparing for your future as you grow.
Sylwestrak, Emily, & Nature, 503(7474), 42–43. https://doi.org/10.1038/503042a
. (2013). Neuroscience: Sculpting neuronal connectivity.
Sylwestrak, Emily, & Nature, 503(7474), 42–43. https://doi.org/10.1038/503042a
. (2013). Neuroscience: Sculpting neuronal connectivity.
Wentzel, Corinna, Sommer, Julia E, Nair, Ramya, Stiefvater, Adeline, Sibarita, Jean-Baptiste, & Neuron, 78(6), 1012–1023. https://doi.org/10.1016/j.neuron.2013.05.010
. (2013). mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking.
Wentzel, Corinna, Sommer, Julia E, Nair, Ramya, Stiefvater, Adeline, Sibarita, Jean-Baptiste, & Neuron, 78(6), 1012–1023. https://doi.org/10.1016/j.neuron.2013.05.010
. (2013). mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking.
Baudouin, Stéphane J, Gaudias, Julien, Gerharz, Stefan, Hatstatt, Laetitia, Zhou, Kuikui, Punnakkal, Pradeep, Tanaka, Kenji F, Spooren, Will, Hen, Rene, De Zeeuw, Chris I, Vogt, Kaspar, & Science, 338(6103), 128–132. https://doi.org/10.1126/science.1224159
. (2012). Shared synaptic pathophysiology in syndromic and non-syndromic rodent models of autism.
Baudouin, Stéphane J, Gaudias, Julien, Gerharz, Stefan, Hatstatt, Laetitia, Zhou, Kuikui, Punnakkal, Pradeep, Tanaka, Kenji F, Spooren, Will, Hen, Rene, De Zeeuw, Chris I, Vogt, Kaspar, & Science, 338(6103), 128–132. https://doi.org/10.1126/science.1224159
. (2012). Shared synaptic pathophysiology in syndromic and non-syndromic rodent models of autism.
Feltrin, Daniel, Fusco, Ludovico, Witte, Harald, Moretti, Francesca, Martin, Katrin, Letzelter, Michel, Fluri, Erika, PLoS Biology, 10(12), e1001439. https://doi.org/10.1371/journal.pbio.1001439
, Pertz, Olivier, & Pertz, Olivier. (2012). Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation.
Feltrin, Daniel, Fusco, Ludovico, Witte, Harald, Moretti, Francesca, Martin, Katrin, Letzelter, Michel, Fluri, Erika, PLoS Biology, 10(12), e1001439. https://doi.org/10.1371/journal.pbio.1001439
, Pertz, Olivier, & Pertz, Olivier. (2012). Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation.
Developmental Cell, 23(5), 923–924. https://doi.org/10.1016/j.devcel.2012.10.020
, & Iijima, Takatoshi. (2012). Choreographing the axo-dendritic dance.
Developmental Cell, 23(5), 923–924. https://doi.org/10.1016/j.devcel.2012.10.020
, & Iijima, Takatoshi. (2012). Choreographing the axo-dendritic dance.
Iijima, Takatoshi, Wu, Karen, Witte, Harald, Hanno-Iijima, Yoko, Glatter, Timo, Richard, Stéphane, & Cell, 147(7), 1601–1614. https://doi.org/10.1016/j.cell.2011.11.028
. (2011). SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1.
Iijima, Takatoshi, Wu, Karen, Witte, Harald, Hanno-Iijima, Yoko, Glatter, Timo, Richard, Stéphane, & Cell, 147(7), 1601–1614. https://doi.org/10.1016/j.cell.2011.11.028
. (2011). SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1.
Kalinovsky, Anna, Boukhtouche, Fatiha, Blazeski, Richard, Bornmann, Caroline, Suzuki, Noboru, Mason, Carol A, & PLoS Biology, 9(2), e1001013. https://doi.org/10.1371/journal.pbio.1001013
. (2011). Development of axon-target specificity of ponto-cerebellar afferents.
Kalinovsky, Anna, Boukhtouche, Fatiha, Blazeski, Richard, Bornmann, Caroline, Suzuki, Noboru, Mason, Carol A, & PLoS Biology, 9(2), e1001013. https://doi.org/10.1371/journal.pbio.1001013
. (2011). Development of axon-target specificity of ponto-cerebellar afferents.
Panzanelli, Patrizia, Gunn, Benjamin G, Schlatter, Monika C, Benke, Dietmar, Tyagarajan, Shiva K, The Journal of Physiology, 589(Pt 20), 4959–4980. https://doi.org/10.1113/jphysiol.2011.216028
, Belelli, Delia, Lambert, Jeremy J, Rudolph, Uwe, & Fritschy, Jean-Marc. (2011). Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells.
Panzanelli, Patrizia, Gunn, Benjamin G, Schlatter, Monika C, Benke, Dietmar, Tyagarajan, Shiva K, The Journal of Physiology, 589(Pt 20), 4959–4980. https://doi.org/10.1113/jphysiol.2011.216028
, Belelli, Delia, Lambert, Jeremy J, Rudolph, Uwe, & Fritschy, Jean-Marc. (2011). Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells.
Asante, Curtis Oware, Chu, Amy, Fisher, Mark, Benson, Leora, Beg, Asim, Journal of Neurophysiology, 104(6), 3189–3202. https://doi.org/10.1152/jn.00671.2010
, & Martin, John. (2010). Cortical control of adaptive locomotion in wild type mice and mutant mice lacking the Ephrin-Eph effector protein alpha2-Chimaerin.
Asante, Curtis Oware, Chu, Amy, Fisher, Mark, Benson, Leora, Beg, Asim, Journal of Neurophysiology, 104(6), 3189–3202. https://doi.org/10.1152/jn.00671.2010
, & Martin, John. (2010). Cortical control of adaptive locomotion in wild type mice and mutant mice lacking the Ephrin-Eph effector protein alpha2-Chimaerin.
Baudouin, Stephane, & Cell, 141(5), 908–U187. https://doi.org/10.1016/j.cell.2010.05.024
. (2010). SnapShot: Neuroligin-neurexin complexes.
Baudouin, Stephane, & Cell, 141(5), 908–U187. https://doi.org/10.1016/j.cell.2010.05.024
. (2010). SnapShot: Neuroligin-neurexin complexes.
Nature, 468(7326), 907–908. https://doi.org/10.1038/468907a
, & Beg, Asim A. (2010). Neuroscience : Angelman syndrome connections.
Nature, 468(7326), 907–908. https://doi.org/10.1038/468907a
, & Beg, Asim A. (2010). Neuroscience : Angelman syndrome connections.
The European Journal of Neuroscience, 32(2), 179–180. https://doi.org/10.1111/j.1460-9568.2010.07360.x
, & Yuzaki, Michizuke. (2010). Recent excitements about excitatory synapses.
The European Journal of Neuroscience, 32(2), 179–180. https://doi.org/10.1111/j.1460-9568.2010.07360.x
, & Yuzaki, Michizuke. (2010). Recent excitements about excitatory synapses.
Shen, Kang, & Annual Review of Neuroscience, 33, 473–507. https://doi.org/10.1146/annurev.neuro.051508.135302
. (2010). Genetics and cell biology of building specific synaptic connectivity.
Shen, Kang, & Annual Review of Neuroscience, 33, 473–507. https://doi.org/10.1146/annurev.neuro.051508.135302
. (2010). Genetics and cell biology of building specific synaptic connectivity.
Tanaka, Kenji F, Ahmari, Susanne E, Leonardo, E David, Richardson-Jones, Jesse W, Budreck, Elaine C, Biological Psychiatry, 67(8), 770–773. https://doi.org/10.1016/j.biopsych.2009.12.020
, Sugio, Shouta, Inamura, Naoko, Ikenaka, Kazuhiro, & Hen, René. (2010). Flexible Accelerated STOP Tetracycline Operator-knockin (FAST) : a versatile and efficient new gene modulating system.
Tanaka, Kenji F, Ahmari, Susanne E, Leonardo, E David, Richardson-Jones, Jesse W, Budreck, Elaine C, Biological Psychiatry, 67(8), 770–773. https://doi.org/10.1016/j.biopsych.2009.12.020
, Sugio, Shouta, Inamura, Naoko, Ikenaka, Kazuhiro, & Hen, René. (2010). Flexible Accelerated STOP Tetracycline Operator-knockin (FAST) : a versatile and efficient new gene modulating system.
Dean, Camin, & Cold Spring Harbor Protocols, 2009(11), pdb. https://doi.org/10.1101/pdb.prot5315
. (2009). Imaging synaptogenesis by measuring accumulation of synaptic proteins.
Dean, Camin, & Cold Spring Harbor Protocols, 2009(11), pdb. https://doi.org/10.1101/pdb.prot5315
. (2009). Imaging synaptogenesis by measuring accumulation of synaptic proteins.
Caroni, P., & Scheiffele, P. (2008). Editorial overview. Current Opinion in Neurobiology, 18(5), 469–471. https://doi.org/10.1016/j.conb.2008.10.004
Caroni, P., & Scheiffele, P. (2008). Editorial overview. Current Opinion in Neurobiology, 18(5), 469–471. https://doi.org/10.1016/j.conb.2008.10.004
Futai, K., Jong Kim, M., Hashikawa, T., Scheiffele, P., Sheng, M., & Hayashi, Y. (2008). Corrigendum: Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin (Nature Neuroscience (2007) 10 (186-195)). Nature Neuroscience, 11(2). https://doi.org/10.1038/nn0208-238b
Futai, K., Jong Kim, M., Hashikawa, T., Scheiffele, P., Sheng, M., & Hayashi, Y. (2008). Corrigendum: Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin (Nature Neuroscience (2007) 10 (186-195)). Nature Neuroscience, 11(2). https://doi.org/10.1038/nn0208-238b
Caroni, Pico, & Current Opinion in Neurobiology, 18(5), 469–471. https://doi.org/10.1016/j.conb.2008.10.004
. (2008). Editorial overview.
Caroni, Pico, & Current Opinion in Neurobiology, 18(5), 469–471. https://doi.org/10.1016/j.conb.2008.10.004
. (2008). Editorial overview.
Gascón, Sergio, Paez-Gomez, Juan A, Díaz-Guerra, Margarita, Journal of Neuroscience Methods, 168(1), 104–112. https://doi.org/10.1016/j.jneumeth.2007.09.023
, & Scholl, Francisco G. (2008). Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons.
Gascón, Sergio, Paez-Gomez, Juan A, Díaz-Guerra, Margarita, Journal of Neuroscience Methods, 168(1), 104–112. https://doi.org/10.1016/j.jneumeth.2007.09.023
, & Scholl, Francisco G. (2008). Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons.
Huang, Z Josh, & Current Opinion in Neurobiology, 18(1), 77–83. https://doi.org/10.1016/j.conb.2008.05.008
. (2008). GABA and neuroligin signaling : linking synaptic activity and adhesion in inhibitory synapse development.
Huang, Z Josh, & Current Opinion in Neurobiology, 18(1), 77–83. https://doi.org/10.1016/j.conb.2008.05.008
. (2008). GABA and neuroligin signaling : linking synaptic activity and adhesion in inhibitory synapse development.
Kim, Juhyun, Jung, Sang-Yong, Lee, Yeon Kyung, Park, Sangki, Choi, June-Seek, Lee, C Justin, Kim, Hye-Sun, Choi, Yun-Beom, Proceedings of the National Academy of Sciences of the United States of America, 105(26), 9087–9092. https://doi.org/10.1073/pnas.0803448105
, Bailey, Craig H, Kandel, Eric R, & Kim, Joung-Hun. (2008). Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals.
Kim, Juhyun, Jung, Sang-Yong, Lee, Yeon Kyung, Park, Sangki, Choi, June-Seek, Lee, C Justin, Kim, Hye-Sun, Choi, Yun-Beom, Proceedings of the National Academy of Sciences of the United States of America, 105(26), 9087–9092. https://doi.org/10.1073/pnas.0803448105
, Bailey, Craig H, Kandel, Eric R, & Kim, Joung-Hun. (2008). Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals.
Koehnke, Jesko, Jin, Xiangshu, Budreck, Elaine C, Posy, Shoshana, Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1873–1878. https://doi.org/10.1073/pnas.0711701105
, Honig, Barry, & Shapiro, Lawrence. (2008). Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2.
Koehnke, Jesko, Jin, Xiangshu, Budreck, Elaine C, Posy, Shoshana, Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1873–1878. https://doi.org/10.1073/pnas.0711701105
, Honig, Barry, & Shapiro, Lawrence. (2008). Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2.
Koehnke, Jesko, Jin, Xiangshu, Trbovic, Nikola, Katsamba, Phinikoula S, Brasch, Julia, Ahlsen, Goran, Structure: With Folding and Design, 16(3), 410–421. https://doi.org/10.1016/j.str.2007.12.024
, Honig, Barry, Palmer, Arthur G, & Shapiro, Lawrence. (2008). Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4.
Koehnke, Jesko, Jin, Xiangshu, Trbovic, Nikola, Katsamba, Phinikoula S, Brasch, Julia, Ahlsen, Goran, Structure: With Folding and Design, 16(3), 410–421. https://doi.org/10.1016/j.str.2007.12.024
, Honig, Barry, Palmer, Arthur G, & Shapiro, Lawrence. (2008). Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4.
Robakis, Thalia, Bak, Beata, Lin, Shu-huei, Bernard, Daniel J, & Journal of Biological Chemistry, 283(52), 36369–36376. https://doi.org/10.1074/jbc.m807527200
. (2008). An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin-domain protein.
Robakis, Thalia, Bak, Beata, Lin, Shu-huei, Bernard, Daniel J, & Journal of Biological Chemistry, 283(52), 36369–36376. https://doi.org/10.1074/jbc.m807527200
. (2008). An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin-domain protein.
Gollan, L., & Scheiffele, P. (2007). Assembly of Synapses in the Vertebrate Central Nervous System (pp. 63–74). Elsevier Inc. https://doi.org/10.1016/b978-012369437-9/50007-4
Gollan, L., & Scheiffele, P. (2007). Assembly of Synapses in the Vertebrate Central Nervous System (pp. 63–74). Elsevier Inc. https://doi.org/10.1016/b978-012369437-9/50007-4
Beg, Asim A, Sommer, Julia E, Martin, John H, & Neuron, 55(5), 768–778. https://doi.org/10.1016/j.neuron.2007.07.036
. (2007). alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits.
Beg, Asim A, Sommer, Julia E, Martin, John H, & Neuron, 55(5), 768–778. https://doi.org/10.1016/j.neuron.2007.07.036
. (2007). alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits.
Biederer, Thomas, & Nature Protocols, 2(3), 670–676. https://doi.org/10.1038/nprot.2007.92
. (2007). Mixed-culture assays for analyzing neuronal synapse formation.
Biederer, Thomas, & Nature Protocols, 2(3), 670–676. https://doi.org/10.1038/nprot.2007.92
. (2007). Mixed-culture assays for analyzing neuronal synapse formation.
Budreck, Elaine C, & The European Journal of Neuroscience, 26(7), 1738–1748. https://doi.org/10.1111/j.1460-9568.2007.05842.x
. (2007). Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses.
Budreck, Elaine C, & The European Journal of Neuroscience, 26(7), 1738–1748. https://doi.org/10.1111/j.1460-9568.2007.05842.x
. (2007). Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses.
Futai, Kensuke, Kim, Myung Jong, Hashikawa, Tsutomu, Nature Neuroscience, 10(2), 186–195. https://doi.org/10.1038/nn1837
, Sheng, Morgan, & Hayashi, Yasunori. (2007). Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin.
Futai, Kensuke, Kim, Myung Jong, Hashikawa, Tsutomu, Nature Neuroscience, 10(2), 186–195. https://doi.org/10.1038/nn1837
, Sheng, Morgan, & Hayashi, Yasunori. (2007). Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin.
Taniguchi, H., Gollan, L., Scholl, F. G., Mahadomrongkul, V., Dobler, E., Limthong, N., Peck, M., Aoki, C., & Journal of Neuroscience, 27(11), 2815–2824. https://doi.org/10.1523/jneurosci.0032-07.2007
(2007). Silencing of neuroligin function by postsynaptic neurexins.
Taniguchi, H., Gollan, L., Scholl, F. G., Mahadomrongkul, V., Dobler, E., Limthong, N., Peck, M., Aoki, C., & Journal of Neuroscience, 27(11), 2815–2824. https://doi.org/10.1523/jneurosci.0032-07.2007
(2007). Silencing of neuroligin function by postsynaptic neurexins.
Beg, Asim A, & Science, 311(5763), 962–963. https://doi.org/10.1126/science.1124541
. (2006). SUMO wrestles the synapse.
Beg, Asim A, & Science, 311(5763), 962–963. https://doi.org/10.1126/science.1124541
. (2006). SUMO wrestles the synapse.
Buttery, Philip, Beg, Asim A, Chih, Ben, Broder, Arkady, Mason, Carol A, & Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1924–1929. https://doi.org/10.1073/pnas.0510655103
. (2006). The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphology.
Buttery, Philip, Beg, Asim A, Chih, Ben, Broder, Arkady, Mason, Carol A, & Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1924–1929. https://doi.org/10.1073/pnas.0510655103
. (2006). The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphology.
Chih, Ben, Gollan, Leora, & Neuron, 51(2), 171–178. https://doi.org/10.1016/j.neuron.2006.06.005
. (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex.
Chih, Ben, Gollan, Leora, & Neuron, 51(2), 171–178. https://doi.org/10.1016/j.neuron.2006.06.005
. (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex.
Chih, Ben, Engelman, Holly, & Science, 307(5713), 1324–1328. https://doi.org/10.1126/science.1107470
. (2005). Control of excitatory and inhibitory synapse formation by neuroligins.
Chih, Ben, Engelman, Holly, & Science, 307(5713), 1324–1328. https://doi.org/10.1126/science.1107470
. (2005). Control of excitatory and inhibitory synapse formation by neuroligins.
Rosales, Carlos R, Osborne, Kyle D, Zuccarino, Griselda V, The European Journal of Neuroscience, 22(9), 2381–2386. https://doi.org/10.1111/j.1460-9568.2005.04400.x
, & Silverman, Michael A. (2005). A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons.
Rosales, Carlos R, Osborne, Kyle D, Zuccarino, Griselda V, The European Journal of Neuroscience, 22(9), 2381–2386. https://doi.org/10.1111/j.1460-9568.2005.04400.x
, & Silverman, Michael A. (2005). A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons.
Chih, Ben, Afridi, Shehla Khan, Clark, Lorraine, & Human Molecular Genetics, 13(14), 1471–1477. https://doi.org/10.1093/hmg/ddh158
. (2004). Disorder-associated mutations lead to functional inactivation of neuroligins.
Chih, Ben, Afridi, Shehla Khan, Clark, Lorraine, & Human Molecular Genetics, 13(14), 1471–1477. https://doi.org/10.1093/hmg/ddh158
. (2004). Disorder-associated mutations lead to functional inactivation of neuroligins.
Kalinovsky, A., & Current Opinion in Neurobiology, 14(3), 272–279. https://doi.org/10.1016/j.conb.2004.05.011
(2004). Transcriptional control of synaptic differentiation by retrograde signals.
Kalinovsky, A., & Current Opinion in Neurobiology, 14(3), 272–279. https://doi.org/10.1016/j.conb.2004.05.011
(2004). Transcriptional control of synaptic differentiation by retrograde signals.
Washbourne, Philip, Dityatev, Alexander, Journal of Neuroscience, 24(42), 9244–9249. https://doi.org/10.1523/jneurosci.3339-04.2004
, Biederer, Thomas, Weiner, Joshua A, Christopherson, Karen S, & El-Husseini, Alaa. (2004). Cell adhesion molecules in synapse formation.
Washbourne, Philip, Dityatev, Alexander, Journal of Neuroscience, 24(42), 9244–9249. https://doi.org/10.1523/jneurosci.3339-04.2004
, Biederer, Thomas, Weiner, Joshua A, Christopherson, Karen S, & El-Husseini, Alaa. (2004). Cell adhesion molecules in synapse formation.
Chih, Ben, & Science’s STKE, 2003(205), pe45. https://doi.org/10.1126/stke.2003.205.pe45
. (2003). Is reelin the answer to synapse elimination at the neuromuscular junction?
Chih, Ben, & Science’s STKE, 2003(205), pe45. https://doi.org/10.1126/stke.2003.205.pe45
. (2003). Is reelin the answer to synapse elimination at the neuromuscular junction?
Dean, Camin, Scholl, Francisco G., Choih, Jenny, DeMaria, Shannon, Berger, James, Isacoff, Ehud, & Nature Neuroscience, 6(7), 708–716. https://doi.org/10.1038/nn1074
. (2003). Neurexin mediates the assembly of presynaptic terminals.
Dean, Camin, Scholl, Francisco G., Choih, Jenny, DeMaria, Shannon, Berger, James, Isacoff, Ehud, & Nature Neuroscience, 6(7), 708–716. https://doi.org/10.1038/nn1074
. (2003). Neurexin mediates the assembly of presynaptic terminals.
Annual Review of Neuroscience, 26, 485–508. https://doi.org/10.1146/annurev.neuro.26.043002.094940
. (2003). Cell-cell signaling during synapse formation in the CNS.
Annual Review of Neuroscience, 26, 485–508. https://doi.org/10.1146/annurev.neuro.26.043002.094940
. (2003). Cell-cell signaling during synapse formation in the CNS.
Scholl, Francisco G, & Trends in Neurosciences, 26(11), 618–624. https://doi.org/10.1016/j.tins.2003.09.004
. (2003). Making connections : cholinesterase-domain proteins in the CNS.
Scholl, Francisco G, & Trends in Neurosciences, 26(11), 618–624. https://doi.org/10.1016/j.tins.2003.09.004
. (2003). Making connections : cholinesterase-domain proteins in the CNS.
Breuza, Lionel, Corby, Séverine, Arsanto, Jean-Pierre, Delgrossi, Marie-Hélène, Journal of Cell Science, 115(Pt 23), 4457–4467. https://doi.org/10.1242/jcs.00130
, & Le Bivic, André. (2002). The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells.
Breuza, Lionel, Corby, Séverine, Arsanto, Jean-Pierre, Delgrossi, Marie-Hélène, Journal of Cell Science, 115(Pt 23), 4457–4467. https://doi.org/10.1242/jcs.00130
, & Le Bivic, André. (2002). The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells.
Diaz, E., Ge, Y., Yang, Y. H., Loh, K. C., Serafini, T. A., Okazaki, Y., Hayashizaki, Y., Speed, T. P., Ngai, J., & Neuron, 36(3), 417–434. https://doi.org/10.1016/s0896-6273(02)01016-4
(2002). Molecular analysis of gene expression in the developing pontocerebellar projection system.
Diaz, E., Ge, Y., Yang, Y. H., Loh, K. C., Serafini, T. A., Okazaki, Y., Hayashizaki, Y., Speed, T. P., Ngai, J., & Neuron, 36(3), 417–434. https://doi.org/10.1016/s0896-6273(02)01016-4
(2002). Molecular analysis of gene expression in the developing pontocerebellar projection system.
Cell, 101(6), 657–669. https://doi.org/10.1016/s0092-8674(00)80877-6
, Fan, J., Choih, J., Fetter, R., & Serafini, T. (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons.
Cell, 101(6), 657–669. https://doi.org/10.1016/s0092-8674(00)80877-6
, Fan, J., Choih, J., Fetter, R., & Serafini, T. (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons.
Essays in Biochemistry, 36, 27–35. https://doi.org/10.1042/bse0360027
, & Fullekrug, J. (2000). Glycosylation and protein transport.
Essays in Biochemistry, 36, 27–35. https://doi.org/10.1042/bse0360027
, & Fullekrug, J. (2000). Glycosylation and protein transport.
Brückner, K, Pablo Labrador, J, Neuron, 22(3), 511–524. https://doi.org/10.1016/s0896-6273(00)80706-0
, Herb, A, Seeburg, P H, & Klein, R. (1999). EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains.
Brückner, K, Pablo Labrador, J, Neuron, 22(3), 511–524. https://doi.org/10.1016/s0896-6273(00)80706-0
, Herb, A, Seeburg, P H, & Klein, R. (1999). EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains.
Fullekrug, J., Journal of Cell Science, 112 ( Pt 17)(17), 2813–2821. http://jcs.biologists.org/content/joces/112/17/2813.full.pdf
, & Simons, K. (1999). VIP36 localisation to the early secretory pathway.
Fullekrug, J., Journal of Cell Science, 112 ( Pt 17)(17), 2813–2821. http://jcs.biologists.org/content/joces/112/17/2813.full.pdf
, & Simons, K. (1999). VIP36 localisation to the early secretory pathway.
Journal of Biological Chemistry, 274(4), 2038–2044. https://doi.org/10.1074/jbc.274.4.2038
, Rietveld, A, Wilk, T, & Simons, K. (1999). Influenza viruses select ordered lipid domains during budding from the plasma membrane.
Journal of Biological Chemistry, 274(4), 2038–2044. https://doi.org/10.1074/jbc.274.4.2038
, Rietveld, A, Wilk, T, & Simons, K. (1999). Influenza viruses select ordered lipid domains during budding from the plasma membrane.
Harder, T., Journal of Cell Biology, 141(4), 929–942. https://doi.org/10.1083/jcb.141.4.929
, Verkade, P., & Simons, K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components.
Harder, T., Journal of Cell Biology, 141(4), 929–942. https://doi.org/10.1083/jcb.141.4.929
, Verkade, P., & Simons, K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components.
The Journal of Cell Biology, 140(4), 795–806. https://doi.org/10.1083/jcb.140.4.795
, Verkade, P, Fra, A M, Virta, H, Simons, K, & Ikonen, E. (1998). Caveolin-1 and -2 in the exocytic pathway of MDCK cells.
The Journal of Cell Biology, 140(4), 795–806. https://doi.org/10.1083/jcb.140.4.795
, Verkade, P, Fra, A M, Virta, H, Simons, K, & Ikonen, E. (1998). Caveolin-1 and -2 in the exocytic pathway of MDCK cells.
The EMBO Journal, 16(18), 5501–5508. https://doi.org/10.1093/emboj/16.18.5501
, Roth, M. G., & Simons, K. (1997). Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain.
The EMBO Journal, 16(18), 5501–5508. https://doi.org/10.1093/emboj/16.18.5501
, Roth, M. G., & Simons, K. (1997). Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain.
Shevchenko, A, Keller, P, Electrophoresis, 18(14), 2591–2600. https://doi.org/10.1002/elps.1150181415
, Mann, M, & Simons, K. (1997). Identification of components of trans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem mass spectrometry.
Shevchenko, A, Keller, P, Electrophoresis, 18(14), 2591–2600. https://doi.org/10.1002/elps.1150181415
, Mann, M, & Simons, K. (1997). Identification of components of trans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem mass spectrometry.