Publications
95 found
Show per page
1.Abdalla, Adam et al. Terrestrial Very-Long-Baseline Atom Interferometry: summary of the second workshop. EPJ Quantum Technology 12, (2025).
1.
Abdalla, Adam et al. Terrestrial Very-Long-Baseline Atom Interferometry: summary of the second workshop. EPJ Quantum Technology 12, (2025).
2.Schmid, Gian-Luca et al. Squeezing light with optomechanical and spin-light quantum interfaces. Comptes Rendus Physique 26, 641–657 (2025).
2.
Schmid, Gian-Luca et al. Squeezing light with optomechanical and spin-light quantum interfaces. Comptes Rendus Physique 26, 641–657 (2025).
3.Shi, Yongqi et al. Broad Instantaneous Bandwidth Microwave Spectrum Analyzer with a Microfabricated Atomic Vapor Cell. Physical Review X 14, (2024).
3.
Shi, Yongqi et al. Broad Instantaneous Bandwidth Microwave Spectrum Analyzer with a Microfabricated Atomic Vapor Cell. Physical Review X 14, (2024).
4.Fadel, Matteo, & Sinatra, Alice. Effective Faraday interaction between light and nuclear spins of helium-3 in its ground state: a semiclassical study. New Journal of Physics 26, (2024).
4.
Fadel, Matteo, & Sinatra, Alice. Effective Faraday interaction between light and nuclear spins of helium-3 in its ground state: a semiclassical study. New Journal of Physics 26, (2024).
5.Mottola, Roberto, Buser, Gianni & . Scalable optical memories in MEMS vapor cells for quantum networking. SPG Mitteilungen - Communications de la SSP 29–33 (2024) doi:10.5281/zenodo.13208931.
5.
Mottola, Roberto, Buser, Gianni & . Scalable optical memories in MEMS vapor cells for quantum networking. SPG Mitteilungen - Communications de la SSP 29–33 (2024) doi:10.5281/zenodo.13208931.
6.Abend, S. et al. Terrestrial very-long-baseline atom interferometry: Workshop summary. AVS Quantum Science 6, (2024).
6.
Abend, S. et al. Terrestrial very-long-baseline atom interferometry: Workshop summary. AVS Quantum Science 6, (2024).
7.Mottola, R., Buser, G. & Treutlein, P. Optical Memory in a Microfabricated Rubidium Vapor Cell. Physical Review Letters 131, (2023).
7.
Mottola, R., Buser, G. & Treutlein, P. Optical Memory in a Microfabricated Rubidium Vapor Cell. Physical Review Letters 131, (2023).
8.Mottola, R., Buser, G. & Treutlein, P. Electromagnetically induced transparency and optical pumping in the hyperfine Paschen-Back regime. Physical Review A 108, (2023).
8.
Mottola, R., Buser, G. & Treutlein, P. Electromagnetically induced transparency and optical pumping in the hyperfine Paschen-Back regime. Physical Review A 108, (2023).
9.Colciaghi, P., Li, Y., Treutlein, P. & Zibold, T. Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates. Physical Review X 13, (2023).
9.
Colciaghi, P., Li, Y., Treutlein, P. & Zibold, T. Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates. Physical Review X 13, (2023).
10.Ernzer, Maryse et al. Optical Coherent Feedback Control of a Mechanical Oscillator. Physical Review X 13, 021023 (2023).
10.
Ernzer, Maryse et al. Optical Coherent Feedback Control of a Mechanical Oscillator. Physical Review X 13, 021023 (2023).
11.Alonso, Ivan et al. Cold atoms in space: community workshop summary and proposed road-map. EPJ Quantum Technology 9, 30 (2022).
11.
Alonso, Ivan et al. Cold atoms in space: community workshop summary and proposed road-map. EPJ Quantum Technology 9, 30 (2022).
12.Buser, Gianni, Mottola, Roberto, Cotting, Björn, Wolters, Janik & . Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory. PRX Quantum 3, 020349 (2022).
12.
Buser, Gianni, Mottola, Roberto, Cotting, Björn, Wolters, Janik & . Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory. PRX Quantum 3, 020349 (2022).
13.Schmid, Gian-Luca et al. Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins. Physical Review X 12, 011020 (2022).
13.
Schmid, Gian-Luca et al. Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins. Physical Review X 12, 011020 (2022).
14.Serafin, Alan, Castin, Yvan, Fadel, Matteo, & Sinatra, Alice. Nuclear spin squeezing by continuous quantum non-demolition measurement : a theoretical study. Comptes rendus physique 22, 1–35 (2021).
14.
Serafin, Alan, Castin, Yvan, Fadel, Matteo, & Sinatra, Alice. Nuclear spin squeezing by continuous quantum non-demolition measurement : a theoretical study. Comptes rendus physique 22, 1–35 (2021).
15.Serafin, Alan, Fadel, Matteo, & Sinatra, Alice. Nuclear Spin Squeezing in Helium-3 by Continuous Quantum Nondemolition Measurement. Physical Review Letters 127, 013601 (2021).
15.
Serafin, Alan, Fadel, Matteo, & Sinatra, Alice. Nuclear Spin Squeezing in Helium-3 by Continuous Quantum Nondemolition Measurement. Physical Review Letters 127, 013601 (2021).
16.. Atom Optomechanics Optomechanics. in Quantum Optomechanics and Nanomechanics (ed. Cohadon, Pierre-François; Harris, Jack; Marquardt, Florian; Cugliandolo, Letizia) 329–368 (Oxford University Press, Oxford, United Kingdom, 2020). doi:10.1093/oso/9780198828143.003.0009.
16.
. Atom Optomechanics Optomechanics. in Quantum Optomechanics and Nanomechanics (ed. Cohadon, Pierre-François; Harris, Jack; Marquardt, Florian; Cugliandolo, Letizia) 329–368 (Oxford University Press, Oxford, United Kingdom, 2020). doi:10.1093/oso/9780198828143.003.0009.
17.Karg, Thomas M. et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 369, 174–179 (2020).
17.
Karg, Thomas M. et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 369, 174–179 (2020).
18.Li, Yifan et al. Fundamental Limit of Phase Coherence in Two-Component Bose-Einstein Condensates. Physical Review Letters 125, 123402 (2020).
18.
Li, Yifan et al. Fundamental Limit of Phase Coherence in Two-Component Bose-Einstein Condensates. Physical Review Letters 125, 123402 (2020).
19.Morris, Benjamin et al. Entanglement between Identical Particles Is a Useful and Consistent Resource. Physical Review X 10, 041012 (2020).
19.
Morris, Benjamin et al. Entanglement between Identical Particles Is a Useful and Consistent Resource. Physical Review X 10, 041012 (2020).
20.Mottola, Roberto et al. An efficient, tunable, and robust source of narrow-band photon pairs at the 87 Rb D1 line. Optics express 28, 3159 (2020).
20.
Mottola, Roberto et al. An efficient, tunable, and robust source of narrow-band photon pairs at the 87 Rb D1 line. Optics express 28, 3159 (2020).
21.Zhai, Liang et al. Large-range frequency tuning of a narrow-linewidth quantum emitter. Applied Physics Letters 117, 083106 (2020).
21.
Zhai, Liang et al. Large-range frequency tuning of a narrow-linewidth quantum emitter. Applied Physics Letters 117, 083106 (2020).
22.Wolters, Janik et al. Rb vapor cell quantum memory for single photons. in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 (Institute of Electrical and Electronics Engineers Inc., Munich, Germany, 2019). doi:10.1109/cleoe-eqec.2019.8872182.
22.
Wolters, Janik et al. Rb vapor cell quantum memory for single photons. in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 (Institute of Electrical and Electronics Engineers Inc., Munich, Germany, 2019). doi:10.1109/cleoe-eqec.2019.8872182.
23.Froewis, Florian, Fadel, Matteo, , Gisin, Nicolas & Brunner, Nicolas. Does large quantum Fisher information imply Bell correlations? Physical Review A 99, 040101 (2019).
23.
Froewis, Florian, Fadel, Matteo, , Gisin, Nicolas & Brunner, Nicolas. Does large quantum Fisher information imply Bell correlations? Physical Review A 99, 040101 (2019).
24.Karg, Thomas M., Gouraud, Baptiste, & Hammerer, Klemens. Remote Hamiltonian interactions mediated by light. Physical Review A 99, 063829 (2019).
24.
Karg, Thomas M., Gouraud, Baptiste, & Hammerer, Klemens. Remote Hamiltonian interactions mediated by light. Physical Review A 99, 063829 (2019).
25.Zibold, T., Fadel, M., Décamps, B. & Treutlein, P. Spatial entanglement and Einstein-podolsky-rosen steering in a bose-Einstein condensate. in Optics InfoBase Conference Papers vol. Part F165-QIM 2019 (Optica Publishing Group (formerly OSA), 2019).
25.
Zibold, T., Fadel, M., Décamps, B. & Treutlein, P. Spatial entanglement and Einstein-podolsky-rosen steering in a bose-Einstein condensate. in Optics InfoBase Conference Papers vol. Part F165-QIM 2019 (Optica Publishing Group (formerly OSA), 2019).
26.Béguin, Lucas et al. On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets. Physical Review B 97, 205304 (2018).
26.
Béguin, Lucas et al. On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets. Physical Review B 97, 205304 (2018).
27.Fadel, Matteo, Zibold, Tilman, Décamps, Boris & . Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science 360, 409–413 (2018).
27.
Fadel, Matteo, Zibold, Tilman, Décamps, Boris & . Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science 360, 409–413 (2018).
28.Horsley, Andrew et al. Microwave Device Characterization Using a Widefield Diamond Microscope. Physical review applied 10, (2018).
28.
Horsley, Andrew et al. Microwave Device Characterization Using a Widefield Diamond Microscope. Physical review applied 10, (2018).
29.Pezze, Luca, Smerzi, Augusto, Oberthaler, Markus K., Schmied, Roman & . Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics 90, 035005 (2018).
29.
Pezze, Luca, Smerzi, Augusto, Oberthaler, Markus K., Schmied, Roman & . Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics 90, 035005 (2018).
30.Vochezer, Aline, Kampschulte, Tobias, Hammerer, Klemens & . Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane. Physical review letters 120, 073602 (2018).
30.
Vochezer, Aline, Kampschulte, Tobias, Hammerer, Klemens & . Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane. Physical review letters 120, 073602 (2018).
31.Horsley, Andrew et al. Widefield microwave imaging using NV centres. in (IEEE, IEEE, 2017). doi:10.1109/cleoe-eqec.2017.8087309.
31.
Horsley, Andrew et al. Widefield microwave imaging using NV centres. in (IEEE, IEEE, 2017). doi:10.1109/cleoe-eqec.2017.8087309.
32.Oudot, Enky, Bancal, Jean-Daniel, Schmied, Roman, & Sangouard, Nicolas. Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate. Physical Review A 95, 052347 (2017).
32.
Oudot, Enky, Bancal, Jean-Daniel, Schmied, Roman, & Sangouard, Nicolas. Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate. Physical Review A 95, 052347 (2017).
33.Pawlowski, Krzysztof, Fadel, Matteo, , Castin, Y. & Sinatra, Alice. Mesoscopic quantum superpositions in bimodal Bose-Einstein condensates: Decoherence and strategies to counteract it. Physical Review A 95, 063609 (2017).
33.
Pawlowski, Krzysztof, Fadel, Matteo, , Castin, Y. & Sinatra, Alice. Mesoscopic quantum superpositions in bimodal Bose-Einstein condensates: Decoherence and strategies to counteract it. Physical Review A 95, 063609 (2017).
34.. Hybrid atom-membrane optomechanics. in (IEEE, IEEE, 2017). doi:10.1364/cleo_at.2017.jth4g.4.
34.
. Hybrid atom-membrane optomechanics. in (IEEE, IEEE, 2017). doi:10.1364/cleo_at.2017.jth4g.4.
35.Wagner, Sebastian et al. Bell Correlations in a Many-Body System with Finite Statistics. Physical Review Letters 119, 170403 (2017).
35.
Wagner, Sebastian et al. Bell Correlations in a Many-Body System with Finite Statistics. Physical Review Letters 119, 170403 (2017).
36.Wolters, Janik et al. An atomic memory suitable for semiconductor quantum dot single photons. in (IEEE, IEEE, 2017). doi:10.1109/cleoe-eqec.2017.8087439.
36.
Wolters, Janik et al. An atomic memory suitable for semiconductor quantum dot single photons. in (IEEE, IEEE, 2017). doi:10.1109/cleoe-eqec.2017.8087439.
37.Wolters, Janik et al. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons. Physical Review Letters 119, 060502 (2017).
37.
Wolters, Janik et al. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons. Physical Review Letters 119, 060502 (2017).
38.Jahn, J.-P. et al. Erratum: An artificial Rb atom in a semiconductor with lifetime-limited linewidth (Physical Review B - Condensed Matter and Materials Physics (2015) 92 (245439)). Physical Review B 93, (2016).
38.
Jahn, J.-P. et al. Erratum: An artificial Rb atom in a semiconductor with lifetime-limited linewidth (Physical Review B - Condensed Matter and Materials Physics (2015) 92 (245439)). Physical Review B 93, (2016).
39.Allard, Baptiste, Fadel, Matteo, Schmied, Roman & . Sideband Rabi spectroscopy of finite-temperature trapped Bose gases. Physical Review A 93, 043624 (2016).
39.
Allard, Baptiste, Fadel, Matteo, Schmied, Roman & . Sideband Rabi spectroscopy of finite-temperature trapped Bose gases. Physical Review A 93, 043624 (2016).
40.Horsley, Andrew & . Frequency-tunable microwave field detection in an atomic vapor cell. Applied Physics Letters 108, 211102 (2016).
40.
Horsley, Andrew & . Frequency-tunable microwave field detection in an atomic vapor cell. Applied Physics Letters 108, 211102 (2016).
41.Schmied, Roman et al. Bell correlations in a Bose-Einstein condensate. Science 352, 4–441 (2016).
41.
Schmied, Roman et al. Bell correlations in a Bose-Einstein condensate. Science 352, 4–441 (2016).
42.. Photon Qubit is Made of Two Colors. Physics - Spotlighting Exceptional Research 9, 135 (2016).
42.
. Photon Qubit is Made of Two Colors. Physics - Spotlighting Exceptional Research 9, 135 (2016).
43.Affolderbach, Christoph et al. Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock. IEEE transactions on instrumentation and measurement 64, 3629–3637 (2015).
43.
Affolderbach, Christoph et al. Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock. IEEE transactions on instrumentation and measurement 64, 3629–3637 (2015).
44.Affolderbach, Christoph et al. Imaging the static magnetic field distribution in a vapor cell atomic clock. in (IEEE, IEEE, 2015). doi:10.1109/fcs.2015.7138785.
44.
Affolderbach, Christoph et al. Imaging the static magnetic field distribution in a vapor cell atomic clock. in (IEEE, IEEE, 2015). doi:10.1109/fcs.2015.7138785.
45.Horsley, Andrew, Du, Guan-Xiang & . Widefield microwave imaging in alkali vapor cells with sub-100 mum resolution. New journal of physics 17, 112002 (2015).
45.
Horsley, Andrew, Du, Guan-Xiang & . Widefield microwave imaging in alkali vapor cells with sub-100 mum resolution. New journal of physics 17, 112002 (2015).
46.Jahn, Jan-Philipp et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Physical Review B 92, 245439 (2015).
46.
Jahn, Jan-Philipp et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Physical Review B 92, 245439 (2015).
47.Jöckel, Andreas et al. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Nature nanotechnology 10, 9–55 (2015).
47.
Jöckel, Andreas et al. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Nature nanotechnology 10, 9–55 (2015).
48.. Matter-wave interference. Nanomechanical answer to Einstein. Nature Nanotechnology 10, 3–832 (2015).
48.
. Matter-wave interference. Nanomechanical answer to Einstein. Nature Nanotechnology 10, 3–832 (2015).
49.Vogell, B. et al. Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble. New journal of physics 17, 043044 (2015).
49.
Vogell, B. et al. Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble. New journal of physics 17, 043044 (2015).
50., Genes, Claudiu, Hammerer, Klemens, Poggio, Martino & Rabl, Peter. Hybrid mechanical systems. in Cavity optomechanics : nano- and micromechanical resonators interacting with light 327–351 (Springer, Berlin, 2014). doi:10.1007/978-3-642-55312-7_14.
50.
, Genes, Claudiu, Hammerer, Klemens, Poggio, Martino & Rabl, Peter. Hybrid mechanical systems. in Cavity optomechanics : nano- and micromechanical resonators interacting with light 327–351 (Springer, Berlin, 2014). doi:10.1007/978-3-642-55312-7_14.
51.Ivanov, A. et al. Experimental and numerical study of the microwave field distribution in a compact magnetron-type microwave cavity. in (IEEE, IEEE, 2014). doi:10.1109/eftf.2014.7331467.
51.
Ivanov, A. et al. Experimental and numerical study of the microwave field distribution in a compact magnetron-type microwave cavity. in (IEEE, IEEE, 2014). doi:10.1109/eftf.2014.7331467.
52.Lebedev, A. V., & Blatter, Gianni. Sequential quantum-enhanced measurement with an atomic ensemble. Physical review. A, Atomic, Molecular, and Optical Physics 89, 012118 (2014).
52.
Lebedev, A. V., & Blatter, Gianni. Sequential quantum-enhanced measurement with an atomic ensemble. Physical review. A, Atomic, Molecular, and Optical Physics 89, 012118 (2014).
53.. Optomechanics: a strained couple. Nature nanotechnology 9, 99–100 (2014).
53.
. Optomechanics: a strained couple. Nature nanotechnology 9, 99–100 (2014).
54.Horsley, Andrew et al. Imaging of relaxation times and microwave field strength in a microfabricated vapor cell. Physical review. A, Atomic, Molecular, and Optical Physics 88, 063407 (2013).
54.
Horsley, Andrew et al. Imaging of relaxation times and microwave field strength in a microfabricated vapor cell. Physical review. A, Atomic, Molecular, and Optical Physics 88, 063407 (2013).
55.Horsley, Andrew et al. Spatially resolved measurement of relaxation times in a microfabricated vapor cell. in (IEEE, IEEE, 2013). doi:10.1109/eftf-ifc.2013.6702085.
55.
Horsley, Andrew et al. Spatially resolved measurement of relaxation times in a microfabricated vapor cell. in (IEEE, IEEE, 2013). doi:10.1109/eftf-ifc.2013.6702085.
56.Korppi, Maria et al. Hybrid atom-membrane optomechanics. in vol. Vol. 57, no. 03006 , 11 S. (EDP Sciences - Web of Conferences, EDP Sciences - Web of Conferences, 2013).
56.
Korppi, Maria et al. Hybrid atom-membrane optomechanics. in vol. Vol. 57, no. 03006 , 11 S. (EDP Sciences - Web of Conferences, EDP Sciences - Web of Conferences, 2013).
57.Kurkjian, Hadrien, Pawlowski, Krzysztof, Sinatra, Alice & . Spin squeezing and Einstein-Podolsky-Rosen entanglement of two bimodal condensates in state-dependent potentials. Physical review A, General physics 88, 043605 (2013).
57.
Kurkjian, Hadrien, Pawlowski, Krzysztof, Sinatra, Alice & . Spin squeezing and Einstein-Podolsky-Rosen entanglement of two bimodal condensates in state-dependent potentials. Physical review A, General physics 88, 043605 (2013).
58.Ockeloen, Caspar F., Schmied, Roman, Riedel, Max F. & . Quantum Metrology with a Scanning Probe Atom Interferometer. Physical review letters 111, 143001 (2013).
58.
Ockeloen, Caspar F., Schmied, Roman, Riedel, Max F. & . Quantum Metrology with a Scanning Probe Atom Interferometer. Physical review letters 111, 143001 (2013).
59.Rakher, Matthew T., Warburton, Richard J. & . Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble. Physical review. A, Atomic, Molecular, and Optical Physics 88, 053834 (2013).
59.
Rakher, Matthew T., Warburton, Richard J. & . Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble. Physical review. A, Atomic, Molecular, and Optical Physics 88, 053834 (2013).
60.Vogell, Berit et al. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical review. A, Atomic, Molecular, and Optical Physics 87, 023816 (2013).
60.
Vogell, Berit et al. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical review. A, Atomic, Molecular, and Optical Physics 87, 023816 (2013).
61.Böhi, Pascal & . Simple microwave field imaging technique using hot atomic vapor cells. Applied physics letters 101, 181107 (2012).
61.
Böhi, Pascal & . Simple microwave field imaging technique using hot atomic vapor cells. Applied physics letters 101, 181107 (2012).
62.. A single spin feels the vibrations. Science vol. 335 1584–1585 (2012).
62.
. A single spin feels the vibrations. Science vol. 335 1584–1585 (2012).
63.Folman, Ron, & Schmiedmayer, Jörg. Atom Chip Fabrication. in Atom Chips (ed. Reichel, Jakob; Vuletic, Vladan) vol. 1 61–117 (Wiley, Weinheim, 2011).
63.
Folman, Ron, & Schmiedmayer, Jörg. Atom Chip Fabrication. in Atom Chips (ed. Reichel, Jakob; Vuletic, Vladan) vol. 1 61–117 (Wiley, Weinheim, 2011).
64., Negretti, Antonio & Calarco, Tommaso. Quantum Information Processing with Atom Chips. in Atom Chips (ed. Reichel, Jakob; Vuletic, Vladan) vol. 1 283–308 (Wiley, Weinheim, 2011).
64.
, Negretti, Antonio & Calarco, Tommaso. Quantum Information Processing with Atom Chips. in Atom Chips (ed. Reichel, Jakob; Vuletic, Vladan) vol. 1 283–308 (Wiley, Weinheim, 2011).
65.Böhi, Pascal, Riedel, Max F. & . Cold atoms image microwave fields. SPS Communications Vol. 33, 10 (2011).
65.
Böhi, Pascal, Riedel, Max F. & . Cold atoms image microwave fields. SPS Communications Vol. 33, 10 (2011).
66.Camerer, Stephan et al. Realization of an Optomechanical Interface Between Ultracold Atoms and a Membrane. Physical review letters 107, 223001 (2011).
66.
Camerer, Stephan et al. Realization of an Optomechanical Interface Between Ultracold Atoms and a Membrane. Physical review letters 107, 223001 (2011).
67.Hunger, D. et al. Coupling ultracold atoms to mechanical oscillators. Comptes rendus physique 12, 871–887 (2011).
67.
Hunger, D. et al. Coupling ultracold atoms to mechanical oscillators. Comptes rendus physique 12, 871–887 (2011).
68.Jöckel, Andreas et al. Spectroscopy of mechanical dissipation in micro-mechanical membranes. Applied physics letters 99, 143109 (2011).
68.
Jöckel, Andreas et al. Spectroscopy of mechanical dissipation in micro-mechanical membranes. Applied physics letters 99, 143109 (2011).
69.Korppi, M. et al. Observation of backaction of ultracold atoms onto a mechanical oscillator. in Optics InfoBase Conference Papers (Optical Society of America (OSA), 2011). doi:10.1364/fio.2011.fmd3.
69.
Korppi, M. et al. Observation of backaction of ultracold atoms onto a mechanical oscillator. in Optics InfoBase Conference Papers (Optical Society of America (OSA), 2011). doi:10.1364/fio.2011.fmd3.
70.Negretti, Antonio, & Calarco, Tommaso. Quantum computing implementations with neutral particles. Quantum information processing 10, 721–753 (2011).
70.
Negretti, Antonio, & Calarco, Tommaso. Quantum computing implementations with neutral particles. Quantum information processing 10, 721–753 (2011).
71.Schmied, Roman & . Tomographic reconstruction of the Wigner function on the Bloch sphere. New journal of physics 13, 065019 (2011).
71.
Schmied, Roman & . Tomographic reconstruction of the Wigner function on the Bloch sphere. New journal of physics 13, 065019 (2011).
72.Böhi, Pascal, Riedel, Max F., Hänsch, Theodor W. & . Imaging of microwave fields using ultracold atoms. Applied physics letters 97, 051101 (2010).
72.
Böhi, Pascal, Riedel, Max F., Hänsch, Theodor W. & . Imaging of microwave fields using ultracold atoms. Applied physics letters 97, 051101 (2010).
73.Hammerer, Klemens et al. Optical lattices with micromechanical mirrors. Physical review A, General physics 82, 021803 (2010).
73.
Hammerer, Klemens et al. Optical lattices with micromechanical mirrors. Physical review A, General physics 82, 021803 (2010).
74.Hunger, David et al. Resonant Coupling of a Bose-Einstein Condensate to a Micromechanical Oscillator. Physical review letters 104, 143002 (2010).
74.
Hunger, David et al. Resonant Coupling of a Bose-Einstein Condensate to a Micromechanical Oscillator. Physical review letters 104, 143002 (2010).
75.Maussang, Kenneth et al. Enhanced and Reduced Atom Number Fluctuations in a BEC Splitter. Physical review letters 105, 080403 (2010).
75.
Maussang, Kenneth et al. Enhanced and Reduced Atom Number Fluctuations in a BEC Splitter. Physical review letters 105, 080403 (2010).
76.Riedel, Max F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 3–1170 (2010).
76.
Riedel, Max F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 3–1170 (2010).
77.Wallquist, Margareta et al. Single-Atom Cavity QED and Opto-Micromechanics. Physical review A, General physics 81, 023816 (2010).
77.
Wallquist, Margareta et al. Single-Atom Cavity QED and Opto-Micromechanics. Physical review A, General physics 81, 023816 (2010).
78.Hunger, D. et al. Ultracold atoms coupled to micro-and nanomechanical oscillators: Towards hybrid quantum systems. in CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009). doi:10.1109/cleoe-eqec.2009.5191563.
78.
Hunger, D. et al. Ultracold atoms coupled to micro-and nanomechanical oscillators: Towards hybrid quantum systems. in CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009). doi:10.1109/cleoe-eqec.2009.5191563.
79.Riedel, F. M., Böhi, P., Hänsch, W. T. & Treutlein, P. State selective microwave nearfield potentials on atom chips. in CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009). doi:10.1109/cleoe-eqec.2009.5191531.
79.
Riedel, F. M., Böhi, P., Hänsch, W. T. & Treutlein, P. State selective microwave nearfield potentials on atom chips. in CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009). doi:10.1109/cleoe-eqec.2009.5191531.
80.Hammerer, K. et al. Strong coupling of a mechanical oscillator and a single atom. Physical Review Letters 103, (2009).
80.
Hammerer, K. et al. Strong coupling of a mechanical oscillator and a single atom. Physical Review Letters 103, (2009).
81.Li, Y., , Reichel, J. & Sinatra, A. Spin squeezing in a bimodal condensate: Spatial dynamics and particle losses. European Physical Journal B 68, 365–381 (2009).
81.
Li, Y., , Reichel, J. & Sinatra, A. Spin squeezing in a bimodal condensate: Spatial dynamics and particle losses. European Physical Journal B 68, 365–381 (2009).
82.Böhi, P. et al. Coherent manipulation of bose-einstein condensates with state-dependent microwave potentials on an atom chip. Nature Physics 5, 592–597 (2009).
82.
Böhi, P. et al. Coherent manipulation of bose-einstein condensates with state-dependent microwave potentials on an atom chip. Nature Physics 5, 592–597 (2009).
83.Hunger, D. et al. Magnetic coupling of a Bose-Einstein condensate to a nanomchanical resonator. in Conference on Lasers and Electro-Optics Europe - Technical Digest (2007). doi:10.1109/cleoe-iqec.2007.4386687.
83.
Hunger, D. et al. Magnetic coupling of a Bose-Einstein condensate to a nanomchanical resonator. in Conference on Lasers and Electro-Optics Europe - Technical Digest (2007). doi:10.1109/cleoe-iqec.2007.4386687.
84.Treutlein, P., Hunger, D., Camerer, S., Hänsch, T. W. & Reichel, J. Bose-einstein condensate coupled to a nanomechanical resonator on an atom chip. Physical Review Letters 99, (2007).
84.
Treutlein, P., Hunger, D., Camerer, S., Hänsch, T. W. & Reichel, J. Bose-einstein condensate coupled to a nanomechanical resonator on an atom chip. Physical Review Letters 99, (2007).
85. et al. Quantum Information Processing in Optical Lattices and Magnetic Microtraps. in Elements of Quantum Information 121–144 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007). doi:10.1002/9783527611065.ch5.
85.
et al. Quantum Information Processing in Optical Lattices and Magnetic Microtraps. in Elements of Quantum Information 121–144 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007). doi:10.1002/9783527611065.ch5.
86.Treutlein, P. et al. Microwave potentials and optimal control for robust quantum gates on an atom chip. Physical Review A - Atomic, Molecular, and Optical Physics 74, (2006).
86.
Treutlein, P. et al. Microwave potentials and optimal control for robust quantum gates on an atom chip. Physical Review A - Atomic, Molecular, and Optical Physics 74, (2006).
87. et al. Quantum information processing in optical lattices and magnetic microtraps. Fortschritte der Physik 54, 702–718 (2006).
87.
et al. Quantum information processing in optical lattices and magnetic microtraps. Fortschritte der Physik 54, 702–718 (2006).
88.Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Erratum: Coherence in Microchip Traps (Physical Review Letters (2004) 92 (203005)). Physical Review Letters 93, (2004).
88.
Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Erratum: Coherence in Microchip Traps (Physical Review Letters (2004) 92 (203005)). Physical Review Letters 93, (2004).
89.Eiermann, B. et al. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Physical Review Letters 92, (2004).
89.
Eiermann, B. et al. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Physical Review Letters 92, (2004).
90.Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Physical Review Letters 92, (2004).
90.
Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Physical Review Letters 92, (2004).
91.EIERMANN, B. et al. DISPERSION MANAGEMENT AND BRIGHT GAP SOLITONS FOR ATOMIC MATTER WAVES. in (WORLD SCIENTIFIC, 2004). doi:10.1142/9789812703002_0028.
91.
EIERMANN, B. et al. DISPERSION MANAGEMENT AND BRIGHT GAP SOLITONS FOR ATOMIC MATTER WAVES. in (WORLD SCIENTIFIC, 2004). doi:10.1142/9789812703002_0028.
92., HOMMELHOFF, P., HÄNSCH, T. W. & REICHEL, J. COHERENT ATOMIC STATES IN MICROTRAPS. in (WORLD SCIENTIFIC, 2004). doi:10.1142/9789812703002_0035.
92.
, HOMMELHOFF, P., HÄNSCH, T. W. & REICHEL, J. COHERENT ATOMIC STATES IN MICROTRAPS. in (WORLD SCIENTIFIC, 2004). doi:10.1142/9789812703002_0035.
93.Eiermann, B. et al. Dispersion Management for Atomic Matter Waves. Physical Review Letters 91, (2003).
93.
Eiermann, B. et al. Dispersion Management for Atomic Matter Waves. Physical Review Letters 91, (2003).
94. et al. Observation of coherent internal-state superpositions near a chip surface. in (IEEE, 2003). doi:10.1109/eqec.2003.1314168.
94.
et al. Observation of coherent internal-state superpositions near a chip surface. in (IEEE, 2003). doi:10.1109/eqec.2003.1314168.
95.Treutlein, P., Chu, K. Y. & Chu, S. High-brightness atom source for atomic fountains. Physical Review A. Atomic, Molecular, and Optical Physics 63, 514011–514014 (2001).
95.
Treutlein, P., Chu, K. Y. & Chu, S. High-brightness atom source for atomic fountains. Physical Review A. Atomic, Molecular, and Optical Physics 63, 514011–514014 (2001).