Publications
162 found
Show per page
Schicklin, C., Rauter, G., Cattin, P. C., Eugster, M., & Braissant, O. (2024). Method to Generate Chlorine Dioxide Gas In Situ for Sterilization of Automated Incubators [Journal-article]. Pathogens, 13(11), 1024. https://doi.org/10.3390/pathogens13111024
Schicklin, C., Rauter, G., Cattin, P. C., Eugster, M., & Braissant, O. (2024). Method to Generate Chlorine Dioxide Gas In Situ for Sterilization of Automated Incubators [Journal-article]. Pathogens, 13(11), 1024. https://doi.org/10.3390/pathogens13111024
Govindasamy, N., Rauter, G., Seidel, F., Burkhardt-Holm, P., Hirsch, P. E., & Wiegleb, J. (2024). Does swimming at the bottom serve as a hydraulic advantage for benthic fish Neogobius melanostomus Pallas (1814) in flowing water? [Journal-article]. Biology Open, 13(11). https://doi.org/10.1242/bio.060533
Govindasamy, N., Rauter, G., Seidel, F., Burkhardt-Holm, P., Hirsch, P. E., & Wiegleb, J. (2024). Does swimming at the bottom serve as a hydraulic advantage for benthic fish Neogobius melanostomus Pallas (1814) in flowing water? [Journal-article]. Biology Open, 13(11). https://doi.org/10.1242/bio.060533
Wilkie, J., Rauter, G., & Möller, K. (2024). Horizontal Test Stand for Bone Screw Insertion [Journal-article]. Hardware, 2(3), 223–255. https://doi.org/10.3390/hardware2030011
Wilkie, J., Rauter, G., & Möller, K. (2024). Horizontal Test Stand for Bone Screw Insertion [Journal-article]. Hardware, 2(3), 223–255. https://doi.org/10.3390/hardware2030011
Fasel, L., Gerig, N., Danun, A., Meboldt, M., Guzman, R., Cattin, P. C., & Rauter, G. (2024). Antagonistic Series Elastic Actuation for a Variable Stiffness Robotic Endoscope [Journal-article]. IEEE/ASME Transactions on Mechatronics, 1–11. https://doi.org/10.1109/tmech.2024.3484583
Fasel, L., Gerig, N., Danun, A., Meboldt, M., Guzman, R., Cattin, P. C., & Rauter, G. (2024). Antagonistic Series Elastic Actuation for a Variable Stiffness Robotic Endoscope [Journal-article]. IEEE/ASME Transactions on Mechatronics, 1–11. https://doi.org/10.1109/tmech.2024.3484583
Cetin, Cigdem, Drusová, Sandra, Hamidi, Arsham, Bayhaqi, Yakub, Bone ablation performance of a Tm-Cr-Ho:YAG Laser. 12377. https://doi.org/10.1117/12.2647703
, Cattin, Philippe, Zam, Azhar, & Canbaz, Ferda. (2023).
Cetin, Cigdem, Drusová, Sandra, Hamidi, Arsham, Bayhaqi, Yakub, Bone ablation performance of a Tm-Cr-Ho:YAG Laser. 12377. https://doi.org/10.1117/12.2647703
, Cattin, Philippe, Zam, Azhar, & Canbaz, Ferda. (2023).
Genter, Jeremy, At-Automatisierungstechnik, 71, 505–514. https://doi.org/10.1515/auto-2023-0064
, Müller, Andreas M., Mündermann, Annegret, & Baumgartner, Daniel. (2023). Musculoskeletal model-based control strategy of an over-actuated glenohumeral simulator to assess joint biomechanics.
Genter, Jeremy, At-Automatisierungstechnik, 71, 505–514. https://doi.org/10.1515/auto-2023-0064
, Müller, Andreas M., Mündermann, Annegret, & Baumgartner, Daniel. (2023). Musculoskeletal model-based control strategy of an over-actuated glenohumeral simulator to assess joint biomechanics.
Karnam, Murali, Cattin, Philippe C., At-Automatisierungstechnik, 71, 515–527. https://doi.org/10.1515/auto-2023-0063
, & Gerig, Nicolas. (2023). Qualitative and quantitative assessment of admittance controllers for hand-guiding surgical robots.
Karnam, Murali, Cattin, Philippe C., At-Automatisierungstechnik, 71, 515–527. https://doi.org/10.1515/auto-2023-0063
, & Gerig, Nicolas. (2023). Qualitative and quantitative assessment of admittance controllers for hand-guiding surgical robots.
Karnam, Murali, Zelechowski, Marek, Cattin, Philippe C., New Trends in Medical and Service Robotics (p. 13). Springer Nature Switzerland.
, & Gerig, Nicolas. (2023). Workspace-aware Planning of a Surgical Robot Mounting in Virtual Reality. In Tarnita, Daniela;Dumitru, Nicolae;Pisla, Doina;Carbone, Giuseppe;Geonea, Ionut (Ed.),
Karnam, Murali, Zelechowski, Marek, Cattin, Philippe C., New Trends in Medical and Service Robotics (p. 13). Springer Nature Switzerland.
, & Gerig, Nicolas. (2023). Workspace-aware Planning of a Surgical Robot Mounting in Virtual Reality. In Tarnita, Daniela;Dumitru, Nicolae;Pisla, Doina;Carbone, Giuseppe;Geonea, Ionut (Ed.),
Karnam, Murali, Zelechowski, Marek, Cattin, Philippe C., Workspace-aware Planning of a Surgical Robot Mounting in Virtual Reality. 133 MMS, 13–19. https://doi.org/10.1007/978-3-031-32446-8_2
, & Gerig, Nicolas. (2023).
Karnam, Murali, Zelechowski, Marek, Cattin, Philippe C., Workspace-aware Planning of a Surgical Robot Mounting in Virtual Reality. 133 MMS, 13–19. https://doi.org/10.1007/978-3-031-32446-8_2
, & Gerig, Nicolas. (2023).
Manavi Roodsari, Samaneh, Huck-Horvath, Antal, Freund, Sara, Zam, Azhar, Machine Learning: Science and Technology, 4. https://doi.org/10.1088/2632-2153/acda10
, Schade, Wolfgang, & Cattin, Philippe C. (2023). Shape sensing of optical fiber Bragg gratings based on deep learning.
Manavi Roodsari, Samaneh, Huck-Horvath, Antal, Freund, Sara, Zam, Azhar, Machine Learning: Science and Technology, 4. https://doi.org/10.1088/2632-2153/acda10
, Schade, Wolfgang, & Cattin, Philippe C. (2023). Shape sensing of optical fiber Bragg gratings based on deep learning.
At-Automatisierungstechnik, 71, 503–504. https://doi.org/10.1515/auto-2023-0098
, & Mathis-Ullrich, Franziska. (2023). Special issue: Minimal-invasive robotics.
At-Automatisierungstechnik, 71, 503–504. https://doi.org/10.1515/auto-2023-0098
, & Mathis-Ullrich, Franziska. (2023). Special issue: Minimal-invasive robotics.
Schnider, Eva, Wolleb, Julia, Huck, Antal, Toranelli, Mireille, International Journal of Computer Assisted Radiology and Surgery, 18, 2091–2099. https://doi.org/10.1007/s11548-023-02957-4
, Müller-Gerbl, Magdalena, & Cattin, Philippe C. (2023). Improved distinct bone segmentation in upper-body CT through multi-resolution networks.
Schnider, Eva, Wolleb, Julia, Huck, Antal, Toranelli, Mireille, International Journal of Computer Assisted Radiology and Surgery, 18, 2091–2099. https://doi.org/10.1007/s11548-023-02957-4
, Müller-Gerbl, Magdalena, & Cattin, Philippe C. (2023). Improved distinct bone segmentation in upper-body CT through multi-resolution networks.
Tomooka, Yukiko, Karnam, Murali, Eugster, Manuela, Cattin, Philippe C., & Disturbance Propagation Mitigation Between a Deployable Miniature Surgical Robot and Its Insertion Device. 148, 800–809. https://doi.org/10.1007/978-3-031-45770-8_79
. (2023).
Tomooka, Yukiko, Karnam, Murali, Eugster, Manuela, Cattin, Philippe C., & Disturbance Propagation Mitigation Between a Deployable Miniature Surgical Robot and Its Insertion Device. 148, 800–809. https://doi.org/10.1007/978-3-031-45770-8_79
. (2023).
Tomooka, Yukiko, Spothelfer, Dominic, Puiggali-Jou, Anna, Tourbier, Céline, Tankus, Esma Bahar, Thieringer, Florian M., Cattin, Philippe C., At-Automatisierungstechnik, 71, 562–571. https://doi.org/10.1515/auto-2023-0060
, & Eugster, Manuela. (2023). Minimal invasives in-situ Bioprinting mittels schlauchbasiertem Materialtransport.
Tomooka, Yukiko, Spothelfer, Dominic, Puiggali-Jou, Anna, Tourbier, Céline, Tankus, Esma Bahar, Thieringer, Florian M., Cattin, Philippe C., At-Automatisierungstechnik, 71, 562–571. https://doi.org/10.1515/auto-2023-0060
, & Eugster, Manuela. (2023). Minimal invasives in-situ Bioprinting mittels schlauchbasiertem Materialtransport.
Wiegleb, Joschka, Hirsch, Philipp Emanuel, Seidel, Frank, Frontiers in Environmental Science, 11, 1156248. https://doi.org/10.3389/fenvs.2023.1156248
, & Burkhardt-Holm, Patricia. (2023). Round goby [Neogobius melanostomus (Pallas, 1814)], gudgeon (Gobio gobio L.) and bullhead (Cottus gobio L.) show distinct swimming patterns in a vertical slot fish pass.
Wiegleb, Joschka, Hirsch, Philipp Emanuel, Seidel, Frank, Frontiers in Environmental Science, 11, 1156248. https://doi.org/10.3389/fenvs.2023.1156248
, & Burkhardt-Holm, Patricia. (2023). Round goby [Neogobius melanostomus (Pallas, 1814)], gudgeon (Gobio gobio L.) and bullhead (Cottus gobio L.) show distinct swimming patterns in a vertical slot fish pass.
Wilkie, Jack, Jalal, Nour Aldeen, Segmenting/Pre-Processing Data from Bone Screw Thread-Stripping Tests. null. https://doi.org/10.1109/embc40787.2023.10341134
, & Moller, Knut. (2023).
Wilkie, Jack, Jalal, Nour Aldeen, Segmenting/Pre-Processing Data from Bone Screw Thread-Stripping Tests. null. https://doi.org/10.1109/embc40787.2023.10341134
, & Moller, Knut. (2023).
Żelechowski, M., Faludi, B., Karnam, M., Gerig, N., Rauter, G., & Cattin, P. C. (2023). Automatic patient positioning based on robot rotational workspace for extended reality. International Journal of Computer Assisted Radiology and Surgery, 18, 1951–1959. https://doi.org/10.1007/s11548-023-02967-2
Żelechowski, M., Faludi, B., Karnam, M., Gerig, N., Rauter, G., & Cattin, P. C. (2023). Automatic patient positioning based on robot rotational workspace for extended reality. International Journal of Computer Assisted Radiology and Surgery, 18, 1951–1959. https://doi.org/10.1007/s11548-023-02967-2
At-Automatisierungstechnik, 70(11), 933–934. https://doi.org/10.1515/auto-2022-0133
, Seel T., & Rostalski P. (2022). Special issue: AUTOMED 2021: Automation in Medical Technology Schwerpunktheft AUTOMED 2021.
At-Automatisierungstechnik, 70(11), 933–934. https://doi.org/10.1515/auto-2022-0133
, Seel T., & Rostalski P. (2022). Special issue: AUTOMED 2021: Automation in Medical Technology Schwerpunktheft AUTOMED 2021.
Schnider E., Huck A., Toranelli M, International Journal of Computer Assisted Radiology and Surgery, 17(11), 2113–2120. https://doi.org/10.1007/s11548-022-02650-y
, Müller-Gerbl M, & Cattin PC. (2022). Improved distinct bone segmentation from upper-body CT using binary-prediction-enhanced multi-class inference.
Schnider E., Huck A., Toranelli M, International Journal of Computer Assisted Radiology and Surgery, 17(11), 2113–2120. https://doi.org/10.1007/s11548-022-02650-y
, Müller-Gerbl M, & Cattin PC. (2022). Improved distinct bone segmentation from upper-body CT using binary-prediction-enhanced multi-class inference.
Wilkie J.A., At-Automatisierungstechnik, 70(11), 976–991. https://doi.org/10.1515/auto-2022-0009
, & Moller K. (2022). Determining relationship between bone screw insertion torque and insertion speed Bestimmung des Zusammenhangs zwischen dem Drehmoment beim Eindrehen von Knochenschrauben und der Eindrehgeschwindigkeit.
Wilkie J.A., At-Automatisierungstechnik, 70(11), 976–991. https://doi.org/10.1515/auto-2022-0009
, & Moller K. (2022). Determining relationship between bone screw insertion torque and insertion speed Bestimmung des Zusammenhangs zwischen dem Drehmoment beim Eindrehen von Knochenschrauben und der Eindrehgeschwindigkeit.
Cetin C., Drusova S., Hamidi A., Bone ablation using a Ho:YAG laser. 8, 580–583. https://doi.org/10.1515/cdbme-2022-1148
, Cattin P., Zam A., & Canbaz F. (2022).
Cetin C., Drusova S., Hamidi A., Bone ablation using a Ho:YAG laser. 8, 580–583. https://doi.org/10.1515/cdbme-2022-1148
, Cattin P., Zam A., & Canbaz F. (2022).
Eugster M., Duverney C., Karnam M., Gerig N., Cattin P.C., & IEEE Transactions on Medical Robotics and Bionics, 4(3), 621–633. https://doi.org/10.1109/tmrb.2022.3172471
(2022). Robotic Endoscope System for Future Application in Minimally Invasive Laser Osteotomy: First Concept Evaluation.
Eugster M., Duverney C., Karnam M., Gerig N., Cattin P.C., & IEEE Transactions on Medical Robotics and Bionics, 4(3), 621–633. https://doi.org/10.1109/tmrb.2022.3172471
(2022). Robotic Endoscope System for Future Application in Minimally Invasive Laser Osteotomy: First Concept Evaluation.
Karnam M., Zelechowski M., Cattin P.C., Current Directions in Biomedical Engineering, 8(2), 225–228. https://doi.org/10.1515/cdbme-2022-1058
, & Gerig N. (2022). Augmented Reality for 6-DoF Motion Recording, Preview, and Execution to Enable Intuitive Surgical Robot Control.
Karnam M., Zelechowski M., Cattin P.C., Current Directions in Biomedical Engineering, 8(2), 225–228. https://doi.org/10.1515/cdbme-2022-1058
, & Gerig N. (2022). Augmented Reality for 6-DoF Motion Recording, Preview, and Execution to Enable Intuitive Surgical Robot Control.
Manavi Roodsari S., Freund S., Zam A., IEEE Transactions on Biomedical Engineering, 69(8), 2488–2498. https://doi.org/10.1109/tbme.2022.3148040
, & Cattin P.C. (2022). Fabrication and Characterization of a Flexible FBG-Based Shape Sensor Using Single-Mode Fibers.
Manavi Roodsari S., Freund S., Zam A., IEEE Transactions on Biomedical Engineering, 69(8), 2488–2498. https://doi.org/10.1109/tbme.2022.3148040
, & Cattin P.C. (2022). Fabrication and Characterization of a Flexible FBG-Based Shape Sensor Using Single-Mode Fibers.
Wilkie J., Initial engagement and axial force model for self-tapping bone screws. 8, 753–756. https://doi.org/10.1515/cdbme-2022-1192
, & Moller K. (2022).
Wilkie J., Initial engagement and axial force model for self-tapping bone screws. 8, 753–756. https://doi.org/10.1515/cdbme-2022-1192
, & Moller K. (2022).
Fasel L., Gerig N., Cattin P.C., & Journal of Bionic Engineering, 19(4), 965–974. https://doi.org/10.1007/s42235-022-00180-6
(2022). Control Evaluation of Antagonistic Series Elastic Actuation for a Robotic Endoscope Joint.
Fasel L., Gerig N., Cattin P.C., & Journal of Bionic Engineering, 19(4), 965–974. https://doi.org/10.1007/s42235-022-00180-6
(2022). Control Evaluation of Antagonistic Series Elastic Actuation for a Robotic Endoscope Joint.
Tomooka Y., Current Directions in Biomedical Engineering, 8(1), 138–141. https://doi.org/10.1515/cdbme-2022-0035
, Gerig N., Takeda R., Cattin P., & Eugster M. (2022). Bending stiffness variability between a deployable robotic laser osteotome and its insertion device.
Tomooka Y., Current Directions in Biomedical Engineering, 8(1), 138–141. https://doi.org/10.1515/cdbme-2022-0035
, Gerig N., Takeda R., Cattin P., & Eugster M. (2022). Bending stiffness variability between a deployable robotic laser osteotome and its insertion device.
Hassani R.H., Willi R., Sensors, 22(11). https://doi.org/10.3390/s22114237
, Bolliger M., & Seel T. (2022). Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings.
Hassani R.H., Willi R., Sensors, 22(11). https://doi.org/10.3390/s22114237
, Bolliger M., & Seel T. (2022). Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings.
Eugster M., Merlet J.-P., Gerig N., Cattin P.C., & Robotica, 40(4), 1070–1097. https://doi.org/10.1017/s0263574721000990
(2022). Miniature parallel robot with submillimeter positioning accuracy for minimally invasive laser osteotomy.
Eugster M., Merlet J.-P., Gerig N., Cattin P.C., & Robotica, 40(4), 1070–1097. https://doi.org/10.1017/s0263574721000990
(2022). Miniature parallel robot with submillimeter positioning accuracy for minimally invasive laser osteotomy.
Haji Hassani R, Bannwart M, Bolliger M, Seel T, Brunner R, & Journal of Neuroengineering and Rehabilitation, 19(1), 11. https://doi.org/10.1186/s12984-022-00984-x
. (2022). Real-time motion onset recognition for robot-assisted gait rehabilitation.
Haji Hassani R, Bannwart M, Bolliger M, Seel T, Brunner R, & Journal of Neuroengineering and Rehabilitation, 19(1), 11. https://doi.org/10.1186/s12984-022-00984-x
. (2022). Real-time motion onset recognition for robot-assisted gait rehabilitation.
Duverney C., El Bahi M.A., Gerig N., Cattin P.C., & Development and Evaluation of a Force-Sensitive Flexure-Based Microgripper Concept. 106 MMS, 97–106. https://doi.org/10.1007/978-3-030-76147-9_11
(2022).
Duverney C., El Bahi M.A., Gerig N., Cattin P.C., & Development and Evaluation of a Force-Sensitive Flexure-Based Microgripper Concept. 106 MMS, 97–106. https://doi.org/10.1007/978-3-030-76147-9_11
(2022).
Genter J., 27th Congress of the European Society of Biomechanics (ESB).
, Rohner M., Müller A.M., Mündermann A., & Baumgartner D. (2022, January 1). Control system of a muscular controlled, experimental glenohumeral simulator.
Genter J., 27th Congress of the European Society of Biomechanics (ESB).
, Rohner M., Müller A.M., Mündermann A., & Baumgartner D. (2022, January 1). Control system of a muscular controlled, experimental glenohumeral simulator.
Hassani R.H., Bolliger M., & Recognizing Motion Onset During Robot-assisted Body-weight Unloading is Challenging but Seems Feasible. 666–671. https://doi.org/10.1109/ro-man53752.2022.9900533
(2022).
Hassani R.H., Bolliger M., & Recognizing Motion Onset During Robot-assisted Body-weight Unloading is Challenging but Seems Feasible. 666–671. https://doi.org/10.1109/ro-man53752.2022.9900533
(2022).
Karnam, Murali, Zelechowski, Marek, Cattin, Philippe C., Current Directions in Biomedical Engineering, 2, 225. https://doi.org/10.1515/cdbme-2022-1058
, & Gerig, Nicolas. (2022). Augmented Reality for 6-DoF Motion Recording, Preview, and Execution to Enable Intuitive Surgical Robot Control.
Karnam, Murali, Zelechowski, Marek, Cattin, Philippe C., Current Directions in Biomedical Engineering, 2, 225. https://doi.org/10.1515/cdbme-2022-1058
, & Gerig, Nicolas. (2022). Augmented Reality for 6-DoF Motion Recording, Preview, and Execution to Enable Intuitive Surgical Robot Control.
Krenn, Philipp, Eugster, Manuela, Zoller, Esther I., Friederich, Niklaus F., & Towards Robotic Surgery for Cartilage Replacement: A Review on Cartilage Defects. 106 MMS, 125–136. https://doi.org/10.1007/978-3-030-76147-9_14
. (2022).
Krenn, Philipp, Eugster, Manuela, Zoller, Esther I., Friederich, Niklaus F., & Towards Robotic Surgery for Cartilage Replacement: A Review on Cartilage Defects. 106 MMS, 125–136. https://doi.org/10.1007/978-3-030-76147-9_14
. (2022).
Nahhas M.K., Gerig N., Turp J.C., Cattin P., Wilhelm E., & Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors. 106 MMS, 147–154. https://doi.org/10.1007/978-3-030-76147-9_16
(2022).
Nahhas M.K., Gerig N., Turp J.C., Cattin P., Wilhelm E., & Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors. 106 MMS, 147–154. https://doi.org/10.1007/978-3-030-76147-9_16
(2022).
Preface. 106 MMS, v–vi. https://doi.org/10.7765/9781526103291.00005
, Carbone G., Cattin P.C., Zam A., Pisla D., & Riener R. (2022).
Preface. 106 MMS, v–vi. https://doi.org/10.7765/9781526103291.00005
, Carbone G., Cattin P.C., Zam A., Pisla D., & Riener R. (2022).
Bio-inspired Structural Intelligence for Miniature Robots in Minimal-Invasive Surgery (Vol. 606, pp. 37–40). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-06409-8_3
, Fasel L., Eugster M., & Gerig N. (2022).
Bio-inspired Structural Intelligence for Miniature Robots in Minimal-Invasive Surgery (Vol. 606, pp. 37–40). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-06409-8_3
, Fasel L., Eugster M., & Gerig N. (2022).
Seppi C., Huck A., Hamidi A., Schnider E., Filipozzi M., IEEE Access, 10, 126603–126611. https://doi.org/10.1109/access.2022.3225651
, Zam A., & Cattin P.C. (2022). Bone Ablation Depth Estimation From Er:YAG Laser-Generated Acoustic Waves.
Seppi C., Huck A., Hamidi A., Schnider E., Filipozzi M., IEEE Access, 10, 126603–126611. https://doi.org/10.1109/access.2022.3225651
, Zam A., & Cattin P.C. (2022). Bone Ablation Depth Estimation From Er:YAG Laser-Generated Acoustic Waves.
Wiegleb, Joschka, Hirsch, Philipp Emanuel, Seidel, Frank, Ecology of Freshwater Fish, 1–15. https://doi.org/10.1111/eff.12696
, & Burkhardt-Holm, Patricia. (2022). Impact of hydraulic forces on the passage of round goby (Neogobius melanostomus), gudgeon (Gobio gobio) and bullhead (Cottus gobio) in a vertical slot fish pass.
Wiegleb, Joschka, Hirsch, Philipp Emanuel, Seidel, Frank, Ecology of Freshwater Fish, 1–15. https://doi.org/10.1111/eff.12696
, & Burkhardt-Holm, Patricia. (2022). Impact of hydraulic forces on the passage of round goby (Neogobius melanostomus), gudgeon (Gobio gobio) and bullhead (Cottus gobio) in a vertical slot fish pass.
Wiegleb, Joschka, Hirsch, Philipp E., Seidel, Frank, Hydrobiologia, 849(4), 1001–1019. https://doi.org/10.1007/s10750-021-04762-z
, & Burkhardt-Holm, Patricia. (2022). Flow, force, behaviour: assessment of a prototype hydraulic barrier for invasive fish.
Wiegleb, Joschka, Hirsch, Philipp E., Seidel, Frank, Hydrobiologia, 849(4), 1001–1019. https://doi.org/10.1007/s10750-021-04762-z
, & Burkhardt-Holm, Patricia. (2022). Flow, force, behaviour: assessment of a prototype hydraulic barrier for invasive fish.
Zelechowski M., Faludi B., Volume Rendering-Based Patient Registration for Extended Reality. 106 MMS, 115–124. https://doi.org/10.1007/978-3-030-76147-9_13
, & Cattin P.C. (2022).
Zelechowski M., Faludi B., Volume Rendering-Based Patient Registration for Extended Reality. 106 MMS, 115–124. https://doi.org/10.1007/978-3-030-76147-9_13
, & Cattin P.C. (2022).
Zelechowski M., Karnam M., Faludi B., Gerig N., Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 10(4), 451–457. https://doi.org/10.1080/21681163.2021.2002192
, & Cattin P.C. (2022). Patient positioning by visualising surgical robot rotational workspace in augmented reality.
Zelechowski M., Karnam M., Faludi B., Gerig N., Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 10(4), 451–457. https://doi.org/10.1080/21681163.2021.2002192
, & Cattin P.C. (2022). Patient positioning by visualising surgical robot rotational workspace in augmented reality.
Eugster M., Zoller E., Krenn P., Blache S., Friederich N.F., Muller-Gerbl M., Cattin P.C., & IEEE Transactions on Biomedical Engineering, 68(8), 2412–2422. https://doi.org/10.1109/tbme.2020.3041512
(2021). Quantitative Evaluation of the Thickness of the Available Manipulation Volume Inside the Knee Joint Capsule for Minimally Invasive Robotic Unicondylar Knee Arthroplasty.
Eugster M., Zoller E., Krenn P., Blache S., Friederich N.F., Muller-Gerbl M., Cattin P.C., & IEEE Transactions on Biomedical Engineering, 68(8), 2412–2422. https://doi.org/10.1109/tbme.2020.3041512
(2021). Quantitative Evaluation of the Thickness of the Available Manipulation Volume Inside the Knee Joint Capsule for Minimally Invasive Robotic Unicondylar Knee Arthroplasty.
Faludi B., Zentai N., Zelechowski M., Zam A., Transfer-function-independent acceleration structure for volume rendering in virtual reality. 1–10. https://doi.org/10.2312/hpg.20211279
, Griessen M., & Cattin P.C. (2021).
Faludi B., Zentai N., Zelechowski M., Zam A., Transfer-function-independent acceleration structure for volume rendering in virtual reality. 1–10. https://doi.org/10.2312/hpg.20211279
, Griessen M., & Cattin P.C. (2021).
Hassani, R. H., Bannwart, M., Bolliger, M., Seel, T., Brunner, R., & Rauter, G. (2021, June 17). Real-Time Motion Onset Recognition for Robot-Assisted Gait Rehabilitation [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-536031/v1
Hassani, R. H., Bannwart, M., Bolliger, M., Seel, T., Brunner, R., & Rauter, G. (2021, June 17). Real-Time Motion Onset Recognition for Robot-Assisted Gait Rehabilitation [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-536031/v1
Esther Isabel Zoller, Nicolas Gerig, Philippe Cattin, & IEEE Transactions on Haptics, 14(2), 335–346. https://doi.org/10.1109/toh.2020.3027261
(2021). The functional rotational workspace of a human-robot system can be influenced by adjusting the telemanipulator handle orientation.
Esther Isabel Zoller, Nicolas Gerig, Philippe Cattin, & IEEE Transactions on Haptics, 14(2), 335–346. https://doi.org/10.1109/toh.2020.3027261
(2021). The functional rotational workspace of a human-robot system can be influenced by adjusting the telemanipulator handle orientation.
Duverney, Cédric, Abbasi, Hamed, Beltrán Bernal, Lina M., Stauber, Tino, Snedeker, Jess G., Cattin, Philippe C., Zam, Azhar, & Mechanisms and Machine Science. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-58104-6_25
. (2021). Robot- and Laser-Assisted Bio-Sample Preparation: Development of an Integrated, Intuitive System. In ; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (Ed.),
Duverney, Cédric, Abbasi, Hamed, Beltrán Bernal, Lina M., Stauber, Tino, Snedeker, Jess G., Cattin, Philippe C., Zam, Azhar, & Mechanisms and Machine Science. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-58104-6_25
. (2021). Robot- and Laser-Assisted Bio-Sample Preparation: Development of an Integrated, Intuitive System. In ; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (Ed.),
Duverney, Cedric, Abbasi, Hamed, Berkelaar, Majoska, Pelttari, Karoliina, Cattin, Philippe C., Barbero, Andrea, Zam, Azhar, & Journal of Medical Devices, Transactions of the ASME, 15. https://doi.org/10.1115/1.4049396
. (2021). Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability.
Duverney, Cedric, Abbasi, Hamed, Berkelaar, Majoska, Pelttari, Karoliina, Cattin, Philippe C., Barbero, Andrea, Zam, Azhar, & Journal of Medical Devices, Transactions of the ASME, 15. https://doi.org/10.1115/1.4049396
. (2021). Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability.
Eugster M., OliveiraBarros M., Cattin P.C., & Design evaluation of a stabilized, walking endoscope tip. 93, 127–135. https://doi.org/10.1007/978-3-030-58104-6_15
(2021).
Eugster M., OliveiraBarros M., Cattin P.C., & Design evaluation of a stabilized, walking endoscope tip. 93, 127–135. https://doi.org/10.1007/978-3-030-58104-6_15
(2021).
Fasel L., Gerig N., Cattin P.C., & Tendon force control evaluation for an endoscope with series elastic actuation. 93, 118–126. https://doi.org/10.1007/978-3-030-58104-6_14
(2021).
Fasel L., Gerig N., Cattin P.C., & Tendon force control evaluation for an endoscope with series elastic actuation. 93, 118–126. https://doi.org/10.1007/978-3-030-58104-6_14
(2021).
Fasel L., Gerig N., Cattin P.C., & The SEA-Scope: Torque-limited endoscopic joint control for telemanipulation or visual servoing through tendon force control with series elastic actuation. https://doi.org/10.1109/ismr48346.2021.9661497
(2021, January 1).
Fasel L., Gerig N., Cattin P.C., & The SEA-Scope: Torque-limited endoscopic joint control for telemanipulation or visual servoing through tendon force control with series elastic actuation. https://doi.org/10.1109/ismr48346.2021.9661497
(2021, January 1).
Iafolla, Lorenzo, Filipozzi, Massimiliano, Freund, Sara, Zam, Azhar, Measurement, 169, 108547. https://doi.org/10.1016/j.measurement.2020.108547
, & Cattin, Philippe Claude. (2021). Machine learning-based method for linearization and error compensation of a novel absolute rotary encoder.
Iafolla, Lorenzo, Filipozzi, Massimiliano, Freund, Sara, Zam, Azhar, Measurement, 169, 108547. https://doi.org/10.1016/j.measurement.2020.108547
, & Cattin, Philippe Claude. (2021). Machine learning-based method for linearization and error compensation of a novel absolute rotary encoder.
Karnam M., Eugster M., Parini R., Cattin P.C., De Momi E., Learned task space control to reduce the effort in controlling redundant surgical robots. 93, 161–168. https://doi.org/10.1007/978-3-030-58104-6_19
, & Gerig N. (2021).
Karnam M., Eugster M., Parini R., Cattin P.C., De Momi E., Learned task space control to reduce the effort in controlling redundant surgical robots. 93, 161–168. https://doi.org/10.1007/978-3-030-58104-6_19
, & Gerig N. (2021).
Karnam, Murali, Cattin, Philippe, Siebte IFToMM D-A-CH Konferenz 2021, 2021. https://doi.org/10.17185/duepublico/74060
, & Gerig, Nicolas. (2021). Comparing cascaded real-time controllers for an extended KUKA LBR iiwa robot during physical human-robot interaction.
Karnam, Murali, Cattin, Philippe, Siebte IFToMM D-A-CH Konferenz 2021, 2021. https://doi.org/10.17185/duepublico/74060
, & Gerig, Nicolas. (2021). Comparing cascaded real-time controllers for an extended KUKA LBR iiwa robot during physical human-robot interaction.
Manavi S., Renna T., Horvath A., Freund S., Zam A., Using supervised deep-learning to model edge-FBG shape sensors: A feasibility study. 11772. https://doi.org/10.1117/12.2589252
, Schade W., & Cattin P.C. (2021).
Manavi S., Renna T., Horvath A., Freund S., Zam A., Using supervised deep-learning to model edge-FBG shape sensors: A feasibility study. 11772. https://doi.org/10.1117/12.2589252
, Schade W., & Cattin P.C. (2021).
Preface. 93, v–vi.
, Zam A., Cattin P.C., Riener R., Carbone G., & Pisla D. (2021).
Preface. 93, v–vi.
, Zam A., Cattin P.C., Riener R., Carbone G., & Pisla D. (2021).
Seppi C., Huck A., Kenhagho H.N., Schnider E., IEEE Access, 9, 130543–130553. https://doi.org/10.1109/access.2021.3113055
, Zam A., & Cattin P.C. (2021). Deep-Learning Approach for Tissue Classification Using Acoustic Waves during Ablation with an Er:YAG Laser.
Seppi C., Huck A., Kenhagho H.N., Schnider E., IEEE Access, 9, 130543–130553. https://doi.org/10.1109/access.2021.3113055
, Zam A., & Cattin P.C. (2021). Deep-Learning Approach for Tissue Classification Using Acoustic Waves during Ablation with an Er:YAG Laser.
Susic I., Cattin P.C., Guzman R., & Development and characterization of a versatile, force-range adjustable, low-cost, tri-axial force sensor. 93, 265–272. https://doi.org/10.1007/978-3-030-58104-6_30
(2021).
Susic I., Cattin P.C., Guzman R., & Development and characterization of a versatile, force-range adjustable, low-cost, tri-axial force sensor. 93, 265–272. https://doi.org/10.1007/978-3-030-58104-6_30
(2021).
Zoller E.I., Faludi B., Gerig N., Jost GF, Cattin P.C., & International Journal of Computer Assisted Radiology and Surgery, 15(11), 1797–1805. https://doi.org/10.1007/s11548-020-02258-0
(2020). Force quantification and simulation of pedicle screw tract palpation using direct visuo-haptic volume rendering.
Zoller E.I., Faludi B., Gerig N., Jost GF, Cattin P.C., & International Journal of Computer Assisted Radiology and Surgery, 15(11), 1797–1805. https://doi.org/10.1007/s11548-020-02258-0
(2020). Force quantification and simulation of pedicle screw tract palpation using direct visuo-haptic volume rendering.
Bannwart M., Bayer S.L., Konig Ignasiak N., Bolliger M., Journal of NeuroEngineering and Rehabilitation, 17(1). https://doi.org/10.1186/s12984-020-00735-w
, & Easthope C.A. (2020). Mediolateral damping of an overhead body weight support system assists stability during treadmill walking.
Bannwart M., Bayer S.L., Konig Ignasiak N., Bolliger M., Journal of NeuroEngineering and Rehabilitation, 17(1). https://doi.org/10.1186/s12984-020-00735-w
, & Easthope C.A. (2020). Mediolateral damping of an overhead body weight support system assists stability during treadmill walking.
The miracle (pp. 247–253). Springer International Publishing. https://doi.org/10.1007/978-3-030-29604-9_19
(2020).
The miracle (pp. 247–253). Springer International Publishing. https://doi.org/10.1007/978-3-030-29604-9_19
(2020).
Just F, Özen Ö, Tortora S, Klamroth-Marganska V, Riener R, & Journal of Neuroengineering and Rehabilitation, 17(1), 13. https://doi.org/10.1186/s12984-020-0644-3
. (2020). Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
Just F, Özen Ö, Tortora S, Klamroth-Marganska V, Riener R, & Journal of Neuroengineering and Rehabilitation, 17(1), 13. https://doi.org/10.1186/s12984-020-0644-3
. (2020). Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
Basalp E., Bachmann P., Gerig N., Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10030734
, & Wolf P. (2020). Configurable 3D rowing model renders realistic forces on a simulator for indoor training.
Basalp E., Bachmann P., Gerig N., Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10030734
, & Wolf P. (2020). Configurable 3D rowing model renders realistic forces on a simulator for indoor training.
E. Basalp, P. Bachmann, N. Gerig, Applied Sciences (Switzerland), 10(3), 734. https://doi.org/10.3390/app10030734
, & P.
Wolf. (2020). Configurable 3D rowing model renders realistic forces on a simulator for indoor training.
E. Basalp, P. Bachmann, N. Gerig, Applied Sciences (Switzerland), 10(3), 734. https://doi.org/10.3390/app10030734
, & P.
Wolf. (2020). Configurable 3D rowing model renders realistic forces on a simulator for indoor training.
Iafolla, Lorenzo, Filipozzi, Massimiliano, Freund, Sara, Zam, Azhar, Sensors and Actuators A: Physical, 312, 112100. https://doi.org/10.1016/j.sna.2020.112100
, & Cattin, Philippe Claude. (2020). Proof of concept of a novel absolute rotary encoder.
Iafolla, Lorenzo, Filipozzi, Massimiliano, Freund, Sara, Zam, Azhar, Sensors and Actuators A: Physical, 312, 112100. https://doi.org/10.1016/j.sna.2020.112100
, & Cattin, Philippe Claude. (2020). Proof of concept of a novel absolute rotary encoder.
Schnider E., Horvath A., 3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies. 12436 LNCS, 40–49. https://doi.org/10.1007/978-3-030-59861-7_5
, Zam A., Muller-Gerbl M., & Cattin P.C. (2020).
Schnider E., Horvath A., 3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies. 12436 LNCS, 40–49. https://doi.org/10.1007/978-3-030-59861-7_5
, Zam A., Muller-Gerbl M., & Cattin P.C. (2020).
Lasers in Oral and Maxillofacial Surgery (Vol. 1, pp. 247–253).
. (2020). The MIRACLE. In Springer (Ed.),
Lasers in Oral and Maxillofacial Surgery (Vol. 1, pp. 247–253).
. (2020). The MIRACLE. In Springer (Ed.),
Künstliche Intelligenz (Vol. 2020). Aargauer Naturforschenden Gesellschaft.
. (2020). Das MIRACLE Projekt. In ANG-Fokus (Ed.),
Künstliche Intelligenz (Vol. 2020). Aargauer Naturforschenden Gesellschaft.
. (2020). Das MIRACLE Projekt. In ANG-Fokus (Ed.),
L. Fasel, S. Schraivogel, N. Gerig, N. Friederich, A. Zam, P. Cattin, & Automed 2020.
. (2020). Visual Servoing for Tracking Cartilage with a Robotic Endoscope.
L. Fasel, S. Schraivogel, N. Gerig, N. Friederich, A. Zam, P. Cattin, & Automed 2020.
. (2020). Visual Servoing for Tracking Cartilage with a Robotic Endoscope.
M. Karnam, R. Parini, M. Eugster, P. Cattin, Automed 2020.
, & N. Gerig. (2020). An intuitive interface for null space visualization and control of redundant surgical robots.
M. Karnam, R. Parini, M. Eugster, P. Cattin, Automed 2020.
, & N. Gerig. (2020). An intuitive interface for null space visualization and control of redundant surgical robots.
Bannwart M, Rohland E, Easthope CA, Journal of Neuroengineering and Rehabilitation, 16(1), 157. https://doi.org/10.1186/s12984-019-0631-8
, & Bolliger M. (2019). Robotic body weight support enables safe stair negotiation in compliance with basic locomotor principles.
Bannwart M, Rohland E, Easthope CA, Journal of Neuroengineering and Rehabilitation, 16(1), 157. https://doi.org/10.1186/s12984-019-0631-8
, & Bolliger M. (2019). Robotic body weight support enables safe stair negotiation in compliance with basic locomotor principles.
Iafolla L., Witthauer L., Freund S., Fasel L., Zam A., Preliminary Tests of the Miniaturization of a Novel Concept of Angular Sensors. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956732
, & Cattin P.C. (2019).
Iafolla L., Witthauer L., Freund S., Fasel L., Zam A., Preliminary Tests of the Miniaturization of a Novel Concept of Angular Sensors. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956732
, & Cattin P.C. (2019).
Iafolla L., Witthauer L., Freund S., Zam A., Data Acquisition System for a Medical Tracking Device based on a Novel Angular Sensor : How to Acquire and Process Data from the ASTRAS Tracking System. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956777
, & Cattin P.C. (2019).
Iafolla L., Witthauer L., Freund S., Zam A., Data Acquisition System for a Medical Tracking Device based on a Novel Angular Sensor : How to Acquire and Process Data from the ASTRAS Tracking System. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956777
, & Cattin P.C. (2019).
Kenhagho H.N., Canbaz F., A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956743
, Guzman R., Cattin P., & Zam A. (2019).
Kenhagho H.N., Canbaz F., A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956743
, Guzman R., Cattin P., & Zam A. (2019).
Zoller E.I., Cattin P.C., Zam A., & Assessment of the Functional Rotational Workspace of Different Grasp Type Handles for the lambda.6 Haptic Device. 127–132. https://doi.org/10.1109/whc.2019.8816080
(2019).
Zoller E.I., Cattin P.C., Zam A., & Assessment of the Functional Rotational Workspace of Different Grasp Type Handles for the lambda.6 Haptic Device. 127–132. https://doi.org/10.1109/whc.2019.8816080
(2019).
Penalver-Andres J., Duarte J., Vallery H., Klamroth-Marganska V., Riener R., Marchal-Crespo L., & Do we need complex rehabilitation robots for training complex tasks? 2019-June, 1085–1090. https://doi.org/10.1109/icorr.2019.8779384
(2019).
Penalver-Andres J., Duarte J., Vallery H., Klamroth-Marganska V., Riener R., Marchal-Crespo L., & Do we need complex rehabilitation robots for training complex tasks? 2019-June, 1085–1090. https://doi.org/10.1109/icorr.2019.8779384
(2019).
Basalp, Ekin, Marchal-Crespo, Laura, Frontiers in Robotics and AI, 6, 74. https://doi.org/10.3389/frobt.2019.00074
, Riener, Robert, & Wolf, Peter. (2019). Rowing Simulator Modulates Water Density to Foster Motor Learning.
Basalp, Ekin, Marchal-Crespo, Laura, Frontiers in Robotics and AI, 6, 74. https://doi.org/10.3389/frobt.2019.00074
, Riener, Robert, & Wolf, Peter. (2019). Rowing Simulator Modulates Water Density to Foster Motor Learning.
Bayhaqi, Yakub A., Navarini, Alexander, Proceedings of SPIE (Vol. 11044). SPIE. https://doi.org/10.1117/12.2503214
, Cattin, Philippe C., & Zam, Azhar. (2019). Neural Network in Tissue Characterization of Optical Coherence Tomography Images for Smart Laser Surgery: A Preliminary Study. In Nasution, A.; Hatta, A. M. (Ed.),
Bayhaqi, Yakub A., Navarini, Alexander, Proceedings of SPIE (Vol. 11044). SPIE. https://doi.org/10.1117/12.2503214
, Cattin, Philippe C., & Zam, Azhar. (2019). Neural Network in Tissue Characterization of Optical Coherence Tomography Images for Smart Laser Surgery: A Preliminary Study. In Nasution, A.; Hatta, A. M. (Ed.),
Faludi B., Zoller E.I., Gerig N., Zam A., Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality. 11768 LNCS, 29–37. https://doi.org/10.1007/978-3-030-32254-0_4
, & Cattin P.C. (2019).
Faludi B., Zoller E.I., Gerig N., Zam A., Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality. 11768 LNCS, 29–37. https://doi.org/10.1007/978-3-030-32254-0_4
, & Cattin P.C. (2019).
Just F., Gunz D., Duarte J., Simonetti D., Riener R., & Improving usability of rehabilitation robots: Hand module evaluation of the ARMin exoskeleton (Vol. 22, pp. 80–84). Springer International Publishing. https://doi.org/10.1007/978-3-030-01887-0_16
(2019).
Just F., Gunz D., Duarte J., Simonetti D., Riener R., & Improving usability of rehabilitation robots: Hand module evaluation of the ARMin exoskeleton (Vol. 22, pp. 80–84). Springer International Publishing. https://doi.org/10.1007/978-3-030-01887-0_16
(2019).
Kenhagho, Herve Nguendon, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE T ULTRASON FERR), 66(9), 1435–1443. https://doi.org/10.1109/tuffc.2019.2923696
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2019). Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer.
Kenhagho, Herve Nguendon, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE T ULTRASON FERR), 66(9), 1435–1443. https://doi.org/10.1109/tuffc.2019.2923696
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2019). Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer.
Nguendon Kenhagho, Herve, Shevchik, Sergey, Saeidi, Fatemeh, Faivre, Neige, Meylan, Bastian, Materials, 12(8), 1338. https://doi.org/10.3390/ma12081338
, Guzman, Raphael, Cattin, Philippe, Wasmer, Kilian, & Zam, Azhar. (2019). Characterization of Ablated Bone and Muscle for Long-Pulsed Laser Ablation in Dry and Wet Conditions.
Nguendon Kenhagho, Herve, Shevchik, Sergey, Saeidi, Fatemeh, Faivre, Neige, Meylan, Bastian, Materials, 12(8), 1338. https://doi.org/10.3390/ma12081338
, Guzman, Raphael, Cattin, Philippe, Wasmer, Kilian, & Zam, Azhar. (2019). Characterization of Ablated Bone and Muscle for Long-Pulsed Laser Ablation in Dry and Wet Conditions.
Science Robotics, 4(27), eaav1560. https://doi.org/10.1126/scirobotics.aav1560
, Gerig, Nicolas, Sigrist, Roland, Riener, Robert, & Wolf, Peter. (2019). When a robot teaches humans: Automated feedback selection accelerates motor learning.
Science Robotics, 4(27), eaav1560. https://doi.org/10.1126/scirobotics.aav1560
, Gerig, Nicolas, Sigrist, Roland, Riener, Robert, & Wolf, Peter. (2019). When a robot teaches humans: Automated feedback selection accelerates motor learning.
Susic, Ivan, Zam, Azhar, Cattin, Philippe C., & Mechanisms and Machine Science (Vol. 65, pp. 70–77). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-00329-6_9
. (2019). Enabling minimal invasive palpation in flexible robotic endoscopes. In Carbone, G; Ceccarelli, M; Pisla, D (ed.),
Susic, Ivan, Zam, Azhar, Cattin, Philippe C., & Mechanisms and Machine Science (Vol. 65, pp. 70–77). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-00329-6_9
. (2019). Enabling minimal invasive palpation in flexible robotic endoscopes. In Carbone, G; Ceccarelli, M; Pisla, D (ed.),
E. Basalp, L. Marchal-Crespo, Frontiers in Robotics and AI, 6, 74.
, R. Riener, & P. Wolf. (2019). Rowing simulator modulates water density to foster motor learning.
E. Basalp, L. Marchal-Crespo, Frontiers in Robotics and AI, 6, 74.
, R. Riener, & P. Wolf. (2019). Rowing simulator modulates water density to foster motor learning.
H. Abbasi, SPIE Optical Metrology.
, R. Guzman, P. C. Cattin, & A. Zam. (2019). Design and implementation of a compact high-throughput echelle spectrometer using off-the-shelf off-axis parabolic mirrors for analysis of biological samples by LIBS.
H. Abbasi, SPIE Optical Metrology.
, R. Guzman, P. C. Cattin, & A. Zam. (2019). Design and implementation of a compact high-throughput echelle spectrometer using off-the-shelf off-axis parabolic mirrors for analysis of biological samples by LIBS.
Eugster M., Cattin P.C., Zam, Azhar, & A Parallel Robotic Mechanism for the Stabilization and Guidance of an Endoscope Tip in Laser Osteotomy. 1306–1311. https://doi.org/10.1109/iros.2018.8594188
. (2018).
Eugster M., Cattin P.C., Zam, Azhar, & A Parallel Robotic Mechanism for the Stabilization and Guidance of an Endoscope Tip in Laser Osteotomy. 1306–1311. https://doi.org/10.1109/iros.2018.8594188
. (2018).
Beltran Bernal L.M., Schmidt I.T., Vulin N., Widmer J., Snedeker J.G., Cattin P.C., Zam A., & At-Automatisierungstechnik, 66(12), 1072–1082. https://doi.org/10.1515/auto-2018-0072
(2018). Optimizing controlled laser cutting of hard tissue (bone).
Beltran Bernal L.M., Schmidt I.T., Vulin N., Widmer J., Snedeker J.G., Cattin P.C., Zam A., & At-Automatisierungstechnik, 66(12), 1072–1082. https://doi.org/10.1515/auto-2018-0072
(2018). Optimizing controlled laser cutting of hard tissue (bone).
Just, Fabian, Oezen, Oezhan, Boesch, Philipp, Bobrovsky, Hanna, Klamroth-Marganska, Verena, Riener, Robert, & At-Automatisierungstechnik, 66(12), 1014–1026. https://doi.org/10.1515/auto-2018-0069
. (2018). Exoskeleton transparency: Feed-forward compensation vs. disturbance observer.
Just, Fabian, Oezen, Oezhan, Boesch, Philipp, Bobrovsky, Hanna, Klamroth-Marganska, Verena, Riener, Robert, & At-Automatisierungstechnik, 66(12), 1014–1026. https://doi.org/10.1515/auto-2018-0069
. (2018). Exoskeleton transparency: Feed-forward compensation vs. disturbance observer.
Kenhagho H.N., Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer: Preliminary Results. 2018-October. https://doi.org/10.1109/ultsym.2018.8579654
, Guzman R., Cattin P., & Zam, Azhar. (2018).
Kenhagho H.N., Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer: Preliminary Results. 2018-October. https://doi.org/10.1109/ultsym.2018.8579654
, Guzman R., Cattin P., & Zam, Azhar. (2018).
Easthope CS, Traini LR, Awai L, Franz M, Journal of neuroengineering and rehabilitation, 15(1), 102. https://doi.org/10.1186/s12984-018-0436-1
, Curt A, & Bolliger M. (2018). Overground walking patterns after chronic incomplete spinal cord injury show distinct response patterns to unloading.
Easthope CS, Traini LR, Awai L, Franz M, Journal of neuroengineering and rehabilitation, 15(1), 102. https://doi.org/10.1186/s12984-018-0436-1
, Curt A, & Bolliger M. (2018). Overground walking patterns after chronic incomplete spinal cord injury show distinct response patterns to unloading.
Ahmadi M., Hassani R.H., Kosa G., Zam A., Guzman R., Cattin P.C., & EndoCAT: An EtherCAT-based Articulated Rear View Endoscope for Single Port Surgery. 2018-August, 1070–1075. https://doi.org/10.1109/biorob.2018.8487648
(2018).
Ahmadi M., Hassani R.H., Kosa G., Zam A., Guzman R., Cattin P.C., & EndoCAT: An EtherCAT-based Articulated Rear View Endoscope for Single Port Surgery. 2018-August, 1070–1075. https://doi.org/10.1109/biorob.2018.8487648
(2018).
Iafolla, Lorenzo, Witthauer, Lilian, Zam, Azhar, SENSORS AND ACTUATORS A-PHYSICAL, 280, 390–398. https://doi.org/10.1016/j.sna.2018.08.012
, & Cattin, Philippe Claude. (2018). Proof of principle of a novel angular sensor concept for tracking systems.
Iafolla, Lorenzo, Witthauer, Lilian, Zam, Azhar, SENSORS AND ACTUATORS A-PHYSICAL, 280, 390–398. https://doi.org/10.1016/j.sna.2018.08.012
, & Cattin, Philippe Claude. (2018). Proof of principle of a novel angular sensor concept for tracking systems.
Sušić, I., Cattin, P., Zam, A., & Versatile, Force Range-Adjustable, Tri-axial Force Sensor with Integrated Micro Camera for the Tip of Endoscopic Devices [Proceedings-article]. https://doi.org/10.31256/hsmr2018.48
. (2018, June 24).
Sušić, I., Cattin, P., Zam, A., & Versatile, Force Range-Adjustable, Tri-axial Force Sensor with Integrated Micro Camera for the Tip of Endoscopic Devices [Proceedings-article]. https://doi.org/10.31256/hsmr2018.48
. (2018, June 24).
Abbasi, Hamed, Journal of biomedical optics, 23(7), 1–7. https://doi.org/10.1117/1.jbo.23.7.071206
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2018). Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy.
Abbasi, Hamed, Journal of biomedical optics, 23(7), 1–7. https://doi.org/10.1117/1.jbo.23.7.071206
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2018). Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy.
Abbasi, Hamed, SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management, 10505. https://doi.org/10.1117/12.2290980
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2018). Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome.
Abbasi, Hamed, SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management, 10505. https://doi.org/10.1117/12.2290980
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2018). Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome.
Abbasi, Hamed, Progress in biomedical optics and imaging, 10685. https://doi.org/10.1117/12.2309473
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2018). Differentiation of femur bone from surrounding soft tissue using laserinduced breakdown spectroscopy as a feedback system for Smart Laserosteotomy.
Abbasi, Hamed, Progress in biomedical optics and imaging, 10685. https://doi.org/10.1117/12.2309473
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2018). Differentiation of femur bone from surrounding soft tissue using laserinduced breakdown spectroscopy as a feedback system for Smart Laserosteotomy.
Abbasi, Hamed, Sugiarto, Irena, Pilot Ex Vivo Study of Laser-Induced Breakdown Spectroscopy to Detect Bone Dehydration: An Approach for Irrigation Feedback in Laserosteotomy. https://doi.org/10.5281/zenodo.3514693
, Guzman, Raphael, Cattin, Philippe, & Zam, Azhar. (2018, January 1).
Abbasi, Hamed, Sugiarto, Irena, Pilot Ex Vivo Study of Laser-Induced Breakdown Spectroscopy to Detect Bone Dehydration: An Approach for Irrigation Feedback in Laserosteotomy. https://doi.org/10.5281/zenodo.3514693
, Guzman, Raphael, Cattin, Philippe, & Zam, Azhar. (2018, January 1).
Beltrán Bernal, Lina M., Shayeganrad, Gholamreza, Kosa, Gabor, Zelechowski, Marek, SPIE BiOS, 2018, 10492. https://doi.org/10.1117/12.2290929
, Friederich, Niklaus, Cattin, Philippe C., & Zam, Azhar. (2018). Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions.
Beltrán Bernal, Lina M., Shayeganrad, Gholamreza, Kosa, Gabor, Zelechowski, Marek, SPIE BiOS, 2018, 10492. https://doi.org/10.1117/12.2290929
, Friederich, Niklaus, Cattin, Philippe C., & Zam, Azhar. (2018). Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions.