Publications
117 found
Show per page
Chancellor, Andrew, Constantin, Daniel, Berloffa, Giuliano, Yang, Qinmei, Nosi, Vladimir, Loureiro, José Pedro, Colombo, Rodrigo, Jakob, Roman P., Joss, Daniel, Pfeffer, Michael, De Simone, Giulia, Morabito, Aurelia, Schaefer, Verena, Vacchini, Alessandro, Brunelli, Laura, Montagna, Daniela, Heim, Markus, Zippelius, Alfred, Davoli, Enrico, et al. (2024). The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells [Journal-article]. Immunity, Online ahead of print. https://doi.org/10.1016/j.immuni.2024.11.019
Chancellor, Andrew, Constantin, Daniel, Berloffa, Giuliano, Yang, Qinmei, Nosi, Vladimir, Loureiro, José Pedro, Colombo, Rodrigo, Jakob, Roman P., Joss, Daniel, Pfeffer, Michael, De Simone, Giulia, Morabito, Aurelia, Schaefer, Verena, Vacchini, Alessandro, Brunelli, Laura, Montagna, Daniela, Heim, Markus, Zippelius, Alfred, Davoli, Enrico, et al. (2024). The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells [Journal-article]. Immunity, Online ahead of print. https://doi.org/10.1016/j.immuni.2024.11.019
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., ACS Catalysis, 14, 17171–17179. https://doi.org/10.1021/acscatal.4c04163
, & Ward, Thomas R. (2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article].
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., ACS Catalysis, 14, 17171–17179. https://doi.org/10.1021/acscatal.4c04163
, & Ward, Thomas R. (2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article].
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
, Üzümcü, Dilbirin, & Ward, Thomas R. (2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases.
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
, Üzümcü, Dilbirin, & Ward, Thomas R. (2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases.
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
, & Hall, Michael N. (2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article].
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
, & Hall, Michael N. (2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article].
Hiller, Sebastian, Szentgyörgyi, Viktória, Jakob, Roman, Research Square. Research Square. https://doi.org/10.21203/rs.3.rs-4796355/v1
, & Spang, Anne. (2024). A functional chaperone condensate in the endoplasmic reticulum. In
Hiller, Sebastian, Szentgyörgyi, Viktória, Jakob, Roman, Research Square. Research Square. https://doi.org/10.21203/rs.3.rs-4796355/v1
, & Spang, Anne. (2024). A functional chaperone condensate in the endoplasmic reticulum. In
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
, Correia, Bruno E., & Ward, Thomas R. (2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article].
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
, Correia, Bruno E., & Ward, Thomas R. (2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article].
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, Nature Communications, 15. https://doi.org/10.1038/s41467-024-48295-0
, & Jenal, Urs. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution.
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, Nature Communications, 15. https://doi.org/10.1038/s41467-024-48295-0
, & Jenal, Urs. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution.
Höing, Lars, Sowa, Sven T., Toplak, Marina, Reinhardt, Jakob K., Jakob, Roman, Chemical Science, 15(20), 7749–7756. https://doi.org/10.1039/d4sc01715c
, Lill, Markus A., & Teufel, Robin. (2024). Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products [Journal-article].
Höing, Lars, Sowa, Sven T., Toplak, Marina, Reinhardt, Jakob K., Jakob, Roman, Chemical Science, 15(20), 7749–7756. https://doi.org/10.1039/d4sc01715c
, Lill, Markus A., & Teufel, Robin. (2024). Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products [Journal-article].
Nemli, Dilara D., Jiang, Xiaohua, Jakob, Roman P., Gloder, Laura Muñoz, Schwardt, Oliver, Rabbani, Said, Journal of Medicinal Chemistry, 67(16), 13813–13828. https://doi.org/10.1021/acs.jmedchem.4c00623
, Ernst, Beat, & Cramer, Jonathan. (2024). Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics.
Nemli, Dilara D., Jiang, Xiaohua, Jakob, Roman P., Gloder, Laura Muñoz, Schwardt, Oliver, Rabbani, Said, Journal of Medicinal Chemistry, 67(16), 13813–13828. https://doi.org/10.1021/acs.jmedchem.4c00623
, Ernst, Beat, & Cramer, Jonathan. (2024). Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics.
Wagner, Beatrice, Smieško, Martin, Jakob, Roman P., Mühlethaler, Tobias, Cramer, Jonathan, European Journal of Medicinal Chemistry, 272. https://doi.org/10.1016/j.ejmech.2024.116455
, Rabbani, Said, Schwardt, Oliver, & Ernst, Beat. (2024). Analogues of the pan-selectin antagonist rivipansel (GMI-1070).
Wagner, Beatrice, Smieško, Martin, Jakob, Roman P., Mühlethaler, Tobias, Cramer, Jonathan, European Journal of Medicinal Chemistry, 272. https://doi.org/10.1016/j.ejmech.2024.116455
, Rabbani, Said, Schwardt, Oliver, & Ernst, Beat. (2024). Analogues of the pan-selectin antagonist rivipansel (GMI-1070).
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
, Üzümcü, Dilbirin, & Ward, Thomas R. (2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
, Üzümcü, Dilbirin, & Ward, Thomas R. (2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In
Degen, Morris, Santos, José Carlos, Pluhackova, Kristyna, Cebrero, Gonzalo, Ramos, Saray, Jankevicius, Gytis, Hartenian, Ella, Guillerm, Undina, Mari, Stefania A., Kohl, Bastian, Müller, Daniel J., Schanda, Paul, Nature, 618(7967), 1065–1071. https://doi.org/10.1038/s41586-023-05991-z
, Perez, Camilo, Sieben, Christian, Broz, Petr, & Hiller, Sebastian. (2023). Structural basis of NINJ1-mediated plasma membrane rupture in cell death.
Degen, Morris, Santos, José Carlos, Pluhackova, Kristyna, Cebrero, Gonzalo, Ramos, Saray, Jankevicius, Gytis, Hartenian, Ella, Guillerm, Undina, Mari, Stefania A., Kohl, Bastian, Müller, Daniel J., Schanda, Paul, Nature, 618(7967), 1065–1071. https://doi.org/10.1038/s41586-023-05991-z
, Perez, Camilo, Sieben, Christian, Broz, Petr, & Hiller, Sebastian. (2023). Structural basis of NINJ1-mediated plasma membrane rupture in cell death.
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, Molecular cell, 83(12), 2108–2121. https://doi.org/10.1016/j.molcel.2023.05.002
, Shukla, Arun K., & Grzesiek, Stephan. (2023). A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes.
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, Molecular cell, 83(12), 2108–2121. https://doi.org/10.1016/j.molcel.2023.05.002
, Shukla, Arun K., & Grzesiek, Stephan. (2023). A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes.
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, eLife, 12, e85103. https://doi.org/10.7554/elife.85103
, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia.
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, eLife, 12, e85103. https://doi.org/10.7554/elife.85103
, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia.
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.10.511578
, Shukla, Arun K., & Grzesiek, Stephan. (2022).
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.10.511578
, Shukla, Arun K., & Grzesiek, Stephan. (2022).
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Reinders, Alberto, Klotz, Alexander, A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.18.512705
, & Jenal, Urs. (2022).
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Reinders, Alberto, Klotz, Alexander, A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.18.512705
, & Jenal, Urs. (2022).
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
, & Hall, Michael N. (2022). mTOR substrate phosphorylation in growth control.
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
, & Hall, Michael N. (2022). mTOR substrate phosphorylation in growth control.
Chaker-Margot, Malik, Werten, Sebastiaan, Dunzendorfer-Matt, Theresia, Lechner, Stefan, Ruepp, Angela, Scheffzek, Klaus, & Molecular Cell, 82(7), 1288–1296. https://doi.org/10.1016/j.molcel.2022.03.011
. (2022). Structural basis of activation of the tumor suppressor protein neurofibromin.
Chaker-Margot, Malik, Werten, Sebastiaan, Dunzendorfer-Matt, Theresia, Lechner, Stefan, Ruepp, Angela, Scheffzek, Klaus, & Molecular Cell, 82(7), 1288–1296. https://doi.org/10.1016/j.molcel.2022.03.011
. (2022). Structural basis of activation of the tumor suppressor protein neurofibromin.
Miller, Ryan D., Iinishi, Akira, Modaresi, Seyed Majed, Yoo, Byung-Kuk, Curtis, Thomas D., Lariviere, Patrick J., Liang, Libang, Son, Sangkeun, Nicolau, Samantha, Bargabos, Rachel, Morrissette, Madeleine, Gates, Michael F., Pitt, Norman, Jakob, Roman P., Rath, Parthasarathi, Nature Microbiology, 7(10), 1661–1672. https://doi.org/10.1038/s41564-022-01227-4
, Malyutin, Andrey G., Kaiser, Jens T., Niles, Samantha, et al. (2022). Computational identification of a systemic antibiotic for gram-negative bacteria.
Miller, Ryan D., Iinishi, Akira, Modaresi, Seyed Majed, Yoo, Byung-Kuk, Curtis, Thomas D., Lariviere, Patrick J., Liang, Libang, Son, Sangkeun, Nicolau, Samantha, Bargabos, Rachel, Morrissette, Madeleine, Gates, Michael F., Pitt, Norman, Jakob, Roman P., Rath, Parthasarathi, Nature Microbiology, 7(10), 1661–1672. https://doi.org/10.1038/s41564-022-01227-4
, Malyutin, Andrey G., Kaiser, Jens T., Niles, Samantha, et al. (2022). Computational identification of a systemic antibiotic for gram-negative bacteria.
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Balasopoulos, Dimitrios, Topitsch, Annika, Structure, 30(9), 1254–1268. https://doi.org/10.1016/j.str.2022.06.006
, & Abrahams, Jan Pieter. (2022). Catalytic cycling of human mitochondrial Lon protease.
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Balasopoulos, Dimitrios, Topitsch, Annika, Structure, 30(9), 1254–1268. https://doi.org/10.1016/j.str.2022.06.006
, & Abrahams, Jan Pieter. (2022). Catalytic cycling of human mitochondrial Lon protease.
Tittes, Yves U., Herbst, Dominik A., Martin, Solène F. X., Munoz-Hernandez, Hugo, Jakob, Roman P., & Science Advances, 8(38), eabo6918. https://doi.org/10.1126/sciadv.abo6918
. (2022). The structure of a polyketide synthase bimodule core.
Tittes, Yves U., Herbst, Dominik A., Martin, Solène F. X., Munoz-Hernandez, Hugo, Jakob, Roman P., & Science Advances, 8(38), eabo6918. https://doi.org/10.1126/sciadv.abo6918
. (2022). The structure of a polyketide synthase bimodule core.
Zhang, Lei, Toplak, Marina, Saleem-Batcha, Raspudin, Höing, Lars Simon, Jakob, Roman, Jehmlich, Nico, von Bergen , Martin, ChemBioChem, 24(2), e202200632. https://doi.org/10.1002/cbic.202200632
, & Teufel, Robin. (2022). Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol.
Zhang, Lei, Toplak, Marina, Saleem-Batcha, Raspudin, Höing, Lars Simon, Jakob, Roman, Jehmlich, Nico, von Bergen , Martin, ChemBioChem, 24(2), e202200632. https://doi.org/10.1002/cbic.202200632
, & Teufel, Robin. (2022). Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol.
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Topitsch, Annika, Catalytic cycling of human mitochondrial Lon protease [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.07.28.454137
, & Abrahams, Jan Pieter. (2021).
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Topitsch, Annika, Catalytic cycling of human mitochondrial Lon protease [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.07.28.454137
, & Abrahams, Jan Pieter. (2021).
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., Hall, Michael N., Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
, & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., Hall, Michael N., Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
, & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
Böhringer, Nils, Green, Robert, Liu, Yang, Mettal, Ute, Marner, Michael, Modaresi, Seyed Majed, Jakob, Roman P., Wuisan, Zerlina G., Microbiology spectrum, 9(3), e0153521. https://doi.org/10.1128/spectrum.01535-21
, Iinishi, Akira, Hiller, Sebastian, Lewis, Kim, & Schäberle, Till F. (2021). Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs.
Böhringer, Nils, Green, Robert, Liu, Yang, Mettal, Ute, Marner, Michael, Modaresi, Seyed Majed, Jakob, Roman P., Wuisan, Zerlina G., Microbiology spectrum, 9(3), e0153521. https://doi.org/10.1128/spectrum.01535-21
, Iinishi, Akira, Hiller, Sebastian, Lewis, Kim, & Schäberle, Till F. (2021). Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs.
Cramer, Jonathan, Lakkaichi, Adem, Aliu, Butrint, Jakob, Roman P., Klein, Sebastian, Cattaneo, Ivan, Jiang, Xiaohua, Rabbani, Said, Schwardt, Oliver, Zimmer, Gert, Ciancaglini, Matias, Abreu Mota, Tiago, Journal of the American Chemical Society, 143(42), 17465–17478. https://doi.org/10.1021/jacs.1c06778
, & Ernst, Beat. (2021). Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2.
Cramer, Jonathan, Lakkaichi, Adem, Aliu, Butrint, Jakob, Roman P., Klein, Sebastian, Cattaneo, Ivan, Jiang, Xiaohua, Rabbani, Said, Schwardt, Oliver, Zimmer, Gert, Ciancaglini, Matias, Abreu Mota, Tiago, Journal of the American Chemical Society, 143(42), 17465–17478. https://doi.org/10.1021/jacs.1c06778
, & Ernst, Beat. (2021). Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2.
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Branco, Camila, Paolini-Bertrand, Marianne, Calo, Nicolas, Cerini, Fabrice, Schertler, Gebhard F. X., Hartley, Oliver, Stahlberg, Henning, Science Advances, 7(25), eabg8685. https://doi.org/10.1126/sciadv.abg8685
, Deupi, Xavier, & Grzesiek, Stephan. (2021). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist.
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Branco, Camila, Paolini-Bertrand, Marianne, Calo, Nicolas, Cerini, Fabrice, Schertler, Gebhard F. X., Hartley, Oliver, Stahlberg, Henning, Science Advances, 7(25), eabg8685. https://doi.org/10.1126/sciadv.abg8685
, Deupi, Xavier, & Grzesiek, Stephan. (2021). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist.
Jia, Jian-Jun, Lahr, Roni M., Solgaard, Michael T., Moraes, Bruno J., Pointet, Roberta, Yang, An-Dao, Celucci, Giovanna, Graber, Tyson E., Hoang, Huy-Dung, Niklaus, Marius R., Pena, Izabella A., Hollensen, Anne K., Smith, Ewan M., Chaker-Margot, Malik, Anton, Leonie, Dajadian, Christopher, Livingstone, Mark, Hearnden, Jaclyn, Wang, Xu-Dong, et al. (2021). mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Research, 49(6), 3461–3489. https://doi.org/10.1093/nar/gkaa1239
Jia, Jian-Jun, Lahr, Roni M., Solgaard, Michael T., Moraes, Bruno J., Pointet, Roberta, Yang, An-Dao, Celucci, Giovanna, Graber, Tyson E., Hoang, Huy-Dung, Niklaus, Marius R., Pena, Izabella A., Hollensen, Anne K., Smith, Ewan M., Chaker-Margot, Malik, Anton, Leonie, Dajadian, Christopher, Livingstone, Mark, Hearnden, Jaclyn, Wang, Xu-Dong, et al. (2021). mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Research, 49(6), 3461–3489. https://doi.org/10.1093/nar/gkaa1239
Kaur, Hundeep, Jakob, Roman P., Marzinek, Jan K., Green, Robert, Imai, Yu, Bolla, Jani Reddy, Agustoni, Elia, Robinson, Carol V., Bond, Peter J., Lewis, Kim, Nature, 593(7857), 125–129. https://doi.org/10.1038/s41586-021-03455-w
, & Hiller, Sebastian. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase.
Kaur, Hundeep, Jakob, Roman P., Marzinek, Jan K., Green, Robert, Imai, Yu, Bolla, Jani Reddy, Agustoni, Elia, Robinson, Carol V., Bond, Peter J., Lewis, Kim, Nature, 593(7857), 125–129. https://doi.org/10.1038/s41586-021-03455-w
, & Hiller, Sebastian. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase.
Pipercevic, Joka, Jakob, Roman P., Righetto, Ricardo D., Goldie, Kenneth N., Stahlberg, Henning, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), 183607. https://doi.org/10.1016/j.bbamem.2021.183607
, & Hiller, Sebastian. (2021). Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia.
Pipercevic, Joka, Jakob, Roman P., Righetto, Ricardo D., Goldie, Kenneth N., Stahlberg, Henning, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), 183607. https://doi.org/10.1016/j.bbamem.2021.183607
, & Hiller, Sebastian. (2021). Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia.
Tomašič, Tihomir, Rabbani, Said, Jakob, Roman P., Reisner, Andreas, Jakopin, Žiga, European Journal of Medicinal Chemistry, 211, 113093. https://doi.org/10.1016/j.ejmech.2020.113093
, Ernst, Beat, & Anderluh, Marko. (2021). Does targeting Arg98 of FimH lead to high affinity antagonists?
Tomašič, Tihomir, Rabbani, Said, Jakob, Roman P., Reisner, Andreas, Jakopin, Žiga, European Journal of Medicinal Chemistry, 211, 113093. https://doi.org/10.1016/j.ejmech.2020.113093
, Ernst, Beat, & Anderluh, Marko. (2021). Does targeting Arg98 of FimH lead to high affinity antagonists?
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, Hall, Michael N., & eLife, 10, e70871. https://doi.org/10.7554/elife.70871
. (2021). Regulation of human mTOR complexes by DEPTOR.
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, Hall, Michael N., & eLife, 10, e70871. https://doi.org/10.7554/elife.70871
. (2021). Regulation of human mTOR complexes by DEPTOR.
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Schertler, Gebhard F.X., Hartley, Oliver, Stahlberg, Henning, Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.11.27.401117
, Deupi, Xavier, & Grzesiek, Stephan. (2020).
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Schertler, Gebhard F.X., Hartley, Oliver, Stahlberg, Henning, Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.11.27.401117
, Deupi, Xavier, & Grzesiek, Stephan. (2020).
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, eLife, 9, 53683. https://doi.org/10.7554/elife.53683
, & Schenck, Stephan. (2020). Structural basis for ion selectivity in TMEM175 K+ channels.
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, eLife, 9, 53683. https://doi.org/10.7554/elife.53683
, & Schenck, Stephan. (2020). Structural basis for ion selectivity in TMEM175 K+ channels.
Cramer, Jonathan, Jiang, Xiaohua, Schönemann, Wojciech, Silbermann, Marleen, Zihlmann, Pascal, Siegrist, Stefan, Fiege, Brigitte, Jakob, Roman Peter, Rabbani, Said, RSC Chemical Biology, 1(4), 281–287. https://doi.org/10.1039/d0cb00108b
, & Ernst, Beat. (2020). Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding.
Cramer, Jonathan, Jiang, Xiaohua, Schönemann, Wojciech, Silbermann, Marleen, Zihlmann, Pascal, Siegrist, Stefan, Fiege, Brigitte, Jakob, Roman Peter, Rabbani, Said, RSC Chemical Biology, 1(4), 281–287. https://doi.org/10.1039/d0cb00108b
, & Ernst, Beat. (2020). Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding.
Künzli, Marco, Schreiner, David, Pereboom, Tamara C., Swarnalekha, Nivedya, Litzler, Ludivine C., Lötscher, Jonas, Ertuna, Yusuf I., Roux, Julien, Geier, Florian, Jakob, Roman P., Science Immunology, 5(45), eaay5552. https://doi.org/10.1126/sciimmunol.aay5552
, Hess, Christoph, Taylor, Justin J., & King, Carolyn G. (2020). Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity.
Künzli, Marco, Schreiner, David, Pereboom, Tamara C., Swarnalekha, Nivedya, Litzler, Ludivine C., Lötscher, Jonas, Ertuna, Yusuf I., Roux, Julien, Geier, Florian, Jakob, Roman P., Science Immunology, 5(45), eaay5552. https://doi.org/10.1126/sciimmunol.aay5552
, Hess, Christoph, Taylor, Justin J., & King, Carolyn G. (2020). Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity.
Perez, Camilo, & Methods in Molecular Biology (1 ed., Vol. 2127). Humana Press. https://doi.org/10.1007/978-1-0716-0373-4
. (2020). Expression, Purification, and Structural Biology of Membrane Proteins. In
Perez, Camilo, & Methods in Molecular Biology (1 ed., Vol. 2127). Humana Press. https://doi.org/10.1007/978-1-0716-0373-4
. (2020). Expression, Purification, and Structural Biology of Membrane Proteins. In
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, Nature Communications, 11(1), 5101. https://doi.org/10.1038/s41467-020-18870-2
, & Stahlberg, Henning. (2020). High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica.
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, Nature Communications, 11(1), 5101. https://doi.org/10.1038/s41467-020-18870-2
, & Stahlberg, Henning. (2020). High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica.
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, Nature Communications, 11(1), 5873. https://doi.org/10.1038/s41467-020-19845-z
, & Stahlberg, Henning. (2020). Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica.
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, Nature Communications, 11(1), 5873. https://doi.org/10.1038/s41467-020-19845-z
, & Stahlberg, Henning. (2020). Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica.
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, Hall, Michael N., Ban, Nenad, & Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
. (2020). The 3.2-Å resolution structure of human mTORC2.
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, Hall, Michael N., Ban, Nenad, & Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
. (2020). The 3.2-Å resolution structure of human mTORC2.
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2020).
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2020).
Kaur, Hundeep, Hartmann, Jean-Baptiste, Jakob, Roman P., Zahn, Michael, Zimmermann, Iwan, Journal of Biomolecular NMR, 73(6-7), 375–384. https://doi.org/10.1007/s10858-019-00250-8
, Seeger, Markus A., & Hiller, Sebastian. (2019). Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach.
Kaur, Hundeep, Hartmann, Jean-Baptiste, Jakob, Roman P., Zahn, Michael, Zimmermann, Iwan, Journal of Biomolecular NMR, 73(6-7), 375–384. https://doi.org/10.1007/s10858-019-00250-8
, Seeger, Markus A., & Hiller, Sebastian. (2019). Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach.
Sauer, Maximilian M., Jakob, Roman P., Luber, Thomas, Canonica, Fabia, Navarra, Giulio, Ernst, Beat, Unverzagt, Carlo, Journal of the American Chemical Society, 141(2), 936–944. https://doi.org/10.1021/jacs.8b10736
, & Glockshuber, Rudi. (2019). Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets.
Sauer, Maximilian M., Jakob, Roman P., Luber, Thomas, Canonica, Fabia, Navarra, Giulio, Ernst, Beat, Unverzagt, Carlo, Journal of the American Chemical Society, 141(2), 936–944. https://doi.org/10.1021/jacs.8b10736
, & Glockshuber, Rudi. (2019). Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets.
Schönemann, Wojciech, Cramer, Jonathan, Mühlethaler, Tobias, Fiege, Brigitte, Silbermann, Marleen, Rabbani, Said, Dätwyler, Philipp, Zihlmann, Pascal, Jakob, Roman P., Sager, Christoph P., Smiesko, Martin, Schwardt, Oliver, ChemMedChem, 14(7), 749–757. https://doi.org/10.1002/cmdc.201900051
, & Ernst, Beat. (2019). Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists.
Schönemann, Wojciech, Cramer, Jonathan, Mühlethaler, Tobias, Fiege, Brigitte, Silbermann, Marleen, Rabbani, Said, Dätwyler, Philipp, Zihlmann, Pascal, Jakob, Roman P., Sager, Christoph P., Smiesko, Martin, Schwardt, Oliver, ChemMedChem, 14(7), 749–757. https://doi.org/10.1002/cmdc.201900051
, & Ernst, Beat. (2019). Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists.
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, Structural basis for ion selectivity in TMEM175 K+ channels [Posted-content]. bioRxiv. https://doi.org/10.1101/480863
, & Schenck, Stephan. (2018).
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, Structural basis for ion selectivity in TMEM175 K+ channels [Posted-content]. bioRxiv. https://doi.org/10.1101/480863
, & Schenck, Stephan. (2018).
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Peter Jakob, Roman, Matsuda, Shinya, DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations [Posted-content]. bioRxiv. https://doi.org/10.1101/354134
, Plückthun, Andreas, & Affolter, Markus. (2018).
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Peter Jakob, Roman, Matsuda, Shinya, DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations [Posted-content]. bioRxiv. https://doi.org/10.1101/354134
, Plückthun, Andreas, & Affolter, Markus. (2018).
Bauer, Daniela, Meinhold, Sarah, Jakob, Roman P., Stigler, Johannes, Merkel, Ulrich, Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4666–4671. https://doi.org/10.1073/pnas.1716899115
, Rief, Matthias, & Žoldák, Gabriel. (2018). A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy.
Bauer, Daniela, Meinhold, Sarah, Jakob, Roman P., Stigler, Johannes, Merkel, Ulrich, Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4666–4671. https://doi.org/10.1073/pnas.1716899115
, Rief, Matthias, & Žoldák, Gabriel. (2018). A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy.
Herbst, Dominik A., Huitt-Roehl, Callie R., Jakob, Roman P., Kravetz, Jacob M., Storm, Philip A., Alley, Jamie R., Townsend, Craig A., & Nature Chemical Biology, 14(5), 474–479. https://doi.org/10.1038/s41589-018-0026-3
. (2018). The structural organization of substrate loading in iterative polyketide synthases.
Herbst, Dominik A., Huitt-Roehl, Callie R., Jakob, Roman P., Kravetz, Jacob M., Storm, Philip A., Alley, Jamie R., Townsend, Craig A., & Nature Chemical Biology, 14(5), 474–479. https://doi.org/10.1038/s41589-018-0026-3
. (2018). The structural organization of substrate loading in iterative polyketide synthases.
Herbst, Dominik A., Townsend, Craig A., & Natural Product Reports, 35(10), 1046–1069. https://doi.org/10.1039/c8np00039e
. (2018). The architectures of iterative type I PKS and FAS.
Herbst, Dominik A., Townsend, Craig A., & Natural Product Reports, 35(10), 1046–1069. https://doi.org/10.1039/c8np00039e
. (2018). The architectures of iterative type I PKS and FAS.
Hunkeler, Moritz, Hagmann, Anna, Stuttfeld, Edward, Chami, Mohamed, Guri, Yakir, Stahlberg, Henning, & Nature, 558(7710), 470–474. https://doi.org/10.1038/s41586-018-0201-4
. (2018). Structural basis for regulation of human acetyl-CoA carboxylase.
Hunkeler, Moritz, Hagmann, Anna, Stuttfeld, Edward, Chami, Mohamed, Guri, Yakir, Stahlberg, Henning, & Nature, 558(7710), 470–474. https://doi.org/10.1038/s41586-018-0201-4
. (2018). Structural basis for regulation of human acetyl-CoA carboxylase.
Imseng, Stefan, Aylett, Christopher Hs, & Current Opinion in Structural Biology, 49, 177–189. https://doi.org/10.1016/j.sbi.2018.03.010
. (2018). Architecture and activation of phosphatidylinositol 3-kinase related kinases.
Imseng, Stefan, Aylett, Christopher Hs, & Current Opinion in Structural Biology, 49, 177–189. https://doi.org/10.1016/j.sbi.2018.03.010
. (2018). Architecture and activation of phosphatidylinositol 3-kinase related kinases.
Current Opinion in Structural Biology, 49, vi–vii. https://doi.org/10.1016/j.sbi.2018.04.001
, & Weissman, Kira J. (2018). Macromolecular assemblies: Assembly, dynamics and control of activity.
Current Opinion in Structural Biology, 49, vi–vii. https://doi.org/10.1016/j.sbi.2018.04.001
, & Weissman, Kira J. (2018). Macromolecular assemblies: Assembly, dynamics and control of activity.
Rabbani, Said, Fiege, Brigitte, Eris, Deniz, Silbermann, Marleen, Jakob, Roman Peter, Navarra, Giulio, Journal of Biological Chemistry, 293(5), 1835–1849. https://doi.org/10.1074/jbc.m117.802942
, & Ernst, Beat. (2018). Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System.
Rabbani, Said, Fiege, Brigitte, Eris, Deniz, Silbermann, Marleen, Jakob, Roman Peter, Navarra, Giulio, Journal of Biological Chemistry, 293(5), 1835–1849. https://doi.org/10.1074/jbc.m117.802942
, & Ernst, Beat. (2018). Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System.
Sager, Christoph P., Fiege, Brigitte, Zihlmann, Pascal, Vannam, Raghu, Rabbani, Said, Jakob, Roman P., Preston, Roland C., Zalewski, Adam, Chemical Science, 9(3), 646–654. https://doi.org/10.1039/c7sc04289b
, Peczuh, Mark W., & Ernst, Beat. (2018). The price of flexibility - a case study on septanoses as pyranose mimetics.
Sager, Christoph P., Fiege, Brigitte, Zihlmann, Pascal, Vannam, Raghu, Rabbani, Said, Jakob, Roman P., Preston, Roland C., Zalewski, Adam, Chemical Science, 9(3), 646–654. https://doi.org/10.1039/c7sc04289b
, Peczuh, Mark W., & Ernst, Beat. (2018). The price of flexibility - a case study on septanoses as pyranose mimetics.
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., Hall, M. N., eLife, 7, e33101. https://doi.org/10.7554/elife.33101
, & Ban, N. (2018). Architecture of the human mTORC2 core complex.
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., Hall, M. N., eLife, 7, e33101. https://doi.org/10.7554/elife.33101
, & Ban, N. (2018). Architecture of the human mTORC2 core complex.
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman Peter, Matsuda, Shinya, Biology Open, 7(11), bio036749. https://doi.org/10.1242/bio.036749
, Plückthun, Andreas, & Affolter, Markus. (2018). DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations.
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman Peter, Matsuda, Shinya, Biology Open, 7(11), bio036749. https://doi.org/10.1242/bio.036749
, Plückthun, Andreas, & Affolter, Markus. (2018). DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations.
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman P., Matsuda, Shinya, Biology Open, 7(12), bio036749. https://doi.org/10.1242/bio.040832
, Plückthun, Andreas, & Affolter, Markus. (2018). Correction:DARPins recognizing mTFP1 as novel reagents for in vitro; and in vivo protein manipulations.
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman P., Matsuda, Shinya, Biology Open, 7(12), bio036749. https://doi.org/10.1242/bio.040832
, Plückthun, Andreas, & Affolter, Markus. (2018). Correction:DARPins recognizing mTFP1 as novel reagents for in vitro; and in vivo protein manipulations.
Zihlmann, Pascal, Silbermann, Marleen, Sharpe, Timothy, Jiang, Xiaohua, Mühlethaler, Tobias, Jakob, Roman P., Rabbani, Said, Sager, Christoph P., Frei, Priska, Pang, Lijuan, Chemistry (Weinheim an Der Bergstrasse, Germany), 24(49), 13049–13057. https://doi.org/10.1002/chem.201802599
, & Ernst, Beat. (2018). KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists.
Zihlmann, Pascal, Silbermann, Marleen, Sharpe, Timothy, Jiang, Xiaohua, Mühlethaler, Tobias, Jakob, Roman P., Rabbani, Said, Sager, Christoph P., Frei, Priska, Pang, Lijuan, Chemistry (Weinheim an Der Bergstrasse, Germany), 24(49), 13049–13057. https://doi.org/10.1002/chem.201802599
, & Ernst, Beat. (2018). KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists.
Anton, Leonie, Sborgi, Lorenzo, Hiller, Sebastian, Broz, Petr, & Insights into Gasdermin D activation from the crystal structure of its C-terminal domain [Posted-content]. bioRxiv. https://doi.org/10.1101/187211
. (2017).
Anton, Leonie, Sborgi, Lorenzo, Hiller, Sebastian, Broz, Petr, & Insights into Gasdermin D activation from the crystal structure of its C-terminal domain [Posted-content]. bioRxiv. https://doi.org/10.1101/187211
. (2017).
Benning, Friederike M. C., Sakiyama, Yusuke, Mazur, Adam, Bukhari, Habib S. T., Lim, Roderick Y. H., & ACS Nano, 11(11), 10852–10859. https://doi.org/10.1021/acsnano.7b04216
. (2017). High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase.
Benning, Friederike M. C., Sakiyama, Yusuke, Mazur, Adam, Bukhari, Habib S. T., Lim, Roderick Y. H., & ACS Nano, 11(11), 10852–10859. https://doi.org/10.1021/acsnano.7b04216
. (2017). High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase.
Nature Chemical Biology, 13(4), 344–345. https://doi.org/10.1038/nchembio.2338
. (2017). Fatty acid synthases: Re-engineering biofactories.
Nature Chemical Biology, 13(4), 344–345. https://doi.org/10.1038/nchembio.2338
. (2017). Fatty acid synthases: Re-engineering biofactories.
Navarra, Giulio, Zihlmann, Pascal, Jakob, Roman P., Stangier, Katia, Preston, Roland C., Rabbani, Said, Smiesko, Martin, Wagner, Bea, ChemBioChem, 18(6), 539–544. https://doi.org/10.1002/cbic.201600615
, & Ernst, Beat. (2017). Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity.
Navarra, Giulio, Zihlmann, Pascal, Jakob, Roman P., Stangier, Katia, Preston, Roland C., Rabbani, Said, Smiesko, Martin, Wagner, Bea, ChemBioChem, 18(6), 539–544. https://doi.org/10.1002/cbic.201600615
, & Ernst, Beat. (2017). Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity.
Roth, Christian, Weizenmann, Nicole, Bexten, Nicola, Saenger, Wolfram, Zimmermann, Wolfgang, Science Advances, 3(1), e1601386. https://doi.org/10.1126/sciadv.1601386
, & Sträter, Norbert. (2017). Amylose recognition and ring-size determination of amylomaltase.
Roth, Christian, Weizenmann, Nicole, Bexten, Nicola, Saenger, Wolfram, Zimmermann, Wolfgang, Science Advances, 3(1), e1601386. https://doi.org/10.1126/sciadv.1601386
, & Sträter, Norbert. (2017). Amylose recognition and ring-size determination of amylomaltase.
Storm, Philip A., Herbst, Dominik A., Cell Chemical Biology, 24(3), 316–325. https://doi.org/10.1016/j.chembiol.2017.01.008
, & Townsend, Craig A. (2017). Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin.
Storm, Philip A., Herbst, Dominik A., Cell Chemical Biology, 24(3), 316–325. https://doi.org/10.1016/j.chembiol.2017.01.008
, & Townsend, Craig A. (2017). Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin.
Stuttfeld, Edward, Imseng, Stefan, & eLife, 6, e25700. https://doi.org/10.7554/elife.25700
. (2017). A central role for a region in the middle.
Stuttfeld, Edward, Imseng, Stefan, & eLife, 6, e25700. https://doi.org/10.7554/elife.25700
. (2017). A central role for a region in the middle.
Wang, Jing, Brackmann, Maximilian, Castaño-Díez, Daniel, Kudryashev, Mikhail, Goldie, Kenneth N., Nature Microbiology, 2(11), 1507–1512. https://doi.org/10.1038/s41564-017-0020-7
, Stahlberg, Henning, & Basler, Marek. (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex.
Wang, Jing, Brackmann, Maximilian, Castaño-Díez, Daniel, Kudryashev, Mikhail, Goldie, Kenneth N., Nature Microbiology, 2(11), 1507–1512. https://doi.org/10.1038/s41564-017-0020-7
, Stahlberg, Henning, & Basler, Marek. (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex.
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & Nature, 536(7616), 360. https://doi.org/10.1038/nature18281
. (2016). Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993).
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & Nature, 536(7616), 360. https://doi.org/10.1038/nature18281
. (2016). Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993).
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, Hall, Michael N., Ban, Nenad, & Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
. (2016). Architecture of human mTOR complex 1.
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, Hall, Michael N., Ban, Nenad, & Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
. (2016). Architecture of human mTOR complex 1.
Hagmann, Anna, Hunkeler, Moritz, Stuttfeld, Edward, & Structure, 24(8), 1227–1236. https://doi.org/10.1016/j.str.2016.06.001
. (2016). Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans.
Hagmann, Anna, Hunkeler, Moritz, Stuttfeld, Edward, & Structure, 24(8), 1227–1236. https://doi.org/10.1016/j.str.2016.06.001
. (2016). Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans.
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & Nature, 531(7595), 533–537. https://doi.org/10.1038/nature16993
. (2016). Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & Nature, 531(7595), 533–537. https://doi.org/10.1038/nature16993
. (2016). Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.
Hunkeler, Moritz, Stuttfeld, Edward, Hagmann, Anna, Imseng, Stefan, & Nature Communications, 7, 11196. https://doi.org/10.1038/ncomms11196
. (2016). The dynamic organization of fungal acetyl-CoA carboxylase.
Hunkeler, Moritz, Stuttfeld, Edward, Hagmann, Anna, Imseng, Stefan, & Nature Communications, 7, 11196. https://doi.org/10.1038/ncomms11196
. (2016). The dynamic organization of fungal acetyl-CoA carboxylase.
Jakob, Roman P., Schmidpeter, Philipp A. M., Koch, Johanna R., Schmid, Franz X., & PLoS ONE, 11(6), e0157070. https://doi.org/10.1371/journal.pone.0157070
. (2016). Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps.
Jakob, Roman P., Schmidpeter, Philipp A. M., Koch, Johanna R., Schmid, Franz X., & PLoS ONE, 11(6), e0157070. https://doi.org/10.1371/journal.pone.0157070
. (2016). Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps.
Preston, Roland C., Jakob, Roman P., Binder, Florian P. C., Sager, Christoph P., Ernst, Beat, & Journal of Molecular Cell Biology, 8(1), 62–72. https://doi.org/10.1093/jmcb/mjv046
. (2016). E-selectin ligand complexes adopt an extended high-affinity conformation.
Preston, Roland C., Jakob, Roman P., Binder, Florian P. C., Sager, Christoph P., Ernst, Beat, & Journal of Molecular Cell Biology, 8(1), 62–72. https://doi.org/10.1093/jmcb/mjv046
. (2016). E-selectin ligand complexes adopt an extended high-affinity conformation.
Sauer, Maximilian M, Jakob, Roman P, Eras, Jonathan, Baday, Sefer, Eriş, Deniz, Navarra, Giulio, Bernèche, Simon, Ernst, Beat, Nature Communications, 7, 10738. https://doi.org/10.1038/ncomms10738
, & Glockshuber, Rudi. (2016). Catch-bond mechanism of the bacterial adhesin FimH.
Sauer, Maximilian M, Jakob, Roman P, Eras, Jonathan, Baday, Sefer, Eriş, Deniz, Navarra, Giulio, Bernèche, Simon, Ernst, Beat, Nature Communications, 7, 10738. https://doi.org/10.1038/ncomms10738
, & Glockshuber, Rudi. (2016). Catch-bond mechanism of the bacterial adhesin FimH.
Silván, Unai, Hyotyla, Janne, Mannherz, Hans-Georg, Ringler, Philippe, Müller, Shirley A., Aebi, Ueli, Journal of Structural Biology, 195(2), 159–166. https://doi.org/10.1016/j.jsb.2016.05.008
, & Schoenenberger, Cora-Ann. (2016). Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy.
Silván, Unai, Hyotyla, Janne, Mannherz, Hans-Georg, Ringler, Philippe, Müller, Shirley A., Aebi, Ueli, Journal of Structural Biology, 195(2), 159–166. https://doi.org/10.1016/j.jsb.2016.05.008
, & Schoenenberger, Cora-Ann. (2016). Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy.
Studer, G., Jakob, R. P., Mahi, M. A., Wiesand, U., Schwede, T., & Crystal structure of urease from Yersinia enterocolitica (Studer, Gabriel, Ed.) [Data set]. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb4z42/pdb
(2016).
Studer, G., Jakob, R. P., Mahi, M. A., Wiesand, U., Schwede, T., & Crystal structure of urease from Yersinia enterocolitica (Studer, Gabriel, Ed.) [Data set]. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb4z42/pdb
(2016).
Arquint, Christian, Gabryjonczyk, Anna-Maria, Imseng, Stefan, Böhm, Raphael, Sauer, Evelyn, Hiller, Sebastian, Nigg, Erich A., & eLife, 4, e07888. https://doi.org/10.7554/elife.07888
. (2015). STIL binding to Polo-box 3 of PLK4 regulates centriole duplication.
Arquint, Christian, Gabryjonczyk, Anna-Maria, Imseng, Stefan, Böhm, Raphael, Sauer, Evelyn, Hiller, Sebastian, Nigg, Erich A., & eLife, 4, e07888. https://doi.org/10.7554/elife.07888
. (2015). STIL binding to Polo-box 3 of PLK4 regulates centriole duplication.
Blatter, Markus, Dunin-Horkawicz, Stanislaw, Grishina, Irma, Maris, Christophe, Thore, Stephane, Journal of Molecular Biology, 427(19), 3001–3022. https://doi.org/10.1016/j.jmb.2015.05.020
, Bindereif, Albrecht, Bujnicki, Janusz M., & Allain, Frederic H. -T. (2015). The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein.
Blatter, Markus, Dunin-Horkawicz, Stanislaw, Grishina, Irma, Maris, Christophe, Thore, Stephane, Journal of Molecular Biology, 427(19), 3001–3022. https://doi.org/10.1016/j.jmb.2015.05.020
, Bindereif, Albrecht, Bujnicki, Janusz M., & Allain, Frederic H. -T. (2015). The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein.
Fiege, Brigitte, Rabbani, Said, Preston, Roland C., Jakob, Roman P., Zihlmann, Pascal, Schwardt, Oliver, Jiang, Xiaohua, ChemBioChem, 16(8), 1235–1246. https://doi.org/10.1002/cbic.201402714
, & Ernst, Beat. (2015). The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography.
Fiege, Brigitte, Rabbani, Said, Preston, Roland C., Jakob, Roman P., Zihlmann, Pascal, Schwardt, Oliver, Jiang, Xiaohua, ChemBioChem, 16(8), 1235–1246. https://doi.org/10.1002/cbic.201402714
, & Ernst, Beat. (2015). The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography.
Fujieda, Nobutaka, Schaetti, Jonas, Stuttfeld, Edward, Ohkubo, Kei, Chemical Science, 6(7), 4060–4065. https://doi.org/10.1039/c5sc01065a
, Fukuzumi, Shunichi, & Ward, Thomas R. (2015). Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding.
Fujieda, Nobutaka, Schaetti, Jonas, Stuttfeld, Edward, Ohkubo, Kei, Chemical Science, 6(7), 4060–4065. https://doi.org/10.1039/c5sc01065a
, Fukuzumi, Shunichi, & Ward, Thomas R. (2015). Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding.
Gruss, Fabian, Hiller, Sebastian, & Methods in Molecular Biology, 1329, 259–270. https://doi.org/10.1007/978-1-4939-2871-2_20
. (2015). Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA.
Gruss, Fabian, Hiller, Sebastian, & Methods in Molecular Biology, 1329, 259–270. https://doi.org/10.1007/978-1-4939-2871-2_20
. (2015). Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA.
Jakob, Roman P., Koch, Johanna R., Burmann, Björn M., Schmidpeter, Philipp A. M., Hunkeler, Moritz, Hiller, Sebastian, Schmid, Franz X., & Journal of Biological Chemistry, 290(6), 3278–3292. https://doi.org/10.1074/jbc.m114.622910
. (2015). Dimeric structure of the bacterial extracellular foldase PrsA.
Jakob, Roman P., Koch, Johanna R., Burmann, Björn M., Schmidpeter, Philipp A. M., Hunkeler, Moritz, Hiller, Sebastian, Schmid, Franz X., & Journal of Biological Chemistry, 290(6), 3278–3292. https://doi.org/10.1074/jbc.m114.622910
. (2015). Dimeric structure of the bacterial extracellular foldase PrsA.
Kleeb, Simon, Pang, Lijuan, Mayer, Katharina, Eris, Deniz, Sigl, Anja, Preston, Roland C., Zihlmann, Pascal, Sharpe, Timothy, Jakob, Roman P., Abgottspon, Daniela, Hutter, Aline S., Scharenberg, Meike, Jiang, Xiaohua, Navarra, Giulio, Rabbani, Said, Smiesko, Martin, Lüdin, Nathalie, Bezençon, Jacqueline, Schwardt, Oliver, et al. (2015). FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile. Journal of Medicinal Chemistry, 58(5), 2221–2239. https://doi.org/10.1021/jm501524q
Kleeb, Simon, Pang, Lijuan, Mayer, Katharina, Eris, Deniz, Sigl, Anja, Preston, Roland C., Zihlmann, Pascal, Sharpe, Timothy, Jakob, Roman P., Abgottspon, Daniela, Hutter, Aline S., Scharenberg, Meike, Jiang, Xiaohua, Navarra, Giulio, Rabbani, Said, Smiesko, Martin, Lüdin, Nathalie, Bezençon, Jacqueline, Schwardt, Oliver, et al. (2015). FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile. Journal of Medicinal Chemistry, 58(5), 2221–2239. https://doi.org/10.1021/jm501524q
Kudryashev, Mikhail, Wang, Ray Yu-Ruei, Brackmann, Maximilian, Scherer, Sebastian, Cell, 160(5), 952–962. https://doi.org/10.1016/j.cell.2015.01.037
, Baker, David, DiMaio, Frank, Stahlberg, Henning, Egelman, Edward H, & Basler, Marek. (2015). Structure of the Type VI Secretion System Contractile Sheath.
Kudryashev, Mikhail, Wang, Ray Yu-Ruei, Brackmann, Maximilian, Scherer, Sebastian, Cell, 160(5), 952–962. https://doi.org/10.1016/j.cell.2015.01.037
, Baker, David, DiMaio, Frank, Stahlberg, Henning, Egelman, Edward H, & Basler, Marek. (2015). Structure of the Type VI Secretion System Contractile Sheath.
Nature Communications, 6, 7452. https://doi.org/10.1038/ncomms8452
, Clantin, Bernard, Gruss, Fabian, Dewitte, Frédérique, Delattre, Anne-Sophie, Jacob-Dubuisson, Françoise, Hiller, Sebastian, & Villeret, Vincent. (2015). Conserved Omp85 lid-lock structure and substrate recognition in FhaC.
Nature Communications, 6, 7452. https://doi.org/10.1038/ncomms8452
, Clantin, Bernard, Gruss, Fabian, Dewitte, Frédérique, Delattre, Anne-Sophie, Jacob-Dubuisson, Françoise, Hiller, Sebastian, & Villeret, Vincent. (2015). Conserved Omp85 lid-lock structure and substrate recognition in FhaC.
Morgado, Leonor, Zeth, Kornelius, Burmann, Björn M., Journal of Biomolecular NMR, 61(3-4), 333–345. https://doi.org/10.1007/s10858-015-9906-y
, & Hiller, Sebastian. (2015). Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy.
Morgado, Leonor, Zeth, Kornelius, Burmann, Björn M., Journal of Biomolecular NMR, 61(3-4), 333–345. https://doi.org/10.1007/s10858-015-9906-y
, & Hiller, Sebastian. (2015). Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy.
Bukhari, Habib S. T., Jakob, Roman P., & Structure, 22(12), 1775–1785. https://doi.org/10.1016/j.str.2014.09.016
. (2014). Evolutionary origins of the multienzyme architecture of giant fungal Fatty Acid synthase.
Bukhari, Habib S. T., Jakob, Roman P., & Structure, 22(12), 1775–1785. https://doi.org/10.1016/j.str.2014.09.016
. (2014). Evolutionary origins of the multienzyme architecture of giant fungal Fatty Acid synthase.
Gruss, Fabian, Zähringer, Franziska, Jakob, Roman P., Burmann, Björn M., Hiller, Sebastian, & Nature Structural & Molecular Biology, 20(11), 1318–U247. https://doi.org/10.1038/nsmb.2689
. (2013). The structural basis of autotransporter translocation by TamA.
Gruss, Fabian, Zähringer, Franziska, Jakob, Roman P., Burmann, Björn M., Hiller, Sebastian, & Nature Structural & Molecular Biology, 20(11), 1318–U247. https://doi.org/10.1038/nsmb.2689
. (2013). The structural basis of autotransporter translocation by TamA.
Sauer, Evelyn, Imseng, Stefan, Biochemical Society Transactions, 41(4), 889–895. https://doi.org/10.1042/bst20130113
, & Hall, Michael N. (2013). Conserved sequence motifs and the structure of the mTOR kinase domain.
Sauer, Evelyn, Imseng, Stefan, Biochemical Society Transactions, 41(4), 889–895. https://doi.org/10.1042/bst20130113
, & Hall, Michael N. (2013). Conserved sequence motifs and the structure of the mTOR kinase domain.
Quarterly Reviews of Biophysics, 43(3), 373–422. https://doi.org/10.1017/s0033583510000156
, Leibundgut, M., Boehringer, D., & Ban, N. (2010). Structure and function of eukaryotic fatty acid synthases.
Quarterly Reviews of Biophysics, 43(3), 373–422. https://doi.org/10.1017/s0033583510000156
, Leibundgut, M., Boehringer, D., & Ban, N. (2010). Structure and function of eukaryotic fatty acid synthases.
Mocibob, Marko, Ivic, Nives, Bilokapic, Silvija, Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14585–14590. https://doi.org/10.1073/pnas.1007470107
, Luic, Marija, Ban, Nenad, & Weygand-Durasevic, Ivana. (2010). Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
Mocibob, Marko, Ivic, Nives, Bilokapic, Silvija, Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14585–14590. https://doi.org/10.1073/pnas.1007470107
, Luic, Marija, Ban, Nenad, & Weygand-Durasevic, Ivana. (2010). Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
Mocibob, M., Ivic, N., Bilokapic, S., The FEBS Journal, 277, 260–261.
, Luic, M., Ban, N., & Weygand-Durasevic, I. (2010). New links between protein biosynthesis and nonribosomal peptide synthesis.
Mocibob, M., Ivic, N., Bilokapic, S., The FEBS Journal, 277, 260–261.
, Luic, M., Ban, N., & Weygand-Durasevic, I. (2010). New links between protein biosynthesis and nonribosomal peptide synthesis.
Müller, M., Grauschopf, U., Nature, 459(7247), 726–U135. https://doi.org/10.1038/nature08026
, Glockshuber, R., & Ban, N. (2009). The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
Müller, M., Grauschopf, U., Nature, 459(7247), 726–U135. https://doi.org/10.1038/nature08026
, Glockshuber, R., & Ban, N. (2009). The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
Bingel-Erlenmeyer, R., Kohler, R., Kramer, G., Sandikci, A., Antolic, S., Nature, 452(7183), 108–U13. https://doi.org/10.1038/nature06683
, Schaffitzel, C., Wiedmann, B., Bukau, B., & Ban, N. (2008). A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
Bingel-Erlenmeyer, R., Kohler, R., Kramer, G., Sandikci, A., Antolic, S., Nature, 452(7183), 108–U13. https://doi.org/10.1038/nature06683
, Schaffitzel, C., Wiedmann, B., Bukau, B., & Ban, N. (2008). A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
Leibundgut, M., Current Opinion in Structural Biology, 18(6), 714–725. https://doi.org/10.1016/j.sbi.2008.09.008
, Jenni, S., & Ban, N. (2008). The multienzyme architecture of eukaryotic fatty acid synthases.
Leibundgut, M., Current Opinion in Structural Biology, 18(6), 714–725. https://doi.org/10.1016/j.sbi.2008.09.008
, Jenni, S., & Ban, N. (2008). The multienzyme architecture of eukaryotic fatty acid synthases.
Science, 321(5894), 1315–1322. https://doi.org/10.1126/science.1161269
, Leibundgut, M., & Ban, N. (2008). The crystal structure of a mammalian fatty acid synthase.
Science, 321(5894), 1315–1322. https://doi.org/10.1126/science.1161269
, Leibundgut, M., & Ban, N. (2008). The crystal structure of a mammalian fatty acid synthase.
Merz, F., Boehringer, D., Schaffitzel, C., Preissler, S., Hoffmann, A., The EMBO Journal, 27(11), 1622–1632. https://doi.org/10.1038/emboj.2008.89
, Rutkowska, A., Lozza, J., Ban, N., Bukau, B., & Deuerling, E. (2008). Molecular mechanism and structure of Trigger Factor bound to the translating ribosome.
Merz, F., Boehringer, D., Schaffitzel, C., Preissler, S., Hoffmann, A., The EMBO Journal, 27(11), 1622–1632. https://doi.org/10.1038/emboj.2008.89
, Rutkowska, A., Lozza, J., Ban, N., Bukau, B., & Deuerling, E. (2008). Molecular mechanism and structure of Trigger Factor bound to the translating ribosome.
Rossmann, M., Schultz-Heienbrok, R., Behlke, J., Remmel, N., Alings, C., Sandhoff, K., Saenger, W., & Structure, 16(5), 809–817. https://doi.org/10.1016/j.str.2008.02.016
(2008). Crystal structures of human saposins C and D: Implications for lipid recognition and membrane interactions.
Rossmann, M., Schultz-Heienbrok, R., Behlke, J., Remmel, N., Alings, C., Sandhoff, K., Saenger, W., & Structure, 16(5), 809–817. https://doi.org/10.1016/j.str.2008.02.016
(2008). Crystal structures of human saposins C and D: Implications for lipid recognition and membrane interactions.
Bilokapic, S., The EMBO Journal, 25(11), 2498–2509. https://doi.org/10.1038/sj.emboj.7601129
, Ahel, D., Gruic-Sovulj, I., Soll, D., Weygand-Durasevic, I., & Ban, N. (2006). Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition.
Bilokapic, S., The EMBO Journal, 25(11), 2498–2509. https://doi.org/10.1038/sj.emboj.7601129
, Ahel, D., Gruic-Sovulj, I., Soll, D., Weygand-Durasevic, I., & Ban, N. (2006). Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition.