Publications
121 found
Show per page
Anna Leder, Guillaume Mas, Viktória Szentgyörgyi, Roman P. Jakob, , Anne Spang, & Sebastian Hiller. (2025). A multichaperone condensate enhances protein folding in the endoplasmic reticulum. Nature Cell Biology , 27(September), 1422–1430. https://doi.org/10.1038/s41556-025-01730-w
Anna Leder, Guillaume Mas, Viktória Szentgyörgyi, Roman P. Jakob, , Anne Spang, & Sebastian Hiller. (2025). A multichaperone condensate enhances protein folding in the endoplasmic reticulum. Nature Cell Biology , 27(September), 1422–1430. https://doi.org/10.1038/s41556-025-01730-w
Lehner,Philippe Alain, Degen, Morris, Jakob, Roman, Burmann, Björn M., Callon, Morgane, Modaresi, Seyed Majed, , & Hiller, Sebastian. (2025). Architecture and conformational dynamics of the BAM-SurA holo insertase complex. Science Advances , 11(14). https://doi.org/10.1126/sciadv.ads6094
Lehner,Philippe Alain, Degen, Morris, Jakob, Roman, Burmann, Björn M., Callon, Morgane, Modaresi, Seyed Majed, , & Hiller, Sebastian. (2025). Architecture and conformational dynamics of the BAM-SurA holo insertase complex. Science Advances , 11(14). https://doi.org/10.1126/sciadv.ads6094
Chancellor, Andrew, Constantin, Daniel, Berloffa, Giuliano, Yang, Qinmei, Nosi, Vladimir, Loureiro, José Pedro, Colombo, Rodrigo, Jakob, Roman P., Joss, Daniel, Pfeffer, Michael, De Simone, Giulia, Morabito, Aurelia, Schaefer, Verena, Vacchini, Alessandro, Brunelli, Laura, Montagna, Daniela, Heim, Markus, Zippelius, Alfred, Davoli, Enrico, et al. (2024). The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells [Journal-article]. Immunity, 58(2), 431–447. https://doi.org/10.1016/j.immuni.2024.11.019
Chancellor, Andrew, Constantin, Daniel, Berloffa, Giuliano, Yang, Qinmei, Nosi, Vladimir, Loureiro, José Pedro, Colombo, Rodrigo, Jakob, Roman P., Joss, Daniel, Pfeffer, Michael, De Simone, Giulia, Morabito, Aurelia, Schaefer, Verena, Vacchini, Alessandro, Brunelli, Laura, Montagna, Daniela, Heim, Markus, Zippelius, Alfred, Davoli, Enrico, et al. (2024). The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells [Journal-article]. Immunity, 58(2), 431–447. https://doi.org/10.1016/j.immuni.2024.11.019
Modaresi, Seyed Majed, Sugiyama, Ryosuke, Tram, Nhan Dai Thien, Jakob, Roman P., Phan, Chin-Soon, Saei, Amir Ata, Morishita, Yohei, Mühlethaler, Tobias, Lim, Joel, Ritz, Danilo, Long, Preston Shi Yang, Lehner, Phillipe A, Lim, Zhen Heng, Degen, Morris, Yao, Ziwei, , Hou, Yuxin, Lee, Jia Ying, Xu, Jian, et al. (2024). Antibiotics that Kill Gram-negative Bacteria by Restructuring the Outer Membrane Protein BamA [Posted-content]. In bioRxiv . Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.12.16.628070
Modaresi, Seyed Majed, Sugiyama, Ryosuke, Tram, Nhan Dai Thien, Jakob, Roman P., Phan, Chin-Soon, Saei, Amir Ata, Morishita, Yohei, Mühlethaler, Tobias, Lim, Joel, Ritz, Danilo, Long, Preston Shi Yang, Lehner, Phillipe A, Lim, Zhen Heng, Degen, Morris, Yao, Ziwei, , Hou, Yuxin, Lee, Jia Ying, Xu, Jian, et al. (2024). Antibiotics that Kill Gram-negative Bacteria by Restructuring the Outer Membrane Protein BamA [Posted-content]. In bioRxiv . Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.12.16.628070
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, , & Jenal, Urs. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48295-0
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, , & Jenal, Urs. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48295-0
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., , & Ward, Thomas R. (2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article]. ACS Catalysis, 14(22), 17171–17179. https://doi.org/10.1021/acscatal.4c04163
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., , & Ward, Thomas R. (2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article]. ACS Catalysis, 14(22), 17171–17179. https://doi.org/10.1021/acscatal.4c04163
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., , Üzümcü, Dilbirin, & Ward, Thomas R. (2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases. ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., , Üzümcü, Dilbirin, & Ward, Thomas R. (2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases. ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
Varga, Norbert, Smieško, Martin, Jiang, Xiaohua, Jakob, Roman P., Wagner, Beatrice, Mühlethaler, Tobias, Dätwyler, Philipp, Zihlmann, Pascal, Rabbani, Said, , Schwardt, Oliver, & Ernst, Beat. (2024). Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding. Angewandte Chemie - International Edition, 63(42). https://doi.org/10.1002/anie.202406024
Varga, Norbert, Smieško, Martin, Jiang, Xiaohua, Jakob, Roman P., Wagner, Beatrice, Mühlethaler, Tobias, Dätwyler, Philipp, Zihlmann, Pascal, Rabbani, Said, , Schwardt, Oliver, & Ernst, Beat. (2024). Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding. Angewandte Chemie - International Edition, 63(42). https://doi.org/10.1002/anie.202406024
Nemli, Dilara D., Jiang, Xiaohua, Jakob, Roman P., Gloder, Laura Muñoz, Schwardt, Oliver, Rabbani, Said, , Ernst, Beat, & Cramer, Jonathan. (2024). Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics. Journal of Medicinal Chemistry, 67(16), 13813–13828. https://doi.org/10.1021/acs.jmedchem.4c00623
Nemli, Dilara D., Jiang, Xiaohua, Jakob, Roman P., Gloder, Laura Muñoz, Schwardt, Oliver, Rabbani, Said, , Ernst, Beat, & Cramer, Jonathan. (2024). Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics. Journal of Medicinal Chemistry, 67(16), 13813–13828. https://doi.org/10.1021/acs.jmedchem.4c00623
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, , & Hall, Michael N. (2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article]. Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, , & Hall, Michael N. (2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article]. Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
Hiller, Sebastian, Szentgyörgyi, Viktória, Jakob, Roman, , & Spang, Anne. (2024). A functional chaperone condensate in the endoplasmic reticulum. In Research Square. Research Square. https://doi.org/10.21203/rs.3.rs-4796355/v1
Hiller, Sebastian, Szentgyörgyi, Viktória, Jakob, Roman, , & Spang, Anne. (2024). A functional chaperone condensate in the endoplasmic reticulum. In Research Square. Research Square. https://doi.org/10.21203/rs.3.rs-4796355/v1
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, , Correia, Bruno E., & Ward, Thomas R. (2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article]. Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, , Correia, Bruno E., & Ward, Thomas R. (2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article]. Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
Wagner, Beatrice, Smieško, Martin, Jakob, Roman P., Mühlethaler, Tobias, Cramer, Jonathan, , Rabbani, Said, Schwardt, Oliver, & Ernst, Beat. (2024). Analogues of the pan-selectin antagonist rivipansel (GMI-1070). European Journal of Medicinal Chemistry, 272. https://doi.org/10.1016/j.ejmech.2024.116455
Wagner, Beatrice, Smieško, Martin, Jakob, Roman P., Mühlethaler, Tobias, Cramer, Jonathan, , Rabbani, Said, Schwardt, Oliver, & Ernst, Beat. (2024). Analogues of the pan-selectin antagonist rivipansel (GMI-1070). European Journal of Medicinal Chemistry, 272. https://doi.org/10.1016/j.ejmech.2024.116455
Höing, Lars, Sowa, Sven T., Toplak, Marina, Reinhardt, Jakob K., Jakob, Roman, , Lill, Markus A., & Teufel, Robin. (2024). Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products [Journal-article]. Chemical Science, 15(20), 7749–7756. https://doi.org/10.1039/d4sc01715c
Höing, Lars, Sowa, Sven T., Toplak, Marina, Reinhardt, Jakob K., Jakob, Roman, , Lill, Markus A., & Teufel, Robin. (2024). Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products [Journal-article]. Chemical Science, 15(20), 7749–7756. https://doi.org/10.1039/d4sc01715c
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., , Üzümcü, Dilbirin, & Ward, Thomas R. (2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., , Üzümcü, Dilbirin, & Ward, Thomas R. (2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
Degen, Morris, Santos, José Carlos, Pluhackova, Kristyna, Cebrero, Gonzalo, Ramos, Saray, Jankevicius, Gytis, Hartenian, Ella, Guillerm, Undina, Mari, Stefania A., Kohl, Bastian, Müller, Daniel J., Schanda, Paul, , Perez, Camilo, Sieben, Christian, Broz, Petr, & Hiller, Sebastian. (2023). Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature, 618(7967), 1065–1071. https://doi.org/10.1038/s41586-023-05991-z
Degen, Morris, Santos, José Carlos, Pluhackova, Kristyna, Cebrero, Gonzalo, Ramos, Saray, Jankevicius, Gytis, Hartenian, Ella, Guillerm, Undina, Mari, Stefania A., Kohl, Bastian, Müller, Daniel J., Schanda, Paul, , Perez, Camilo, Sieben, Christian, Broz, Petr, & Hiller, Sebastian. (2023). Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature, 618(7967), 1065–1071. https://doi.org/10.1038/s41586-023-05991-z
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, , Shukla, Arun K., & Grzesiek, Stephan. (2023). A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes. Molecular cell, 83(12), 2108–2121. https://doi.org/10.1016/j.molcel.2023.05.002
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, , Shukla, Arun K., & Grzesiek, Stephan. (2023). A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes. Molecular cell, 83(12), 2108–2121. https://doi.org/10.1016/j.molcel.2023.05.002
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, , Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia. eLife, 12, e85103. https://doi.org/10.7554/elife.85103
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, , Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia. eLife, 12, e85103. https://doi.org/10.7554/elife.85103
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, , Shukla, Arun K., & Grzesiek, Stephan. (2022). A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.10.511578
Isaikina, Polina, Petrovic, Ivana, Jakob, Roman P., Sarma, Parishmita, Ranjan, Ashutosh, Baruah, Minakshi, Panwalkar, Vineet, , Shukla, Arun K., & Grzesiek, Stephan. (2022). A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.10.511578
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Reinders, Alberto, Klotz, Alexander, , & Jenal, Urs. (2022). A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.18.512705
Kaczmarczyk, Andreas, van Vliet, Simon, Jakob, Roman Peter, Reinders, Alberto, Klotz, Alexander, , & Jenal, Urs. (2022). A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.10.18.512705
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, , & Hall, Michael N. (2022). mTOR substrate phosphorylation in growth control. Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, , & Hall, Michael N. (2022). mTOR substrate phosphorylation in growth control. Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
Chaker-Margot, Malik, Werten, Sebastiaan, Dunzendorfer-Matt, Theresia, Lechner, Stefan, Ruepp, Angela, Scheffzek, Klaus, & . (2022). Structural basis of activation of the tumor suppressor protein neurofibromin. Molecular Cell, 82(7), 1288–1296. https://doi.org/10.1016/j.molcel.2022.03.011
Chaker-Margot, Malik, Werten, Sebastiaan, Dunzendorfer-Matt, Theresia, Lechner, Stefan, Ruepp, Angela, Scheffzek, Klaus, & . (2022). Structural basis of activation of the tumor suppressor protein neurofibromin. Molecular Cell, 82(7), 1288–1296. https://doi.org/10.1016/j.molcel.2022.03.011
Miller, Ryan D., Iinishi, Akira, Modaresi, Seyed Majed, Yoo, Byung-Kuk, Curtis, Thomas D., Lariviere, Patrick J., Liang, Libang, Son, Sangkeun, Nicolau, Samantha, Bargabos, Rachel, Morrissette, Madeleine, Gates, Michael F., Pitt, Norman, Jakob, Roman P., Rath, Parthasarathi, , Malyutin, Andrey G., Kaiser, Jens T., Niles, Samantha, et al. (2022). Computational identification of a systemic antibiotic for gram-negative bacteria. Nature Microbiology, 7(10), 1661–1672. https://doi.org/10.1038/s41564-022-01227-4
Miller, Ryan D., Iinishi, Akira, Modaresi, Seyed Majed, Yoo, Byung-Kuk, Curtis, Thomas D., Lariviere, Patrick J., Liang, Libang, Son, Sangkeun, Nicolau, Samantha, Bargabos, Rachel, Morrissette, Madeleine, Gates, Michael F., Pitt, Norman, Jakob, Roman P., Rath, Parthasarathi, , Malyutin, Andrey G., Kaiser, Jens T., Niles, Samantha, et al. (2022). Computational identification of a systemic antibiotic for gram-negative bacteria. Nature Microbiology, 7(10), 1661–1672. https://doi.org/10.1038/s41564-022-01227-4
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Balasopoulos, Dimitrios, Topitsch, Annika, , & Abrahams, Jan Pieter. (2022). Catalytic cycling of human mitochondrial Lon protease. Structure, 30(9), 1254–1268. https://doi.org/10.1016/j.str.2022.06.006
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Balasopoulos, Dimitrios, Topitsch, Annika, , & Abrahams, Jan Pieter. (2022). Catalytic cycling of human mitochondrial Lon protease. Structure, 30(9), 1254–1268. https://doi.org/10.1016/j.str.2022.06.006
Tittes, Yves U., Herbst, Dominik A., Martin, Solène F. X., Munoz-Hernandez, Hugo, Jakob, Roman P., & . (2022). The structure of a polyketide synthase bimodule core. Science Advances, 8(38), eabo6918. https://doi.org/10.1126/sciadv.abo6918
Tittes, Yves U., Herbst, Dominik A., Martin, Solène F. X., Munoz-Hernandez, Hugo, Jakob, Roman P., & . (2022). The structure of a polyketide synthase bimodule core. Science Advances, 8(38), eabo6918. https://doi.org/10.1126/sciadv.abo6918
Zhang, Lei, Toplak, Marina, Saleem-Batcha, Raspudin, Höing, Lars Simon, Jakob, Roman, Jehmlich, Nico, von Bergen , Martin, , & Teufel, Robin. (2022). Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol. ChemBioChem, 24(2), e202200632. https://doi.org/10.1002/cbic.202200632
Zhang, Lei, Toplak, Marina, Saleem-Batcha, Raspudin, Höing, Lars Simon, Jakob, Roman, Jehmlich, Nico, von Bergen , Martin, , & Teufel, Robin. (2022). Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol. ChemBioChem, 24(2), e202200632. https://doi.org/10.1002/cbic.202200632
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Topitsch, Annika, , & Abrahams, Jan Pieter. (2021). Catalytic cycling of human mitochondrial Lon protease [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.07.28.454137
Mohammed, Inayathulla, Schmitz, Kai A., Schenck, Niko, Topitsch, Annika, , & Abrahams, Jan Pieter. (2021). Catalytic cycling of human mitochondrial Lon protease [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.07.28.454137
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., Hall, Michael N., , & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., Hall, Michael N., , & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
Böhringer, Nils, Green, Robert, Liu, Yang, Mettal, Ute, Marner, Michael, Modaresi, Seyed Majed, Jakob, Roman P., Wuisan, Zerlina G., , Iinishi, Akira, Hiller, Sebastian, Lewis, Kim, & Schäberle, Till F. (2021). Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs. Microbiology spectrum, 9(3), e0153521. https://doi.org/10.1128/spectrum.01535-21
Böhringer, Nils, Green, Robert, Liu, Yang, Mettal, Ute, Marner, Michael, Modaresi, Seyed Majed, Jakob, Roman P., Wuisan, Zerlina G., , Iinishi, Akira, Hiller, Sebastian, Lewis, Kim, & Schäberle, Till F. (2021). Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs. Microbiology spectrum, 9(3), e0153521. https://doi.org/10.1128/spectrum.01535-21
Cramer, Jonathan, Lakkaichi, Adem, Aliu, Butrint, Jakob, Roman P., Klein, Sebastian, Cattaneo, Ivan, Jiang, Xiaohua, Rabbani, Said, Schwardt, Oliver, Zimmer, Gert, Ciancaglini, Matias, Abreu Mota, Tiago, , & Ernst, Beat. (2021). Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2. Journal of the American Chemical Society, 143(42), 17465–17478. https://doi.org/10.1021/jacs.1c06778
Cramer, Jonathan, Lakkaichi, Adem, Aliu, Butrint, Jakob, Roman P., Klein, Sebastian, Cattaneo, Ivan, Jiang, Xiaohua, Rabbani, Said, Schwardt, Oliver, Zimmer, Gert, Ciancaglini, Matias, Abreu Mota, Tiago, , & Ernst, Beat. (2021). Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2. Journal of the American Chemical Society, 143(42), 17465–17478. https://doi.org/10.1021/jacs.1c06778
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Branco, Camila, Paolini-Bertrand, Marianne, Calo, Nicolas, Cerini, Fabrice, Schertler, Gebhard F. X., Hartley, Oliver, Stahlberg, Henning, , Deupi, Xavier, & Grzesiek, Stephan. (2021). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. Science Advances, 7(25), eabg8685. https://doi.org/10.1126/sciadv.abg8685
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Branco, Camila, Paolini-Bertrand, Marianne, Calo, Nicolas, Cerini, Fabrice, Schertler, Gebhard F. X., Hartley, Oliver, Stahlberg, Henning, , Deupi, Xavier, & Grzesiek, Stephan. (2021). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. Science Advances, 7(25), eabg8685. https://doi.org/10.1126/sciadv.abg8685
Jia, Jian-Jun, Lahr, Roni M., Solgaard, Michael T., Moraes, Bruno J., Pointet, Roberta, Yang, An-Dao, Celucci, Giovanna, Graber, Tyson E., Hoang, Huy-Dung, Niklaus, Marius R., Pena, Izabella A., Hollensen, Anne K., Smith, Ewan M., Chaker-Margot, Malik, Anton, Leonie, Dajadian, Christopher, Livingstone, Mark, Hearnden, Jaclyn, Wang, Xu-Dong, et al. (2021). mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Research, 49(6), 3461–3489. https://doi.org/10.1093/nar/gkaa1239
Jia, Jian-Jun, Lahr, Roni M., Solgaard, Michael T., Moraes, Bruno J., Pointet, Roberta, Yang, An-Dao, Celucci, Giovanna, Graber, Tyson E., Hoang, Huy-Dung, Niklaus, Marius R., Pena, Izabella A., Hollensen, Anne K., Smith, Ewan M., Chaker-Margot, Malik, Anton, Leonie, Dajadian, Christopher, Livingstone, Mark, Hearnden, Jaclyn, Wang, Xu-Dong, et al. (2021). mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Research, 49(6), 3461–3489. https://doi.org/10.1093/nar/gkaa1239
Kaur, Hundeep, Jakob, Roman P., Marzinek, Jan K., Green, Robert, Imai, Yu, Bolla, Jani Reddy, Agustoni, Elia, Robinson, Carol V., Bond, Peter J., Lewis, Kim, , & Hiller, Sebastian. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 593(7857), 125–129. https://doi.org/10.1038/s41586-021-03455-w
Kaur, Hundeep, Jakob, Roman P., Marzinek, Jan K., Green, Robert, Imai, Yu, Bolla, Jani Reddy, Agustoni, Elia, Robinson, Carol V., Bond, Peter J., Lewis, Kim, , & Hiller, Sebastian. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 593(7857), 125–129. https://doi.org/10.1038/s41586-021-03455-w
Pipercevic, Joka, Jakob, Roman P., Righetto, Ricardo D., Goldie, Kenneth N., Stahlberg, Henning, , & Hiller, Sebastian. (2021). Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), 183607. https://doi.org/10.1016/j.bbamem.2021.183607
Pipercevic, Joka, Jakob, Roman P., Righetto, Ricardo D., Goldie, Kenneth N., Stahlberg, Henning, , & Hiller, Sebastian. (2021). Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), 183607. https://doi.org/10.1016/j.bbamem.2021.183607
Tomašič, Tihomir, Rabbani, Said, Jakob, Roman P., Reisner, Andreas, Jakopin, Žiga, , Ernst, Beat, & Anderluh, Marko. (2021). Does targeting Arg98 of FimH lead to high affinity antagonists? European Journal of Medicinal Chemistry, 211, 113093. https://doi.org/10.1016/j.ejmech.2020.113093
Tomašič, Tihomir, Rabbani, Said, Jakob, Roman P., Reisner, Andreas, Jakopin, Žiga, , Ernst, Beat, & Anderluh, Marko. (2021). Does targeting Arg98 of FimH lead to high affinity antagonists? European Journal of Medicinal Chemistry, 211, 113093. https://doi.org/10.1016/j.ejmech.2020.113093
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, Hall, Michael N., & . (2021). Regulation of human mTOR complexes by DEPTOR. eLife, 10, e70871. https://doi.org/10.7554/elife.70871
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, Hall, Michael N., & . (2021). Regulation of human mTOR complexes by DEPTOR. eLife, 10, e70871. https://doi.org/10.7554/elife.70871
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Schertler, Gebhard F.X., Hartley, Oliver, Stahlberg, Henning, , Deupi, Xavier, & Grzesiek, Stephan. (2020). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.11.27.401117
Isaikina, Polina, Tsai, Ching-Ju, Dietz, Nikolaus, Pamula, Filip, Grahl, Anne, Goldie, Kenneth N., Guixà-González, Ramon, Schertler, Gebhard F.X., Hartley, Oliver, Stahlberg, Henning, , Deupi, Xavier, & Grzesiek, Stephan. (2020). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.11.27.401117
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, , & Schenck, Stephan. (2020). Structural basis for ion selectivity in TMEM175 K+ channels. eLife, 9. https://doi.org/10.7554/elife.53683
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, , & Schenck, Stephan. (2020). Structural basis for ion selectivity in TMEM175 K+ channels. eLife, 9. https://doi.org/10.7554/elife.53683
Cramer, Jonathan, Jiang, Xiaohua, Schönemann, Wojciech, Silbermann, Marleen, Zihlmann, Pascal, Siegrist, Stefan, Fiege, Brigitte, Jakob, Roman Peter, Rabbani, Said, , & Ernst, Beat. (2020). Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding. RSC Chemical Biology, 1(4), 281–287. https://doi.org/10.1039/d0cb00108b
Cramer, Jonathan, Jiang, Xiaohua, Schönemann, Wojciech, Silbermann, Marleen, Zihlmann, Pascal, Siegrist, Stefan, Fiege, Brigitte, Jakob, Roman Peter, Rabbani, Said, , & Ernst, Beat. (2020). Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding. RSC Chemical Biology, 1(4), 281–287. https://doi.org/10.1039/d0cb00108b
Künzli, Marco, Schreiner, David, Pereboom, Tamara C., Swarnalekha, Nivedya, Litzler, Ludivine C., Lötscher, Jonas, Ertuna, Yusuf I., Roux, Julien, Geier, Florian, Jakob, Roman P., , Hess, Christoph, Taylor, Justin J., & King, Carolyn G. (2020). Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Science Immunology, 5(45). https://doi.org/10.1126/sciimmunol.aay5552
Künzli, Marco, Schreiner, David, Pereboom, Tamara C., Swarnalekha, Nivedya, Litzler, Ludivine C., Lötscher, Jonas, Ertuna, Yusuf I., Roux, Julien, Geier, Florian, Jakob, Roman P., , Hess, Christoph, Taylor, Justin J., & King, Carolyn G. (2020). Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Science Immunology, 5(45). https://doi.org/10.1126/sciimmunol.aay5552
Perez, Camilo, & . (2020). Expression, Purification, and Structural Biology of Membrane Proteins. In Methods in Molecular Biology (1 ed., Vol. 2127). Humana Press. https://doi.org/10.1007/978-1-0716-0373-4
Perez, Camilo, & . (2020). Expression, Purification, and Structural Biology of Membrane Proteins. In Methods in Molecular Biology (1 ed., Vol. 2127). Humana Press. https://doi.org/10.1007/978-1-0716-0373-4
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, , & Stahlberg, Henning. (2020). High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nature Communications, 11(1), 5101. https://doi.org/10.1038/s41467-020-18870-2
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, , & Stahlberg, Henning. (2020). High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nature Communications, 11(1), 5101. https://doi.org/10.1038/s41467-020-18870-2
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, , & Stahlberg, Henning. (2020). Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nature Communications, 11(1), 5873. https://doi.org/10.1038/s41467-020-19845-z
Righetto, Ricardo D., Anton, Leonie, Adaixo, Ricardo, Jakob, Roman P., Zivanov, Jasenko, Mahi, Mohamed-Ali, Ringler, Philippe, Schwede, Torsten, , & Stahlberg, Henning. (2020). Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nature Communications, 11(1), 5873. https://doi.org/10.1038/s41467-020-19845-z
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, Hall, Michael N., Ban, Nenad, & . (2020). The 3.2-Å resolution structure of human mTORC2. Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, Hall, Michael N., Ban, Nenad, & . (2020). The 3.2-Å resolution structure of human mTORC2. Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, , Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2020). Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, , Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Hall, Michael N. (2020). Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
Sauer, Maximilian M., Jakob, Roman P., Luber, Thomas, Canonica, Fabia, Navarra, Giulio, Ernst, Beat, Unverzagt, Carlo, , & Glockshuber, Rudi. (2019). Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets. Journal of the American Chemical Society, 141(2), 936–944. https://doi.org/10.1021/jacs.8b10736
Sauer, Maximilian M., Jakob, Roman P., Luber, Thomas, Canonica, Fabia, Navarra, Giulio, Ernst, Beat, Unverzagt, Carlo, , & Glockshuber, Rudi. (2019). Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets. Journal of the American Chemical Society, 141(2), 936–944. https://doi.org/10.1021/jacs.8b10736
Kaur, Hundeep, Hartmann, Jean-Baptiste, Jakob, Roman P., Zahn, Michael, Zimmermann, Iwan, , Seeger, Markus A., & Hiller, Sebastian. (2019). Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. Journal of Biomolecular NMR, 73(6-7), 375–384. https://doi.org/10.1007/s10858-019-00250-8
Kaur, Hundeep, Hartmann, Jean-Baptiste, Jakob, Roman P., Zahn, Michael, Zimmermann, Iwan, , Seeger, Markus A., & Hiller, Sebastian. (2019). Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. Journal of Biomolecular NMR, 73(6-7), 375–384. https://doi.org/10.1007/s10858-019-00250-8
Schönemann, Wojciech, Cramer, Jonathan, Mühlethaler, Tobias, Fiege, Brigitte, Silbermann, Marleen, Rabbani, Said, Dätwyler, Philipp, Zihlmann, Pascal, Jakob, Roman P., Sager, Christoph P., Smiesko, Martin, Schwardt, Oliver, , & Ernst, Beat. (2019). Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists. ChemMedChem, 14(7), 749–757. https://doi.org/10.1002/cmdc.201900051
Schönemann, Wojciech, Cramer, Jonathan, Mühlethaler, Tobias, Fiege, Brigitte, Silbermann, Marleen, Rabbani, Said, Dätwyler, Philipp, Zihlmann, Pascal, Jakob, Roman P., Sager, Christoph P., Smiesko, Martin, Schwardt, Oliver, , & Ernst, Beat. (2019). Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists. ChemMedChem, 14(7), 749–757. https://doi.org/10.1002/cmdc.201900051
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, , & Schenck, Stephan. (2018). Structural basis for ion selectivity in TMEM175 K+ channels [Posted-content]. bioRxiv. https://doi.org/10.1101/480863
Brunner, Janine D., Jakob, Roman P., Schulze, Tobias, Neldner, Yvonne, Moroni, Anna, Thiel, Gerhard, , & Schenck, Stephan. (2018). Structural basis for ion selectivity in TMEM175 K+ channels [Posted-content]. bioRxiv. https://doi.org/10.1101/480863
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Peter Jakob, Roman, Matsuda, Shinya, , Plückthun, Andreas, & Affolter, Markus. (2018). DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations [Posted-content]. bioRxiv. https://doi.org/10.1101/354134
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Peter Jakob, Roman, Matsuda, Shinya, , Plückthun, Andreas, & Affolter, Markus. (2018). DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations [Posted-content]. bioRxiv. https://doi.org/10.1101/354134
Bauer, Daniela, Meinhold, Sarah, Jakob, Roman P., Stigler, Johannes, Merkel, Ulrich, , Rief, Matthias, & Žoldák, Gabriel. (2018). A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4666–4671. https://doi.org/10.1073/pnas.1716899115
Bauer, Daniela, Meinhold, Sarah, Jakob, Roman P., Stigler, Johannes, Merkel, Ulrich, , Rief, Matthias, & Žoldák, Gabriel. (2018). A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4666–4671. https://doi.org/10.1073/pnas.1716899115
Herbst, Dominik A., Huitt-Roehl, Callie R., Jakob, Roman P., Kravetz, Jacob M., Storm, Philip A., Alley, Jamie R., Townsend, Craig A., & . (2018). The structural organization of substrate loading in iterative polyketide synthases. Nature Chemical Biology, 14(5), 474–479. https://doi.org/10.1038/s41589-018-0026-3
Herbst, Dominik A., Huitt-Roehl, Callie R., Jakob, Roman P., Kravetz, Jacob M., Storm, Philip A., Alley, Jamie R., Townsend, Craig A., & . (2018). The structural organization of substrate loading in iterative polyketide synthases. Nature Chemical Biology, 14(5), 474–479. https://doi.org/10.1038/s41589-018-0026-3
Herbst, Dominik A., Townsend, Craig A., & . (2018). The architectures of iterative type I PKS and FAS. Natural Product Reports, 35(10), 1046–1069. https://doi.org/10.1039/c8np00039e
Herbst, Dominik A., Townsend, Craig A., & . (2018). The architectures of iterative type I PKS and FAS. Natural Product Reports, 35(10), 1046–1069. https://doi.org/10.1039/c8np00039e
Hunkeler, Moritz, Hagmann, Anna, Stuttfeld, Edward, Chami, Mohamed, Guri, Yakir, Stahlberg, Henning, & . (2018). Structural basis for regulation of human acetyl-CoA carboxylase. Nature, 558(7710), 470–474. https://doi.org/10.1038/s41586-018-0201-4
Hunkeler, Moritz, Hagmann, Anna, Stuttfeld, Edward, Chami, Mohamed, Guri, Yakir, Stahlberg, Henning, & . (2018). Structural basis for regulation of human acetyl-CoA carboxylase. Nature, 558(7710), 470–474. https://doi.org/10.1038/s41586-018-0201-4
Imseng, Stefan, Aylett, Christopher Hs, & . (2018). Architecture and activation of phosphatidylinositol 3-kinase related kinases. Current Opinion in Structural Biology, 49, 177–189. https://doi.org/10.1016/j.sbi.2018.03.010
Imseng, Stefan, Aylett, Christopher Hs, & . (2018). Architecture and activation of phosphatidylinositol 3-kinase related kinases. Current Opinion in Structural Biology, 49, 177–189. https://doi.org/10.1016/j.sbi.2018.03.010
, & Weissman, Kira J. (2018). Macromolecular assemblies: Assembly, dynamics and control of activity. Current Opinion in Structural Biology, 49, vi–vii. https://doi.org/10.1016/j.sbi.2018.04.001
, & Weissman, Kira J. (2018). Macromolecular assemblies: Assembly, dynamics and control of activity. Current Opinion in Structural Biology, 49, vi–vii. https://doi.org/10.1016/j.sbi.2018.04.001
Rabbani, Said, Fiege, Brigitte, Eris, Deniz, Silbermann, Marleen, Jakob, Roman Peter, Navarra, Giulio, , & Ernst, Beat. (2018). Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System. Journal of Biological Chemistry, 293(5), 1835–1849. https://doi.org/10.1074/jbc.m117.802942
Rabbani, Said, Fiege, Brigitte, Eris, Deniz, Silbermann, Marleen, Jakob, Roman Peter, Navarra, Giulio, , & Ernst, Beat. (2018). Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System. Journal of Biological Chemistry, 293(5), 1835–1849. https://doi.org/10.1074/jbc.m117.802942
Sager, Christoph P., Fiege, Brigitte, Zihlmann, Pascal, Vannam, Raghu, Rabbani, Said, Jakob, Roman P., Preston, Roland C., Zalewski, Adam, , Peczuh, Mark W., & Ernst, Beat. (2018). The price of flexibility - a case study on septanoses as pyranose mimetics. Chemical Science, 9(3), 646–654. https://doi.org/10.1039/c7sc04289b
Sager, Christoph P., Fiege, Brigitte, Zihlmann, Pascal, Vannam, Raghu, Rabbani, Said, Jakob, Roman P., Preston, Roland C., Zalewski, Adam, , Peczuh, Mark W., & Ernst, Beat. (2018). The price of flexibility - a case study on septanoses as pyranose mimetics. Chemical Science, 9(3), 646–654. https://doi.org/10.1039/c7sc04289b
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., Hall, M. N., , & Ban, N. (2018). Architecture of the human mTORC2 core complex. eLife, 7, e33101. https://doi.org/10.7554/elife.33101
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., Hall, M. N., , & Ban, N. (2018). Architecture of the human mTORC2 core complex. eLife, 7, e33101. https://doi.org/10.7554/elife.33101
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman Peter, Matsuda, Shinya, , Plückthun, Andreas, & Affolter, Markus. (2018). DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations. Biology Open, 7(11), bio036749. https://doi.org/10.1242/bio.036749
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman Peter, Matsuda, Shinya, , Plückthun, Andreas, & Affolter, Markus. (2018). DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations. Biology Open, 7(11), bio036749. https://doi.org/10.1242/bio.036749
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman P., Matsuda, Shinya, , Plückthun, Andreas, & Affolter, Markus. (2018). Correction:DARPins recognizing mTFP1 as novel reagents for in vitro; and in vivo protein manipulations. Biology Open, 7(12), bio036749. https://doi.org/10.1242/bio.040832
Vigano, M. Alessandra, Bieli, Dimitri, Schaefer, Jonas V., Jakob, Roman P., Matsuda, Shinya, , Plückthun, Andreas, & Affolter, Markus. (2018). Correction:DARPins recognizing mTFP1 as novel reagents for in vitro; and in vivo protein manipulations. Biology Open, 7(12), bio036749. https://doi.org/10.1242/bio.040832
Zihlmann, Pascal, Silbermann, Marleen, Sharpe, Timothy, Jiang, Xiaohua, Mühlethaler, Tobias, Jakob, Roman P., Rabbani, Said, Sager, Christoph P., Frei, Priska, Pang, Lijuan, , & Ernst, Beat. (2018). KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists. Chemistry (Weinheim an Der Bergstrasse, Germany), 24(49), 13049–13057. https://doi.org/10.1002/chem.201802599
Zihlmann, Pascal, Silbermann, Marleen, Sharpe, Timothy, Jiang, Xiaohua, Mühlethaler, Tobias, Jakob, Roman P., Rabbani, Said, Sager, Christoph P., Frei, Priska, Pang, Lijuan, , & Ernst, Beat. (2018). KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists. Chemistry (Weinheim an Der Bergstrasse, Germany), 24(49), 13049–13057. https://doi.org/10.1002/chem.201802599
Anton, Leonie, Sborgi, Lorenzo, Hiller, Sebastian, Broz, Petr, & . (2017). Insights into Gasdermin D activation from the crystal structure of its C-terminal domain [Posted-content]. bioRxiv. https://doi.org/10.1101/187211
Anton, Leonie, Sborgi, Lorenzo, Hiller, Sebastian, Broz, Petr, & . (2017). Insights into Gasdermin D activation from the crystal structure of its C-terminal domain [Posted-content]. bioRxiv. https://doi.org/10.1101/187211
Benning, Friederike M. C., Sakiyama, Yusuke, Mazur, Adam, Bukhari, Habib S. T., Lim, Roderick Y. H., & . (2017). High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase. ACS Nano, 11(11), 10852–10859. https://doi.org/10.1021/acsnano.7b04216
Benning, Friederike M. C., Sakiyama, Yusuke, Mazur, Adam, Bukhari, Habib S. T., Lim, Roderick Y. H., & . (2017). High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase. ACS Nano, 11(11), 10852–10859. https://doi.org/10.1021/acsnano.7b04216
. (2017). Fatty acid synthases: Re-engineering biofactories. Nature Chemical Biology, 13(4), 344–345. https://doi.org/10.1038/nchembio.2338
. (2017). Fatty acid synthases: Re-engineering biofactories. Nature Chemical Biology, 13(4), 344–345. https://doi.org/10.1038/nchembio.2338
Navarra, Giulio, Zihlmann, Pascal, Jakob, Roman P., Stangier, Katia, Preston, Roland C., Rabbani, Said, Smiesko, Martin, Wagner, Bea, , & Ernst, Beat. (2017). Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity. ChemBioChem, 18(6), 539–544. https://doi.org/10.1002/cbic.201600615
Navarra, Giulio, Zihlmann, Pascal, Jakob, Roman P., Stangier, Katia, Preston, Roland C., Rabbani, Said, Smiesko, Martin, Wagner, Bea, , & Ernst, Beat. (2017). Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity. ChemBioChem, 18(6), 539–544. https://doi.org/10.1002/cbic.201600615
Roth, Christian, Weizenmann, Nicole, Bexten, Nicola, Saenger, Wolfram, Zimmermann, Wolfgang, , & Sträter, Norbert. (2017). Amylose recognition and ring-size determination of amylomaltase. Science Advances, 3(1), e1601386. https://doi.org/10.1126/sciadv.1601386
Roth, Christian, Weizenmann, Nicole, Bexten, Nicola, Saenger, Wolfram, Zimmermann, Wolfgang, , & Sträter, Norbert. (2017). Amylose recognition and ring-size determination of amylomaltase. Science Advances, 3(1), e1601386. https://doi.org/10.1126/sciadv.1601386
Storm, Philip A., Herbst, Dominik A., , & Townsend, Craig A. (2017). Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin. Cell Chemical Biology, 24(3), 316–325. https://doi.org/10.1016/j.chembiol.2017.01.008
Storm, Philip A., Herbst, Dominik A., , & Townsend, Craig A. (2017). Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin. Cell Chemical Biology, 24(3), 316–325. https://doi.org/10.1016/j.chembiol.2017.01.008
Stuttfeld, Edward, Imseng, Stefan, & . (2017). A central role for a region in the middle. eLife, 6, e25700. https://doi.org/10.7554/elife.25700
Stuttfeld, Edward, Imseng, Stefan, & . (2017). A central role for a region in the middle. eLife, 6, e25700. https://doi.org/10.7554/elife.25700
Wang, Jing, Brackmann, Maximilian, Castaño-Díez, Daniel, Kudryashev, Mikhail, Goldie, Kenneth N., , Stahlberg, Henning, & Basler, Marek. (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nature Microbiology, 2(11), 1507–1512. https://doi.org/10.1038/s41564-017-0020-7
Wang, Jing, Brackmann, Maximilian, Castaño-Díez, Daniel, Kudryashev, Mikhail, Goldie, Kenneth N., , Stahlberg, Henning, & Basler, Marek. (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nature Microbiology, 2(11), 1507–1512. https://doi.org/10.1038/s41564-017-0020-7
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & . (2016). Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993). Nature, 536(7616), 360. https://doi.org/10.1038/nature18281
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & . (2016). Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993). Nature, 536(7616), 360. https://doi.org/10.1038/nature18281
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, Hall, Michael N., Ban, Nenad, & . (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, Hall, Michael N., Ban, Nenad, & . (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
Hagmann, Anna, Hunkeler, Moritz, Stuttfeld, Edward, & . (2016). Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans. Structure, 24(8), 1227–1236. https://doi.org/10.1016/j.str.2016.06.001
Hagmann, Anna, Hunkeler, Moritz, Stuttfeld, Edward, & . (2016). Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans. Structure, 24(8), 1227–1236. https://doi.org/10.1016/j.str.2016.06.001
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & . (2016). Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases. Nature, 531(7595), 7–533. https://doi.org/10.1038/nature16993
Herbst, Dominik A., Jakob, Roman P., Zähringer, Franziska, & . (2016). Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases. Nature, 531(7595), 7–533. https://doi.org/10.1038/nature16993
Hunkeler, Moritz, Stuttfeld, Edward, Hagmann, Anna, Imseng, Stefan, & . (2016). The dynamic organization of fungal acetyl-CoA carboxylase. Nature Communications, 7, 11196. https://doi.org/10.1038/ncomms11196
Hunkeler, Moritz, Stuttfeld, Edward, Hagmann, Anna, Imseng, Stefan, & . (2016). The dynamic organization of fungal acetyl-CoA carboxylase. Nature Communications, 7, 11196. https://doi.org/10.1038/ncomms11196
Jakob, Roman P., Schmidpeter, Philipp A. M., Koch, Johanna R., Schmid, Franz X., & . (2016). Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps. PLoS ONE, 11(6), e0157070. https://doi.org/10.1371/journal.pone.0157070
Jakob, Roman P., Schmidpeter, Philipp A. M., Koch, Johanna R., Schmid, Franz X., & . (2016). Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps. PLoS ONE, 11(6), e0157070. https://doi.org/10.1371/journal.pone.0157070
Preston, Roland C., Jakob, Roman P., Binder, Florian P. C., Sager, Christoph P., Ernst, Beat, & . (2016). E-selectin ligand complexes adopt an extended high-affinity conformation. Journal of Molecular Cell Biology, 8(1), 62–72. https://doi.org/10.1093/jmcb/mjv046
Preston, Roland C., Jakob, Roman P., Binder, Florian P. C., Sager, Christoph P., Ernst, Beat, & . (2016). E-selectin ligand complexes adopt an extended high-affinity conformation. Journal of Molecular Cell Biology, 8(1), 62–72. https://doi.org/10.1093/jmcb/mjv046
Sauer, Maximilian M, Jakob, Roman P, Eras, Jonathan, Baday, Sefer, Eriş, Deniz, Navarra, Giulio, Bernèche, Simon, Ernst, Beat, , & Glockshuber, Rudi. (2016). Catch-bond mechanism of the bacterial adhesin FimH. Nature Communications, 7, 10738. https://doi.org/10.1038/ncomms10738
Sauer, Maximilian M, Jakob, Roman P, Eras, Jonathan, Baday, Sefer, Eriş, Deniz, Navarra, Giulio, Bernèche, Simon, Ernst, Beat, , & Glockshuber, Rudi. (2016). Catch-bond mechanism of the bacterial adhesin FimH. Nature Communications, 7, 10738. https://doi.org/10.1038/ncomms10738
Silván, Unai, Hyotyla, Janne, Mannherz, Hans-Georg, Ringler, Philippe, Müller, Shirley A., Aebi, Ueli, , & Schoenenberger, Cora-Ann. (2016). Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy. Journal of Structural Biology, 195(2), 159–166. https://doi.org/10.1016/j.jsb.2016.05.008
Silván, Unai, Hyotyla, Janne, Mannherz, Hans-Georg, Ringler, Philippe, Müller, Shirley A., Aebi, Ueli, , & Schoenenberger, Cora-Ann. (2016). Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy. Journal of Structural Biology, 195(2), 159–166. https://doi.org/10.1016/j.jsb.2016.05.008
Studer, G., Jakob, R. P., Mahi, M. A., Wiesand, U., Schwede, T., & (2016). Crystal structure of urease from Yersinia enterocolitica (Studer, Gabriel, Ed.) [dataset]. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb4z42/pdb
Studer, G., Jakob, R. P., Mahi, M. A., Wiesand, U., Schwede, T., & (2016). Crystal structure of urease from Yersinia enterocolitica (Studer, Gabriel, Ed.) [dataset]. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb4z42/pdb
Arquint, Christian, Gabryjonczyk, Anna-Maria, Imseng, Stefan, Böhm, Raphael, Sauer, Evelyn, Hiller, Sebastian, Nigg, Erich A., & . (2015). STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife, 4, e07888. https://doi.org/10.7554/elife.07888
Arquint, Christian, Gabryjonczyk, Anna-Maria, Imseng, Stefan, Böhm, Raphael, Sauer, Evelyn, Hiller, Sebastian, Nigg, Erich A., & . (2015). STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife, 4, e07888. https://doi.org/10.7554/elife.07888
Blatter, Markus, Dunin-Horkawicz, Stanislaw, Grishina, Irma, Maris, Christophe, Thore, Stephane, , Bindereif, Albrecht, Bujnicki, Janusz M., & Allain, Frederic H. -T. (2015). The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein. Journal of Molecular Biology, 427(19), 3001–3022. https://doi.org/10.1016/j.jmb.2015.05.020
Blatter, Markus, Dunin-Horkawicz, Stanislaw, Grishina, Irma, Maris, Christophe, Thore, Stephane, , Bindereif, Albrecht, Bujnicki, Janusz M., & Allain, Frederic H. -T. (2015). The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein. Journal of Molecular Biology, 427(19), 3001–3022. https://doi.org/10.1016/j.jmb.2015.05.020
Fiege, Brigitte, Rabbani, Said, Preston, Roland C., Jakob, Roman P., Zihlmann, Pascal, Schwardt, Oliver, Jiang, Xiaohua, , & Ernst, Beat. (2015). The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography. ChemBioChem, 16(8), 1235–1246. https://doi.org/10.1002/cbic.201402714
Fiege, Brigitte, Rabbani, Said, Preston, Roland C., Jakob, Roman P., Zihlmann, Pascal, Schwardt, Oliver, Jiang, Xiaohua, , & Ernst, Beat. (2015). The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography. ChemBioChem, 16(8), 1235–1246. https://doi.org/10.1002/cbic.201402714
Fujieda, Nobutaka, Schaetti, Jonas, Stuttfeld, Edward, Ohkubo, Kei, , Fukuzumi, Shunichi, & Ward, Thomas R. (2015). Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Chemical Science, 6(7), 4060–4065. https://doi.org/10.1039/c5sc01065a
Fujieda, Nobutaka, Schaetti, Jonas, Stuttfeld, Edward, Ohkubo, Kei, , Fukuzumi, Shunichi, & Ward, Thomas R. (2015). Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Chemical Science, 6(7), 4060–4065. https://doi.org/10.1039/c5sc01065a
Gruss, Fabian, Hiller, Sebastian, & . (2015). Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA. Methods in Molecular Biology, 1329, 70–259. https://doi.org/10.1007/978-1-4939-2871-2_20
Gruss, Fabian, Hiller, Sebastian, & . (2015). Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA. Methods in Molecular Biology, 1329, 70–259. https://doi.org/10.1007/978-1-4939-2871-2_20
Jakob, Roman P., Koch, Johanna R., Burmann, Björn M., Schmidpeter, Philipp A. M., Hunkeler, Moritz, Hiller, Sebastian, Schmid, Franz X., & . (2015). Dimeric structure of the bacterial extracellular foldase PrsA. Journal of Biological Chemistry, 290(6), 3278–3292. https://doi.org/10.1074/jbc.m114.622910
Jakob, Roman P., Koch, Johanna R., Burmann, Björn M., Schmidpeter, Philipp A. M., Hunkeler, Moritz, Hiller, Sebastian, Schmid, Franz X., & . (2015). Dimeric structure of the bacterial extracellular foldase PrsA. Journal of Biological Chemistry, 290(6), 3278–3292. https://doi.org/10.1074/jbc.m114.622910
Kleeb, Simon, Pang, Lijuan, Mayer, Katharina, Eris, Deniz, Sigl, Anja, Preston, Roland C., Zihlmann, Pascal, Sharpe, Timothy, Jakob, Roman P., Abgottspon, Daniela, Hutter, Aline S., Scharenberg, Meike, Jiang, Xiaohua, Navarra, Giulio, Rabbani, Said, Smiesko, Martin, Lüdin, Nathalie, Bezençon, Jacqueline, Schwardt, Oliver, et al. (2015). FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile. Journal of Medicinal Chemistry, 58(5), 39–2221. https://doi.org/10.1021/jm501524q
Kleeb, Simon, Pang, Lijuan, Mayer, Katharina, Eris, Deniz, Sigl, Anja, Preston, Roland C., Zihlmann, Pascal, Sharpe, Timothy, Jakob, Roman P., Abgottspon, Daniela, Hutter, Aline S., Scharenberg, Meike, Jiang, Xiaohua, Navarra, Giulio, Rabbani, Said, Smiesko, Martin, Lüdin, Nathalie, Bezençon, Jacqueline, Schwardt, Oliver, et al. (2015). FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile. Journal of Medicinal Chemistry, 58(5), 39–2221. https://doi.org/10.1021/jm501524q
Kudryashev, Mikhail, Wang, Ray Yu-Ruei, Brackmann, Maximilian, Scherer, Sebastian, , Baker, David, DiMaio, Frank, Stahlberg, Henning, Egelman, Edward H, & Basler, Marek. (2015). Structure of the Type VI Secretion System Contractile Sheath. Cell, 160(5), 62–952. https://doi.org/10.1016/j.cell.2015.01.037
Kudryashev, Mikhail, Wang, Ray Yu-Ruei, Brackmann, Maximilian, Scherer, Sebastian, , Baker, David, DiMaio, Frank, Stahlberg, Henning, Egelman, Edward H, & Basler, Marek. (2015). Structure of the Type VI Secretion System Contractile Sheath. Cell, 160(5), 62–952. https://doi.org/10.1016/j.cell.2015.01.037
, Clantin, Bernard, Gruss, Fabian, Dewitte, Frédérique, Delattre, Anne-Sophie, Jacob-Dubuisson, Françoise, Hiller, Sebastian, & Villeret, Vincent. (2015). Conserved Omp85 lid-lock structure and substrate recognition in FhaC. Nature Communications, 6, 7452. https://doi.org/10.1038/ncomms8452
, Clantin, Bernard, Gruss, Fabian, Dewitte, Frédérique, Delattre, Anne-Sophie, Jacob-Dubuisson, Françoise, Hiller, Sebastian, & Villeret, Vincent. (2015). Conserved Omp85 lid-lock structure and substrate recognition in FhaC. Nature Communications, 6, 7452. https://doi.org/10.1038/ncomms8452
Morgado, Leonor, Zeth, Kornelius, Burmann, Björn M., , & Hiller, Sebastian. (2015). Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. Journal of Biomolecular NMR, 61(3-4), 45–333. https://doi.org/10.1007/s10858-015-9906-y
Morgado, Leonor, Zeth, Kornelius, Burmann, Björn M., , & Hiller, Sebastian. (2015). Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. Journal of Biomolecular NMR, 61(3-4), 45–333. https://doi.org/10.1007/s10858-015-9906-y
Bukhari, Habib S. T., Jakob, Roman P., & . (2014). Evolutionary origins of the multienzyme architecture of giant fungal Fatty Acid synthase. Structure, 22(12), 1775–1785. https://doi.org/10.1016/j.str.2014.09.016
Bukhari, Habib S. T., Jakob, Roman P., & . (2014). Evolutionary origins of the multienzyme architecture of giant fungal Fatty Acid synthase. Structure, 22(12), 1775–1785. https://doi.org/10.1016/j.str.2014.09.016
Gruss, Fabian, Zähringer, Franziska, Jakob, Roman P., Burmann, Björn M., Hiller, Sebastian, & . (2013). The structural basis of autotransporter translocation by TamA. Nature Structural & Molecular Biology, 20(11), 1318–U247. https://doi.org/10.1038/nsmb.2689
Gruss, Fabian, Zähringer, Franziska, Jakob, Roman P., Burmann, Björn M., Hiller, Sebastian, & . (2013). The structural basis of autotransporter translocation by TamA. Nature Structural & Molecular Biology, 20(11), 1318–U247. https://doi.org/10.1038/nsmb.2689
Sauer, Evelyn, Imseng, Stefan, , & Hall, Michael N. (2013). Conserved sequence motifs and the structure of the mTOR kinase domain. Biochemical Society Transactions, 41(4), 95–889. https://doi.org/10.1042/bst20130113
Sauer, Evelyn, Imseng, Stefan, , & Hall, Michael N. (2013). Conserved sequence motifs and the structure of the mTOR kinase domain. Biochemical Society Transactions, 41(4), 95–889. https://doi.org/10.1042/bst20130113
, Leibundgut, M., Boehringer, D., & Ban, N. (2010). Structure and function of eukaryotic fatty acid synthases. Quarterly Reviews of Biophysics, 43(3), 373–422. https://doi.org/10.1017/s0033583510000156
, Leibundgut, M., Boehringer, D., & Ban, N. (2010). Structure and function of eukaryotic fatty acid synthases. Quarterly Reviews of Biophysics, 43(3), 373–422. https://doi.org/10.1017/s0033583510000156
Mocibob, Marko, Ivic, Nives, Bilokapic, Silvija, , Luic, Marija, Ban, Nenad, & Weygand-Durasevic, Ivana. (2010). Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 90–14585. https://doi.org/10.1073/pnas.1007470107
Mocibob, Marko, Ivic, Nives, Bilokapic, Silvija, , Luic, Marija, Ban, Nenad, & Weygand-Durasevic, Ivana. (2010). Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 90–14585. https://doi.org/10.1073/pnas.1007470107
Mocibob, M., Ivic, N., Bilokapic, S., , Luic, M., Ban, N., & Weygand-Durasevic, I. (2010). New links between protein biosynthesis and nonribosomal peptide synthesis. The FEBS Journal, 277, 260–261.
Mocibob, M., Ivic, N., Bilokapic, S., , Luic, M., Ban, N., & Weygand-Durasevic, I. (2010). New links between protein biosynthesis and nonribosomal peptide synthesis. The FEBS Journal, 277, 260–261.
Müller, M., Grauschopf, U., , Glockshuber, R., & Ban, N. (2009). The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature, 459(7247), 726–U135. https://doi.org/10.1038/nature08026
Müller, M., Grauschopf, U., , Glockshuber, R., & Ban, N. (2009). The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature, 459(7247), 726–U135. https://doi.org/10.1038/nature08026
Bingel-Erlenmeyer, R., Kohler, R., Kramer, G., Sandikci, A., Antolic, S., , Schaffitzel, C., Wiedmann, B., Bukau, B., & Ban, N. (2008). A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature, 452(7183), 108–U13. https://doi.org/10.1038/nature06683
Bingel-Erlenmeyer, R., Kohler, R., Kramer, G., Sandikci, A., Antolic, S., , Schaffitzel, C., Wiedmann, B., Bukau, B., & Ban, N. (2008). A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature, 452(7183), 108–U13. https://doi.org/10.1038/nature06683
Leibundgut, M., , Jenni, S., & Ban, N. (2008). The multienzyme architecture of eukaryotic fatty acid synthases. Current Opinion in Structural Biology, 18(6), 714–725. https://doi.org/10.1016/j.sbi.2008.09.008
Leibundgut, M., , Jenni, S., & Ban, N. (2008). The multienzyme architecture of eukaryotic fatty acid synthases. Current Opinion in Structural Biology, 18(6), 714–725. https://doi.org/10.1016/j.sbi.2008.09.008