Publications
103 found
Show per page
Guerrero, J., Maevskaia, E., Pfister, P., Dominguez, A. P., Ghayor, C., Bhattacharya, I., Scherberich, A., & Weber, F. E. (2025). Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: A preclinical exploration [Journal-article]. Acta Biomaterialia, 200, 686–702. https://doi.org/10.1016/j.actbio.2025.05.051
Guerrero, J., Maevskaia, E., Pfister, P., Dominguez, A. P., Ghayor, C., Bhattacharya, I., Scherberich, A., & Weber, F. E. (2025). Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: A preclinical exploration [Journal-article]. Acta Biomaterialia, 200, 686–702. https://doi.org/10.1016/j.actbio.2025.05.051
Georgopoulou, Antonia, Filippi, Miriam, Stefani, Lisa, Drescher, Felix, Balciunaite, Aiste, , Katzschmann, Robert, & Clemens, Frank. (2024). Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics. Advanced Healthcare Materials, 13(20). https://doi.org/10.1002/adhm.202400051
Georgopoulou, Antonia, Filippi, Miriam, Stefani, Lisa, Drescher, Felix, Balciunaite, Aiste, , Katzschmann, Robert, & Clemens, Frank. (2024). Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics. Advanced Healthcare Materials, 13(20). https://doi.org/10.1002/adhm.202400051
Romain Schaller, Adrien Moya, Gangyu Zhang, Mansoor Chaaban, Robert Paillaud, Ewelina M Bartoszek, Dirk J Schaefer, Ivan Martin, Alexandre Kaempfen, & . (2024). Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept. Journal of Tissue Engineering, 15. https://doi.org/10.1177/20417314241257352
Romain Schaller, Adrien Moya, Gangyu Zhang, Mansoor Chaaban, Robert Paillaud, Ewelina M Bartoszek, Dirk J Schaefer, Ivan Martin, Alexandre Kaempfen, & . (2024). Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept. Journal of Tissue Engineering, 15. https://doi.org/10.1177/20417314241257352
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., Martin, Ivan, & . (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article]. Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., Martin, Ivan, & . (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article]. Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., , Martin, Ivan, & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues. Biotechnology Journal, 18(2). https://doi.org/10.1002/biot.202200405
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., , Martin, Ivan, & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues. Biotechnology Journal, 18(2). https://doi.org/10.1002/biot.202200405
Bitonto V., Garello F., , & Filippi M. (2023). Prussian Blue Staining to Visualize Iron Oxide Nanoparticles. In Methods in Molecular Biology (Vol. 2566, pp. 321–332). Humana Press Inc. https://doi.org/10.1007/978-1-0716-2675-7_26
Bitonto V., Garello F., , & Filippi M. (2023). Prussian Blue Staining to Visualize Iron Oxide Nanoparticles. In Methods in Molecular Biology (Vol. 2566, pp. 321–332). Humana Press Inc. https://doi.org/10.1007/978-1-0716-2675-7_26
Noël, Danièle, & . (2023). Editorial: Biology and clinical applications of adipose-derived cells for skeletal regeneration. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1221444
Noël, Danièle, & . (2023). Editorial: Biology and clinical applications of adipose-derived cells for skeletal regeneration. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1221444
Scatena, Lorenzo, Zenobi, Eleonora, Scatena, Elisa, Kempisty, Bartosz, Popova, Liyana, Balsamo, Michele, Di Silvio, Lucy, , Gabetti, Stefano, Morbiducci, Umberto, Massai, Diana, Rius, Daniel Rodriguez, & Ginebra, Maria Pau. (2023). THE RELEVANCE OF A TOPICAL TEAM IN THE INVESTIGATION, ADVANCEMENT AND OPPORTUNITIES IN THE RESEARCH FROM THE SCIENTIFIC COMMUNITY THROUGH SPACE TECHNOLOGIES TO TERRESTRIAL IMPACTS. Proceedings of the International Astronautical Congress, IAC, 2023-October.
Scatena, Lorenzo, Zenobi, Eleonora, Scatena, Elisa, Kempisty, Bartosz, Popova, Liyana, Balsamo, Michele, Di Silvio, Lucy, , Gabetti, Stefano, Morbiducci, Umberto, Massai, Diana, Rius, Daniel Rodriguez, & Ginebra, Maria Pau. (2023). THE RELEVANCE OF A TOPICAL TEAM IN THE INVESTIGATION, ADVANCEMENT AND OPPORTUNITIES IN THE RESEARCH FROM THE SCIENTIFIC COMMUNITY THROUGH SPACE TECHNOLOGIES TO TERRESTRIAL IMPACTS. Proceedings of the International Astronautical Congress, IAC, 2023-October.
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, , Pigeot S, & Martin I. (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication. Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, , Pigeot S, & Martin I. (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication. Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
Rodgers, Griffin, Sigron, Guido R., Tanner, Christine, Hieber, Simone E., Beckmann, Felix, Schulz, Georg, , Jaquiéry, Claude, Kunz, Christoph, & Müller, Bert. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis [Journal-article]. Applied Sciences (Switzerland), 12(12), 6286. https://doi.org/10.3390/app12126286
Rodgers, Griffin, Sigron, Guido R., Tanner, Christine, Hieber, Simone E., Beckmann, Felix, Schulz, Georg, , Jaquiéry, Claude, Kunz, Christoph, & Müller, Bert. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis [Journal-article]. Applied Sciences (Switzerland), 12(12), 6286. https://doi.org/10.3390/app12126286
Rodgers G., Sigron G.R., Tanner C., Hieber S.E., Beckmann F., Schulz G., , Jaquiery C., Kunz C., & Muller B. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12126286
Rodgers G., Sigron G.R., Tanner C., Hieber S.E., Beckmann F., Schulz G., , Jaquiery C., Kunz C., & Muller B. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12126286
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, & . (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, & . (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
Filippi M, Garello F, Yasa O, Kasamkattil J, , & Katzschmann RK. (2022). Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small, 18(9), e2104079. https://doi.org/10.1002/smll.202104079
Filippi M, Garello F, Yasa O, Kasamkattil J, , & Katzschmann RK. (2022). Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small, 18(9), e2104079. https://doi.org/10.1002/smll.202104079
Buergin J, Werth L, Largo R, , Schaefer DJ, & Kaempfen A. (2022). Cross-sectional Vascularization Pattern of the Adipofascial Anterolateral Thigh Flap for Application in Tissue-engineered Bone Grafts. Plastic and Reconstructive Surgery - Global Open, 10(2), e4136. https://doi.org/10.1097/GOX.0000000000004136
Buergin J, Werth L, Largo R, , Schaefer DJ, & Kaempfen A. (2022). Cross-sectional Vascularization Pattern of the Adipofascial Anterolateral Thigh Flap for Application in Tissue-engineered Bone Grafts. Plastic and Reconstructive Surgery - Global Open, 10(2), e4136. https://doi.org/10.1097/GOX.0000000000004136
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, Martin, Ivan, & . (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis. Stem Cells Translational Medicine, 11(2), 213–229. https://doi.org/10.1093/stcltm/szab021
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, Martin, Ivan, & . (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis. Stem Cells Translational Medicine, 11(2), 213–229. https://doi.org/10.1093/stcltm/szab021
Filippi, Miriam, Später, Thomas, Herrmann, Marietta, Laschke, Matthias W., , & Verrier, Sophie. (2022). Strategies to promote vascularization, survival, and functionality of engineered tissues. In Tissue Engineering, Third Edition: Vol. null (pp. 457–489). Elsevier. https://doi.org/10.1016/b978-0-12-824459-3.00014-7
Filippi, Miriam, Später, Thomas, Herrmann, Marietta, Laschke, Matthias W., , & Verrier, Sophie. (2022). Strategies to promote vascularization, survival, and functionality of engineered tissues. In Tissue Engineering, Third Edition: Vol. null (pp. 457–489). Elsevier. https://doi.org/10.1016/b978-0-12-824459-3.00014-7
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, , Schaefer DJ, & Martin I. (2021). Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft [Frontiers Media S.A.]. Frontiers in Oncology, 11, 775136. https://doi.org/10.3389/fonc.2021.775136
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, , Schaefer DJ, & Martin I. (2021). Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft [Frontiers Media S.A.]. Frontiers in Oncology, 11, 775136. https://doi.org/10.3389/fonc.2021.775136
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, Martin, Ivan, Hess, Christoph, , Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination. Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, Martin, Ivan, Hess, Christoph, , Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination. Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, , Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & Martin, Ivan. (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, , Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & Martin, Ivan. (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
Filippi M., Dasen B., & (2021). Rapid magneto-sonoporation of adipose-derived cells. Materials, 14(17). https://doi.org/10.3390/ma14174877
Filippi M., Dasen B., & (2021). Rapid magneto-sonoporation of adipose-derived cells. Materials, 14(17). https://doi.org/10.3390/ma14174877
Degen M., , & Tucker R.P. (2021). Tenascin-W: Discovery, Evolution, and Future Prospects. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.623305
Degen M., , & Tucker R.P. (2021). Tenascin-W: Discovery, Evolution, and Future Prospects. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.623305
Born, Gordian, Nikolova, Marina, , Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
Born, Gordian, Nikolova, Marina, , Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Martin I, & . (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Martin I, & . (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
Jalili-Firoozinezhad S., Filippi M., Mohabatpour F., Letourneur D., & (2020). Chicken egg white: Hatching of a new old biomaterial. Materials Today, 40, 193–214. https://doi.org/10.1016/j.mattod.2020.05.022
Jalili-Firoozinezhad S., Filippi M., Mohabatpour F., Letourneur D., & (2020). Chicken egg white: Hatching of a new old biomaterial. Materials Today, 40, 193–214. https://doi.org/10.1016/j.mattod.2020.05.022
Filippi M, Born G, Chaaban M, & . (2020). Natural Polymeric Scaffolds in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 8, 474. https://doi.org/10.3389/fbioe.2020.00474
Filippi M, Born G, Chaaban M, & . (2020). Natural Polymeric Scaffolds in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 8, 474. https://doi.org/10.3389/fbioe.2020.00474
Filippi M, Born G, Felder-Flesch D, & . (2020). Use of nanoparticles in skeletal tissue regeneration and engineering. Histology and Histopathology, 35(4), 331–350. https://doi.org/10.14670/HH-18-184
Filippi M, Born G, Felder-Flesch D, & . (2020). Use of nanoparticles in skeletal tissue regeneration and engineering. Histology and Histopathology, 35(4), 331–350. https://doi.org/10.14670/HH-18-184
Nguyen D.-V., Perton F., Voirin E., Cotin G., Begin-Colin S., Felder-Flesch D., Hugoni L., Lavalle P., Filippi M., Power L., , Shi D., & Krafft M.-P. (2020). Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons. New Journal of Chemistry, 44(8), 3206–3214. https://doi.org/10.1039/c9nj05565g
Nguyen D.-V., Perton F., Voirin E., Cotin G., Begin-Colin S., Felder-Flesch D., Hugoni L., Lavalle P., Filippi M., Power L., , Shi D., & Krafft M.-P. (2020). Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons. New Journal of Chemistry, 44(8), 3206–3214. https://doi.org/10.1039/c9nj05565g
Siemer S, Wünsch D, Khamis A, Lu Q, , Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, & Gribko A. (2020). Nano meets micro-translational nanotechnology in medicine: Nano-based applications for early tumor detection and therapy. Nanomaterials, 10(2). https://doi.org/10.3390/nano10020383
Siemer S, Wünsch D, Khamis A, Lu Q, , Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, & Gribko A. (2020). Nano meets micro-translational nanotechnology in medicine: Nano-based applications for early tumor detection and therapy. Nanomaterials, 10(2). https://doi.org/10.3390/nano10020383
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, Martin I, & . (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, Martin I, & . (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
Largo, Rene’ D., Burger, Maximilian G., Harschnitz, Oliver, Waschkies, Conny F., Grosso, Andrea, Scotti, Celeste, Kaempfen, Alexandre, Gueven, Sinan, Jundt, Gernot, , Schaefer, Dirk J., Banfi, Andrea, & Di Maggio, Nunzia. (2020). VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts. Frontiers in bioengineering and biotechnology, 8, 755. https://doi.org/10.3389/fbioe.2020.00755
Largo, Rene’ D., Burger, Maximilian G., Harschnitz, Oliver, Waschkies, Conny F., Grosso, Andrea, Scotti, Celeste, Kaempfen, Alexandre, Gueven, Sinan, Jundt, Gernot, , Schaefer, Dirk J., Banfi, Andrea, & Di Maggio, Nunzia. (2020). VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts. Frontiers in bioengineering and biotechnology, 8, 755. https://doi.org/10.3389/fbioe.2020.00755
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, & . (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, & . (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, Martin I, , & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution. Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/SAP.0000000000001857
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, Martin I, , & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution. Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/SAP.0000000000001857
Epple C, Haumer A, Ismail T, Lunger A, , Schaefer DJ, & Martin I. (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
Epple C, Haumer A, Ismail T, Lunger A, , Schaefer DJ, & Martin I. (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
Filippi, Miriam, Nguyen, Dinh-Vu, Garello, Francesca, Perton, Francis, Bégin-Colin, Sylvie, Felder-Flesch, Delphine, Power, Laura, & . (2019). Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues. Nanoscale, 11(46), 22559–22574. https://doi.org/10.1039/c9nr08436c
Filippi, Miriam, Nguyen, Dinh-Vu, Garello, Francesca, Perton, Francis, Bégin-Colin, Sylvie, Felder-Flesch, Delphine, Power, Laura, & . (2019). Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues. Nanoscale, 11(46), 22559–22574. https://doi.org/10.1039/c9nr08436c
Guerrero J, Pigeot S, Müller J, Schaefer DJ, Martin I, & . (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Acta Biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
Guerrero J, Pigeot S, Müller J, Schaefer DJ, Martin I, & . (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Acta Biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., , , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., , , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., Martin I., Knuesel I., & (2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis. Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., Martin I., Knuesel I., & (2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis. Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, Martin I, & . (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, Martin I, & . (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
Menzi N, Osinga R, Todorov A, Schaefer DJ, Martin I, & . (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
Menzi N, Osinga R, Todorov A, Schaefer DJ, Martin I, & . (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
Fennema E.M., Tchang L.A.H., Yuan H., van Blitterswijk C.A., Martin I., , & de Boer J. (2018). Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e150–e158. https://doi.org/10.1002/term.2453
Fennema E.M., Tchang L.A.H., Yuan H., van Blitterswijk C.A., Martin I., , & de Boer J. (2018). Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e150–e158. https://doi.org/10.1002/term.2453
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, , & Marsano A. (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Scientific Reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, , & Marsano A. (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Scientific Reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, , Meuli M, & Reichmann E. (2017). Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1. Journal of Investigative Dermatology, 137(12), 2560–2569. https://doi.org/10.1016/j.jid.2017.06.027
Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, , Meuli M, & Reichmann E. (2017). Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1. Journal of Investigative Dermatology, 137(12), 2560–2569. https://doi.org/10.1016/j.jid.2017.06.027
Ismail T, Osinga R., Todorov A Jr, Haumer A., Tchang L.A., Epple C., Allafi N, Menzi N., Largo R.D., Kaempfen A., Martin I., Schaefer D.J., & (2017). Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model. Acta Biomaterialia, 63, 236–245. https://doi.org/10.1016/j.actbio.2017.09.003
Ismail T, Osinga R., Todorov A Jr, Haumer A., Tchang L.A., Epple C., Allafi N, Menzi N., Largo R.D., Kaempfen A., Martin I., Schaefer D.J., & (2017). Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model. Acta Biomaterialia, 63, 236–245. https://doi.org/10.1016/j.actbio.2017.09.003
Jalili-Firoozinezhad S, Martin I, & . (2017). Bimodal morphological analyses of native and engineered tissues. Materials Science and Engineering C, 76, 543–550. https://doi.org/10.1016/j.msec.2017.03.140
Jalili-Firoozinezhad S, Martin I, & . (2017). Bimodal morphological analyses of native and engineered tissues. Materials Science and Engineering C, 76, 543–550. https://doi.org/10.1016/j.msec.2017.03.140
Todorov A., Scotti C., Barbero A., , , Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity. Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
Todorov A., Scotti C., Barbero A., , , Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity. Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
Ismail T, Bürgin J, Todorov A, Osinga R, Menzi N, Largo RD, Haug M, Martin I, , & Schaefer DJ. (2017). Low osmolality and shear stress during liposuction impair cell viability in autologous fat grafting. Journal of Plastic, Reconstructive and Aesthetic Surgery, 70(5), 596–605. https://doi.org/10.1016/j.bjps.2017.01.023
Ismail T, Bürgin J, Todorov A, Osinga R, Menzi N, Largo RD, Haug M, Martin I, , & Schaefer DJ. (2017). Low osmolality and shear stress during liposuction impair cell viability in autologous fat grafting. Journal of Plastic, Reconstructive and Aesthetic Surgery, 70(5), 596–605. https://doi.org/10.1016/j.bjps.2017.01.023
Di Maggio, Nunzia, Martella, Elisa, Frismantiene, Agne, Resink, Therese J., Schreiner, Simone, Lucarelli, Enrico, Jaquiery, Claude, Schaefer, Dirk J., Martin, Ivan, & . (2017). Extracellular matrix and α 5 β 1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Scientific Reports, 7. https://doi.org/10.1038/srep44398
Di Maggio, Nunzia, Martella, Elisa, Frismantiene, Agne, Resink, Therese J., Schreiner, Simone, Lucarelli, Enrico, Jaquiery, Claude, Schaefer, Dirk J., Martin, Ivan, & . (2017). Extracellular matrix and α 5 β 1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Scientific Reports, 7. https://doi.org/10.1038/srep44398
Jalili-Firoozinezhad S., Mohamadzadeh Moghadam M.H., Ghanian M.H., Ashtiani M.K., Alimadadi H., Baharvand H., Martin I., & (2017). Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Advances, 7(63), 39628–39634. https://doi.org/10.1039/c7ra06178a
Jalili-Firoozinezhad S., Mohamadzadeh Moghadam M.H., Ghanian M.H., Ashtiani M.K., Alimadadi H., Baharvand H., Martin I., & (2017). Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Advances, 7(63), 39628–39634. https://doi.org/10.1039/c7ra06178a
Marsano, Anna, Cerino, Giulia, Gaudiello, Emanuele, Muraro, Manuele Giuseppe, Martin, Ivan, Eckstein, Friedrich, & . (2017). Pericytes Accelerate the in vivo Angiogenesis in mm-Thick Engineered Tissues. 54, 53. KARGER.
Marsano, Anna, Cerino, Giulia, Gaudiello, Emanuele, Muraro, Manuele Giuseppe, Martin, Ivan, Eckstein, Friedrich, & . (2017). Pericytes Accelerate the in vivo Angiogenesis in mm-Thick Engineered Tissues. 54, 53. KARGER.
Sutter, Sarah, Todorov, Atanas, Ismail, Tarek, Haumer, Alexander, Fulco, Ilario, Schulz, Georg, , , Kaempfen, Alexandre, Martin, Ivan, & Schaefer, Dirk J. (2017). Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid. Contrast Media & Molecular Imaging, 2017, 4035160. https://doi.org/10.1155/2017/4035160
Sutter, Sarah, Todorov, Atanas, Ismail, Tarek, Haumer, Alexander, Fulco, Ilario, Schulz, Georg, , , Kaempfen, Alexandre, Martin, Ivan, & Schaefer, Dirk J. (2017). Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid. Contrast Media & Molecular Imaging, 2017, 4035160. https://doi.org/10.1155/2017/4035160
Tchang, Laurent A., Pippenger, Benjamin E., Todorov, Atanas, Wolf, Francine, Burger, Maximilian G., Jaquiery, Claude, Bieback, Karen, Martin, Ivan, Schaefer, Dirk J., & . (2017). Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1542–1552. https://doi.org/10.1002/term.2054
Tchang, Laurent A., Pippenger, Benjamin E., Todorov, Atanas, Wolf, Francine, Burger, Maximilian G., Jaquiery, Claude, Bieback, Karen, Martin, Ivan, Schaefer, Dirk J., & . (2017). Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1542–1552. https://doi.org/10.1002/term.2054
Herrmann, M., Bara, J. J., Sprecher, C. M., Menzel, U., Jalowiec, J. M., Osinga, R., , Alini, M., & Verrier, S. (2016). Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. European Cells and Materials, 31, 49–236. https://doi.org/10.22203/ecm.v031a16
Herrmann, M., Bara, J. J., Sprecher, C. M., Menzel, U., Jalowiec, J. M., Osinga, R., , Alini, M., & Verrier, S. (2016). Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. European Cells and Materials, 31, 49–236. https://doi.org/10.22203/ecm.v031a16
Klar, Agnes S., Güven, Sinan, Zimoch, Jakub, Zapiórkowska, Natalia A., Biedermann, Thomas, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Martin, Ivan, , Reichmann, Ernst, & Meuli, Martin. (2016). Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatric Surgery International, 32(1), 17–27. https://doi.org/10.1007/s00383-015-3808-7
Klar, Agnes S., Güven, Sinan, Zimoch, Jakub, Zapiórkowska, Natalia A., Biedermann, Thomas, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Martin, Ivan, , Reichmann, Ernst, & Meuli, Martin. (2016). Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatric Surgery International, 32(1), 17–27. https://doi.org/10.1007/s00383-015-3808-7
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, Barbero, Andrea, Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & . (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification. Stem Cells Translational Medicine, 5(8), 7–1090. https://doi.org/10.5966/sctm.2015-0256
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, Barbero, Andrea, Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & . (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification. Stem Cells Translational Medicine, 5(8), 7–1090. https://doi.org/10.5966/sctm.2015-0256
Saxer, Franziska, , Todorov, Atanas, Studer, Patrick, Miot, Sylvie, Schreiner, Simone, Güven, Sinan, Tchang, Laurent A. H., Haug, Martin, Heberer, Michael, Schaefer, Dirk J., Rikli, Daniel, Martin, Ivan, & Jakob, Marcel. (2016). Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study. Stem Cells, 34(12), 2956–2966. https://doi.org/10.1002/stem.2478
Saxer, Franziska, , Todorov, Atanas, Studer, Patrick, Miot, Sylvie, Schreiner, Simone, Güven, Sinan, Tchang, Laurent A. H., Haug, Martin, Heberer, Michael, Schaefer, Dirk J., Rikli, Daniel, Martin, Ivan, & Jakob, Marcel. (2016). Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study. Stem Cells, 34(12), 2956–2966. https://doi.org/10.1002/stem.2478
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, Barbero, Andrea, Bourgine, Paul E., , Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix. Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, Barbero, Andrea, Bourgine, Paul E., , Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix. Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
Chiovaro, Francesca, Martina, Enrico, Bottos, Alessia, , Hynes, Nancy E., & Chiquet-Ehrismann, Ruth. (2015). Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells. International Journal of Cancer, 137(8), 54–1842. https://doi.org/10.1002/ijc.29565
Chiovaro, Francesca, Martina, Enrico, Bottos, Alessia, , Hynes, Nancy E., & Chiquet-Ehrismann, Ruth. (2015). Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells. International Journal of Cancer, 137(8), 54–1842. https://doi.org/10.1002/ijc.29565
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, Marsano, Anna, Aghdami, Nasser, , Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration. Advanced Healthcare Materials, 4(15), 90–2281. https://doi.org/10.1002/adhm.201500482
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, Marsano, Anna, Aghdami, Nasser, , Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration. Advanced Healthcare Materials, 4(15), 90–2281. https://doi.org/10.1002/adhm.201500482
Kaempfen, Alexandre, Todorov, Atanas, Güven, Sinan, Largo, René D., Jaquiéry, Claude, , Martin, Ivan, & Schaefer, Dirk J. (2015). Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model. International Journal of Molecular Sciences, 16(6), 30–12616. https://doi.org/10.3390/ijms160612616
Kaempfen, Alexandre, Todorov, Atanas, Güven, Sinan, Largo, René D., Jaquiéry, Claude, , Martin, Ivan, & Schaefer, Dirk J. (2015). Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model. International Journal of Molecular Sciences, 16(6), 30–12616. https://doi.org/10.3390/ijms160612616
Kappos, Elisabeth A., Engels, Patricia E., Tremp, Mathias, Meyer zu Schwabedissen, Moritz, di Summa, Pietro, Fischmann, Arne, von Felten, Stefanie, , , Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit. Stem Cells and Development, 24(18), 41–2127. https://doi.org/10.1089/scd.2014.0424
Kappos, Elisabeth A., Engels, Patricia E., Tremp, Mathias, Meyer zu Schwabedissen, Moritz, di Summa, Pietro, Fischmann, Arne, von Felten, Stefanie, , , Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit. Stem Cells and Development, 24(18), 41–2127. https://doi.org/10.1089/scd.2014.0424
Osinga, Rik, Osinga, Rik, Menzi, Nadia R., Tchang, Laurent A. H., Caviezel, Daniel, Kalbermatten, Daniel F., Martin, Ivan, Schaefer, Dirk J., , & Largo, Rene D. (2015). Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting. Plastic and Reconstructive Surgery, 135(6), 1618–1628. https://doi.org/10.1097/prs.0000000000001288
Osinga, Rik, Osinga, Rik, Menzi, Nadia R., Tchang, Laurent A. H., Caviezel, Daniel, Kalbermatten, Daniel F., Martin, Ivan, Schaefer, Dirk J., , & Largo, Rene D. (2015). Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting. Plastic and Reconstructive Surgery, 135(6), 1618–1628. https://doi.org/10.1097/prs.0000000000001288
Papadimitropoulos, Adam, Scotti, Celeste, Bourgine, Paul, , & Martin, Ivan. (2015). Engineered decellularized matrices to instruct bone regeneration processes. Bone, 70, 66–72. https://doi.org/10.1016/j.bone.2014.09.007
Papadimitropoulos, Adam, Scotti, Celeste, Bourgine, Paul, , & Martin, Ivan. (2015). Engineered decellularized matrices to instruct bone regeneration processes. Bone, 70, 66–72. https://doi.org/10.1016/j.bone.2014.09.007
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, , Walboomers, X. Frank, Barbero, Andrea, & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes. Journal of Cellular and Molecular Medicine, 19(6), 9–1390. https://doi.org/10.1111/jcmm.12526
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, , Walboomers, X. Frank, Barbero, Andrea, & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes. Journal of Cellular and Molecular Medicine, 19(6), 9–1390. https://doi.org/10.1111/jcmm.12526
Tremp, Mathias, Meyer Zu Schwabedissen, Moritz, Kappos, Elisabeth A., Engels, Patricia E., Fischmann, Arne, , Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Cell Transplantation, 24(2), 203–211. https://doi.org/10.3727/096368913x676934
Tremp, Mathias, Meyer Zu Schwabedissen, Moritz, Kappos, Elisabeth A., Engels, Patricia E., Fischmann, Arne, , Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Cell Transplantation, 24(2), 203–211. https://doi.org/10.3727/096368913x676934
Herrmann M., Laschke M.W., Alini M., , & Verrier S. (2014). Vascularization, Survival, and Functionality of Tissue-Engineered Constructs. In Tissue Engineering: Second Edition (pp. 471–496). Elsevier Inc. https://doi.org/10.1016/b978-0-12-420145-3.00014-6
Herrmann M., Laschke M.W., Alini M., , & Verrier S. (2014). Vascularization, Survival, and Functionality of Tissue-Engineered Constructs. In Tissue Engineering: Second Edition (pp. 471–496). Elsevier Inc. https://doi.org/10.1016/b978-0-12-420145-3.00014-6
Saxer, F., Studer, P., , Miot, S., Todorov, A., Haug, M., Schaefer, D., Rikli, D., Schreiner, S., Martin, I., & Jakob, M. (2014). Robust-regeneration of osteoporotic bone using stem cell transplantation. 101, 13. WILEY-BLACKWELL.
Saxer, F., Studer, P., , Miot, S., Todorov, A., Haug, M., Schaefer, D., Rikli, D., Schreiner, S., Martin, I., & Jakob, M. (2014). Robust-regeneration of osteoporotic bone using stem cell transplantation. 101, 13. WILEY-BLACKWELL.
Tremp, M., Sieber, P., Schwabedissen, M. M. Zu, Kappos, E. A., Engels, P. E., Fischmann, A., , Schaefer, D. J., & Kalbermatten, D. F. (2014). The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. 8, 404. WILEY-BLACKWELL.
Tremp, M., Sieber, P., Schwabedissen, M. M. Zu, Kappos, E. A., Engels, P. E., Fischmann, A., , Schaefer, D. J., & Kalbermatten, D. F. (2014). The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. 8, 404. WILEY-BLACKWELL.
Bourgine, P., LeMagnen, C., Pigeot, S., Geurts, J., , & Martin, I. (2014). Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival. Stem Cell Research, 12(2), 98–584. https://doi.org/10.1016/j.scr.2013.12.006
Bourgine, P., LeMagnen, C., Pigeot, S., Geurts, J., , & Martin, I. (2014). Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival. Stem Cell Research, 12(2), 98–584. https://doi.org/10.1016/j.scr.2013.12.006
Klar, Agnieszka S., Güven, Sinan, Biedermann, Thomas, Luginbühl, Joachim, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Meuli, Martin, Martin, Ivan, , & Reichmann, Ernst. (2014). Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials, 35(19), 78–5065. https://doi.org/10.1016/j.biomaterials.2014.02.049
Klar, Agnieszka S., Güven, Sinan, Biedermann, Thomas, Luginbühl, Joachim, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Meuli, Martin, Martin, Ivan, , & Reichmann, Ernst. (2014). Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials, 35(19), 78–5065. https://doi.org/10.1016/j.biomaterials.2014.02.049
Largo, Rene D., Tchang, Laurent A. H., Mele, Valentina, , Harder, Yves, Wettstein, Reto, & Schaefer, Dirk J. (2014). Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 67(4), 48–437. https://doi.org/10.1016/j.bjps.2013.11.011
Largo, Rene D., Tchang, Laurent A. H., Mele, Valentina, , Harder, Yves, Wettstein, Reto, & Schaefer, Dirk J. (2014). Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 67(4), 48–437. https://doi.org/10.1016/j.bjps.2013.11.011
Mehrkens, A., Di Maggio, N., Gueven, S., Schaefer, D., , Banfi, A., & Martin, I. (2014). Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction. Tissue Engineering, 20(5-6), 8–1081. https://doi.org/10.1089/ten.tea.2013.0273
Mehrkens, A., Di Maggio, N., Gueven, S., Schaefer, D., , Banfi, A., & Martin, I. (2014). Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction. Tissue Engineering, 20(5-6), 8–1081. https://doi.org/10.1089/ten.tea.2013.0273
Müller, Andreas A., Forraz, Nico, Gueven, Sinan, Atzeni, Gianluigi, Degoul, Olivier, Pagnon-Minot, Aurélie, Hartmann, Daniel, Martin, Ivan, , & McGuckin, Colin. (2014). Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture. Plastic and Reconstructive Surgery, 134(1), 59e–69e. https://doi.org/10.1097/prs.0000000000000305
Müller, Andreas A., Forraz, Nico, Gueven, Sinan, Atzeni, Gianluigi, Degoul, Olivier, Pagnon-Minot, Aurélie, Hartmann, Daniel, Martin, Ivan, , & McGuckin, Colin. (2014). Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture. Plastic and Reconstructive Surgery, 134(1), 59e–69e. https://doi.org/10.1097/prs.0000000000000305
Helmrich, U., Di Maggio, N., Guven, S., Groppa, E., Melly, L., Largo, R. D., Heberer, M., Martin, I., , & Banfi, A. (2013). Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials, 34(21), 35–5025. https://doi.org/10.1016/j.biomaterials.2013.03.040
Helmrich, U., Di Maggio, N., Guven, S., Groppa, E., Melly, L., Largo, R. D., Heberer, M., Martin, I., , & Banfi, A. (2013). Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials, 34(21), 35–5025. https://doi.org/10.1016/j.biomaterials.2013.03.040
Heng, B. C., Heinimann, K., Miny, P., Iezzi, G., Glatz, K., , Zulewski, H., & Fussenegger, M. (2013). mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metabolic Engineering, 18, 9–24. https://doi.org/10.1016/j.ymben.2013.02.004
Heng, B. C., Heinimann, K., Miny, P., Iezzi, G., Glatz, K., , Zulewski, H., & Fussenegger, M. (2013). mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metabolic Engineering, 18, 9–24. https://doi.org/10.1016/j.ymben.2013.02.004
, Di Maggio, Nunzia Di, & McNagny, Kelly M. (2013). A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World Journal of Stem Cells, 5(1), 1–8. https://doi.org/10.4252/wjsc.v5.i1.1
, Di Maggio, Nunzia Di, & McNagny, Kelly M. (2013). A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World Journal of Stem Cells, 5(1), 1–8. https://doi.org/10.4252/wjsc.v5.i1.1
Güven, Sinan, Karagianni, Marianna, Schwalbe, Mandy, Schreiner, Simone, Farhadi, Jian, Bula, Sylvain, Bieback, Karen, Martin, Ivan, & . (2012). Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology. Tissue Engineering. Part C, 18(8), 82–575. https://doi.org/10.1089/ten.tec.2011.0617
Güven, Sinan, Karagianni, Marianna, Schwalbe, Mandy, Schreiner, Simone, Farhadi, Jian, Bula, Sylvain, Bieback, Karen, Martin, Ivan, & . (2012). Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology. Tissue Engineering. Part C, 18(8), 82–575. https://doi.org/10.1089/ten.tec.2011.0617
Jakob, M., Saxer, F., Scotti, C., Schreiner, S., Studer, P., , Heberer, M., & Martin, I. (2012). Perspective on the evolution of cell-based bone tissue engineering strategies. European Surgical Research, 49(1), 1–7. https://doi.org/10.1159/000338362
Jakob, M., Saxer, F., Scotti, C., Schreiner, S., Studer, P., , Heberer, M., & Martin, I. (2012). Perspective on the evolution of cell-based bone tissue engineering strategies. European Surgical Research, 49(1), 1–7. https://doi.org/10.1159/000338362
Martin I., Jakob M., Papadimitropoulos A., Scotti C., Wendt D., & (2012). Proposed evolution of bone tissue engineering strategies. European Cells and Materials, 24(SUPPL. 1), 22.
Martin I., Jakob M., Papadimitropoulos A., Scotti C., Wendt D., & (2012). Proposed evolution of bone tissue engineering strategies. European Cells and Materials, 24(SUPPL. 1), 22.
Mehrkens, A., Saxer, F., Guven, S., Hoffmann, W., Muller, A. M., Jakob, M., Weber, F. E., Martin, I., & (2012). Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2. European Cells & Materials, 24, 19–308. https://doi.org/10.22203/ecm.v024a22
Mehrkens, A., Saxer, F., Guven, S., Hoffmann, W., Muller, A. M., Jakob, M., Weber, F. E., Martin, I., & (2012). Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2. European Cells & Materials, 24, 19–308. https://doi.org/10.22203/ecm.v024a22
Sadr, N., Pippenger, B. E., , Wendt, D., Mantero, S., Martin, I., & Papadimitropoulos, A. (2012). Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix. Biomaterials, 33(20), 93–5085. https://doi.org/10.1016/j.biomaterials.2012.03.082
Sadr, N., Pippenger, B. E., , Wendt, D., Mantero, S., Martin, I., & Papadimitropoulos, A. (2012). Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix. Biomaterials, 33(20), 93–5085. https://doi.org/10.1016/j.biomaterials.2012.03.082
Güven, Sinan, Mehrkens, Arne, Saxer, Franziska, Schaefer, Dirk J., Martinetti, Roberta, Martin, Ivan, & . (2011). Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials, 32(25), 9–5801. https://doi.org/10.1016/j.biomaterials.2011.04.064
Güven, Sinan, Mehrkens, Arne, Saxer, Franziska, Schaefer, Dirk J., Martinetti, Roberta, Martin, Ivan, & . (2011). Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials, 32(25), 9–5801. https://doi.org/10.1016/j.biomaterials.2011.04.064
Papadimitropoulos A., , , Guven S., Theilgaard N., Crooijmans H.J.A., Santini F., Scheffler K., Zallone A., & Martin I. (2011). A 3D in vitro bone organ model using human progenitor cells. European Cells and Materials, 21, 445–458. https://doi.org/10.22203/eCM.v021a33
Papadimitropoulos A., , , Guven S., Theilgaard N., Crooijmans H.J.A., Santini F., Scheffler K., Zallone A., & Martin I. (2011). A 3D in vitro bone organ model using human progenitor cells. European Cells and Materials, 21, 445–458. https://doi.org/10.22203/eCM.v021a33
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, , Barbero, Andrea, Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis & Rheumatism, 62(12), 25–3815. https://doi.org/10.1002/art.27736
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, , Barbero, Andrea, Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis & Rheumatism, 62(12), 25–3815. https://doi.org/10.1002/art.27736
Kossowska-Tomaszczuk, Katarzyna, Pelczar, Pawel, Güven, Sinan, Kowalski, Jacek, Volpi, Emanuela, De Geyter, Christian, & . (2010). A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Engineering, 16(6), 2063–2073. https://doi.org/10.1089/ten.tea.2009.0684
Kossowska-Tomaszczuk, Katarzyna, Pelczar, Pawel, Güven, Sinan, Kowalski, Jacek, Volpi, Emanuela, De Geyter, Christian, & . (2010). A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Engineering, 16(6), 2063–2073. https://doi.org/10.1089/ten.tea.2009.0684
Müller, A. M., Mehrkens, A., Schäfer, D. J., Jaquiery, C., Güven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., , & Martin, I. (2010). Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. European Cells and Materials, 19, 35–127. https://doi.org/10.22203/ecm.v019a13
Müller, A. M., Mehrkens, A., Schäfer, D. J., Jaquiery, C., Güven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., , & Martin, I. (2010). Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. European Cells and Materials, 19, 35–127. https://doi.org/10.22203/ecm.v019a13
Piccinini E., Wendt D., , , & Martin I. (2010). Ceramic granules coated with fibrin sealant as a scaffold for perfusion bioreactor in bone tissue engineering. European Cells and Materials, 20, 38.
Piccinini E., Wendt D., , , & Martin I. (2010). Ceramic granules coated with fibrin sealant as a scaffold for perfusion bioreactor in bone tissue engineering. European Cells and Materials, 20, 38.
, Müller, Andreas M., Schäfer, Dirk J., Banfi, Andrea, & Martin, Ivan. (2010). Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. Journal of Cellular Physiology, 225(2), 53–348. https://doi.org/10.1002/jcp.22313
, Müller, Andreas M., Schäfer, Dirk J., Banfi, Andrea, & Martin, Ivan. (2010). Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. Journal of Cellular Physiology, 225(2), 53–348. https://doi.org/10.1002/jcp.22313
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, , Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, Barbero, Andrea, & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy of Sciences, 107(16), 6–7251. https://doi.org/10.1073/pnas.1000302107
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, , Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, Barbero, Andrea, & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy of Sciences, 107(16), 6–7251. https://doi.org/10.1073/pnas.1000302107
Martin, I., Papadimitropoulos, A., , & Wendt, D. (2009). Mesenchymal stem cell expansion in 3D perfusion systems [Journal-article]. New Biotechnology, 25, S22. https://doi.org/10.1016/j.nbt.2009.06.056
Martin, I., Papadimitropoulos, A., , & Wendt, D. (2009). Mesenchymal stem cell expansion in 3D perfusion systems [Journal-article]. New Biotechnology, 25, S22. https://doi.org/10.1016/j.nbt.2009.06.056
Papadimitropoulos A., Mehrkens A., Theilgaard N., , , & Martin I. (2009). An in vitro model of bone organ starting from progenitor cell populations. European Cells and Materials, 18, 56.
Papadimitropoulos A., Mehrkens A., Theilgaard N., , , & Martin I. (2009). An in vitro model of bone organ starting from progenitor cell populations. European Cells and Materials, 18, 56.
Scotti C., Papadimitropoulos A., Tonnarelli B., , , Barbero A., & Martin I. (2009). In vivo formation of bone tissue by adult human mesenchymal stem cells depends on the stage of in vitro chondrogenic differentiation. European Cells and Materials, 18, 4.
Scotti C., Papadimitropoulos A., Tonnarelli B., , , Barbero A., & Martin I. (2009). In vivo formation of bone tissue by adult human mesenchymal stem cells depends on the stage of in vitro chondrogenic differentiation. European Cells and Materials, 18, 4.
Kossowska-Tomaszczuk, Katarzyna, De Geyter, Christian, De Geyter, Maria, Martin, Ivan, Holzgreve, Wolfgang, , & Zhang, Hong. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells, 27(1), 210–219. https://doi.org/10.1634/stemcells.2008-0233
Kossowska-Tomaszczuk, Katarzyna, De Geyter, Christian, De Geyter, Maria, Martin, Ivan, Holzgreve, Wolfgang, , & Zhang, Hong. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells, 27(1), 210–219. https://doi.org/10.1634/stemcells.2008-0233
Montjovent, Marc-Olivier, Bocelli-Tyndall, Chiara, Scaletta, Corinne, , Mark, Silke, Martin, Ivan, Applegate, Lee Ann, & Pioletti, Dominique P. (2009). In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications. Tissue engineering. Part A, 15(7), 32–1523. https://doi.org/10.1089/ten.tea.2008.0222
Montjovent, Marc-Olivier, Bocelli-Tyndall, Chiara, Scaletta, Corinne, , Mark, Silke, Martin, Ivan, Applegate, Lee Ann, & Pioletti, Dominique P. (2009). In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications. Tissue engineering. Part A, 15(7), 32–1523. https://doi.org/10.1089/ten.tea.2008.0222
Müller, Andreas M, Davenport, Michael, Verrier, Sophie, Droeser, Raoul, Alini, Mauro, Bocelli-Tyndall, Chiara, Schaefer, Dirk J, Martin, Ivan, & . (2009). Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue. Tissue engineering. Part A, 15(4), 75–869. https://doi.org/10.1089/ten.tea.2008.0498
Müller, Andreas M, Davenport, Michael, Verrier, Sophie, Droeser, Raoul, Alini, Mauro, Bocelli-Tyndall, Chiara, Schaefer, Dirk J, Martin, Ivan, & . (2009). Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue. Tissue engineering. Part A, 15(4), 75–869. https://doi.org/10.1089/ten.tea.2008.0498
Montjovent M.-O., Mark S., Mathieu L., Scaletta C., , Delabarde C., Zambelli P.-Y., Bourban P.-E., Applegate L.A., & Pioletti D.P. (2008). Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone, 42(3), 554–564. https://doi.org/10.1016/j.bone.2007.10.018
Montjovent M.-O., Mark S., Mathieu L., Scaletta C., , Delabarde C., Zambelli P.-Y., Bourban P.-E., Applegate L.A., & Pioletti D.P. (2008). Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone, 42(3), 554–564. https://doi.org/10.1016/j.bone.2007.10.018
Larghero, J, Farge, D, Braccini, A, Lecourt, S, , Foïs, E, Verrecchia, F, Daikeler, T, Gluckman, E, Tyndall, A, & Bocelli-Tyndall, C. (2008). Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Annals of the Rheumatic Diseases : ARD, 67(4), 9–443. https://doi.org/10.1136/ard.2007.071233
Larghero, J, Farge, D, Braccini, A, Lecourt, S, , Foïs, E, Verrecchia, F, Daikeler, T, Gluckman, E, Tyndall, A, & Bocelli-Tyndall, C. (2008). Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Annals of the Rheumatic Diseases : ARD, 67(4), 9–443. https://doi.org/10.1136/ard.2007.071233
, Galli, Raffaele, Jaquiery, Claude, Farhadi, Jian, & Martin, Ivan. (2007). Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells, 25(7), 9–1823. https://doi.org/10.1634/stemcells.2007-0124
, Galli, Raffaele, Jaquiery, Claude, Farhadi, Jian, & Martin, Ivan. (2007). Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells, 25(7), 9–1823. https://doi.org/10.1634/stemcells.2007-0124
Timmins, Nicholas E, , Früh, Jennifer-Annika, Heberer, Michael, Martin, Ivan, & Jakob, Marcel. (2007). Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). Tissue engineering, 13(8), 8–2021. https://doi.org/10.1089/ten.2006.0158
Timmins, Nicholas E, , Früh, Jennifer-Annika, Heberer, Michael, Martin, Ivan, & Jakob, Marcel. (2007). Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). Tissue engineering, 13(8), 8–2021. https://doi.org/10.1089/ten.2006.0158
Linscheid, Philippe, Seboek, Dalma, Zulewski, Henryk, , Blau, Nenad, Keller, Ulrich, & Muller, Beat. (2006). Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide. American Journal of Physiology. Endocrinology and Metabolism, 290(6), E1068–77. https://doi.org/10.1152/ajpendo.00374.2005
Linscheid, Philippe, Seboek, Dalma, Zulewski, Henryk, , Blau, Nenad, Keller, Ulrich, & Muller, Beat. (2006). Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide. American Journal of Physiology. Endocrinology and Metabolism, 290(6), E1068–77. https://doi.org/10.1152/ajpendo.00374.2005
, Tucker RP, Degen M, Brown-Luedi M, Andres AC, & Chiquet-Ehrismann R. (2005). Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro. Oncogene, 24(9), 1525–1532. https://doi.org/10.1038/sj.onc.1208342
, Tucker RP, Degen M, Brown-Luedi M, Andres AC, & Chiquet-Ehrismann R. (2005). Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro. Oncogene, 24(9), 1525–1532. https://doi.org/10.1038/sj.onc.1208342