Publications
101 found
Show per page
Georgopoulou, Antonia, Filippi, Miriam, Stefani, Lisa, Drescher, Felix, Balciunaite, Aiste, Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202400051
, Katzschmann, Robert, & Clemens, Frank. (2024). Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics.
Georgopoulou, Antonia, Filippi, Miriam, Stefani, Lisa, Drescher, Felix, Balciunaite, Aiste, Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202400051
, Katzschmann, Robert, & Clemens, Frank. (2024). Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics.
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., Martin, Ivan, & Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
. (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article].
Chaaban, Mansoor, Moya, Adrien, García-García, Andres, Paillaud, Robert, Schaller, Romain, Klein, Thibaut, Power, Laura, Buczak, Katarzyna, Schmidt, Alexander, Kappos, Elisabeth, Ismail, Tarek, Schaefer, Dirk J., Martin, Ivan, & Biomaterials, 303. https://doi.org/10.1016/j.biomaterials.2023.122387
. (2023). Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification [Journal-article].
Bitonto V., Garello F., Prussian Blue Staining to Visualize Iron Oxide Nanoparticles (Vol. 2566, pp. 321–332). Humana Press Inc. https://doi.org/10.1007/978-1-0716-2675-7_26
, & Filippi M. (2023).
Bitonto V., Garello F., Prussian Blue Staining to Visualize Iron Oxide Nanoparticles (Vol. 2566, pp. 321–332). Humana Press Inc. https://doi.org/10.1007/978-1-0716-2675-7_26
, & Filippi M. (2023).
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., Biotechnology Journal, 18. https://doi.org/10.1002/biot.202200405
, Martin, Ivan, & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues.
Born, Gordian, Plantier, Evelia, Nannini, Guido, Caimi, Alessandro, Mazzoleni, Andrea, Asnaghi, M. Adelaide, Muraro, Manuele G., Biotechnology Journal, 18. https://doi.org/10.1002/biot.202200405
, Martin, Ivan, & García-García, Andrés. (2023). Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues.
Noël, Danièle, & Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1221444
. (2023). Editorial: Biology and clinical applications of adipose-derived cells for skeletal regeneration.
Noël, Danièle, & Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1221444
. (2023). Editorial: Biology and clinical applications of adipose-derived cells for skeletal regeneration.
Scatena, Lorenzo, Zenobi, Eleonora, Scatena, Elisa, Kempisty, Bartosz, Popova, Liyana, Balsamo, Michele, Di Silvio, Lucy, THE RELEVANCE OF A TOPICAL TEAM IN THE INVESTIGATION, ADVANCEMENT AND OPPORTUNITIES IN THE RESEARCH FROM THE SCIENTIFIC COMMUNITY THROUGH SPACE TECHNOLOGIES TO TERRESTRIAL IMPACTS. 2023-October.
, Gabetti, Stefano, Morbiducci, Umberto, Massai, Diana, Rius, Daniel Rodriguez, & Ginebra, Maria Pau. (2023).
Scatena, Lorenzo, Zenobi, Eleonora, Scatena, Elisa, Kempisty, Bartosz, Popova, Liyana, Balsamo, Michele, Di Silvio, Lucy, THE RELEVANCE OF A TOPICAL TEAM IN THE INVESTIGATION, ADVANCEMENT AND OPPORTUNITIES IN THE RESEARCH FROM THE SCIENTIFIC COMMUNITY THROUGH SPACE TECHNOLOGIES TO TERRESTRIAL IMPACTS. 2023-October.
, Gabetti, Stefano, Morbiducci, Umberto, Massai, Diana, Rius, Daniel Rodriguez, & Ginebra, Maria Pau. (2023).
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
, Pigeot S, & Martin I. (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.
Kouba L, Bürgin J, Born G, Perale G, Schaefer DJ, Acta Biomaterialia, 154, 641–649. https://doi.org/10.1016/j.actbio.2022.10.023
, Pigeot S, & Martin I. (2022). A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.
Rodgers, Griffin, Sigron, Guido R., Tanner, Christine, Hieber, Simone E., Beckmann, Felix, Schulz, Georg, Applied Sciences, 12(12), 6286. https://doi.org/10.3390/app12126286
, Jaquiéry, Claude, Kunz, Christoph, & Müller, Bert. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis [Journal-article].
Rodgers, Griffin, Sigron, Guido R., Tanner, Christine, Hieber, Simone E., Beckmann, Felix, Schulz, Georg, Applied Sciences, 12(12), 6286. https://doi.org/10.3390/app12126286
, Jaquiéry, Claude, Kunz, Christoph, & Müller, Bert. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis [Journal-article].
Filippi M, Garello F, Yasa O, Kasamkattil J, Small, 18(9), e2104079. https://doi.org/10.1002/smll.202104079
, & Katzschmann RK. (2022). Engineered Magnetic Nanocomposites to Modulate Cellular Function.
Filippi M, Garello F, Yasa O, Kasamkattil J, Small, 18(9), e2104079. https://doi.org/10.1002/smll.202104079
, & Katzschmann RK. (2022). Engineered Magnetic Nanocomposites to Modulate Cellular Function.
Buergin J, Werth L, Largo R, Plastic and Reconstructive Surgery. Global Open, 10(2), e4136. https://doi.org/10.1097/gox.0000000000004136
, Schaefer DJ, & Kaempfen A. (2022). Cross-sectional Vascularization Pattern of the Adipofascial Anterolateral Thigh Flap for Application in Tissue-engineered Bone Grafts.
Buergin J, Werth L, Largo R, Plastic and Reconstructive Surgery. Global Open, 10(2), e4136. https://doi.org/10.1097/gox.0000000000004136
, Schaefer DJ, & Kaempfen A. (2022). Cross-sectional Vascularization Pattern of the Adipofascial Anterolateral Thigh Flap for Application in Tissue-engineered Bone Grafts.
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, & Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
. (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, & Frontiers in Bioengineering and Biotechnology, 10, 841690. https://doi.org/10.3389/fbioe.2022.841690
. (2022). Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.
Filippi, Miriam, Später, Thomas, Herrmann, Marietta, Laschke, Matthias W., Strategies to promote vascularization, survival, and functionality of engineered tissues: Vol. null (pp. 457–489). Elsevier. https://doi.org/10.1016/b978-0-12-824459-3.00014-7
, & Verrier, Sophie. (2022).
Filippi, Miriam, Später, Thomas, Herrmann, Marietta, Laschke, Matthias W., Strategies to promote vascularization, survival, and functionality of engineered tissues: Vol. null (pp. 457–489). Elsevier. https://doi.org/10.1016/b978-0-12-824459-3.00014-7
, & Verrier, Sophie. (2022).
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, Martin, Ivan, & Stem Cells Translational Medicine, 11, 213–229. https://doi.org/10.1093/stcltm/szab021
. (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis.
Guerrero, Julien, Dasen, Boris, Frismantiene, Agne, Pigeot, Sebastien, Ismail, Tarek, Schaefer, Dirk J, Philippova, Maria, Resink, Therese J, Martin, Ivan, & Stem Cells Translational Medicine, 11, 213–229. https://doi.org/10.1093/stcltm/szab021
. (2022). T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis.
Rodgers G., Sigron G.R., Tanner C., Hieber S.E., Beckmann F., Schulz G., Applied Sciences (Switzerland), 12. https://doi.org/10.3390/app12126286
, Jaquiery C., Kunz C., & Muller B. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis.
Rodgers G., Sigron G.R., Tanner C., Hieber S.E., Beckmann F., Schulz G., Applied Sciences (Switzerland), 12. https://doi.org/10.3390/app12126286
, Jaquiery C., Kunz C., & Muller B. (2022). Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis.
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, Martin, Ivan, Hess, Christoph, Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
, Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination.
Hirsiger, Julia R., Tamborrini, Giorgio, Harder, Dorothee, Bantug, Glenn R., Hoenger, Gideon, Recher, Mike, Marx, Christian, Li, Quan-Zhen, Martin, Ivan, Hess, Christoph, Journal of Autoimmunity, 124. https://doi.org/10.1016/j.jaut.2021.102714
, Daikeler, Thomas, & Berger, Christoph T. (2021). Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination.
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
, Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & Martin, Ivan. (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches.
García-García, Andrés, Klein, Thibaut, Born, Gordian, Hilpert, Morgane, Proceedings of the National Academy of Sciences of the United States of America, 118(40). https://doi.org/10.1073/pnas.2114227118
, Lengerke, Claudia, Skoda, Radek C., Bourgine, Paul E., & Martin, Ivan. (2021). Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches.
Filippi M., Dasen B., & Materials, 14(17). https://doi.org/10.3390/ma14174877
(2021). Rapid magneto-sonoporation of adipose-derived cells.
Filippi M., Dasen B., & Materials, 14(17). https://doi.org/10.3390/ma14174877
(2021). Rapid magneto-sonoporation of adipose-derived cells.
Degen M., Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.623305
, & Tucker R.P. (2021). Tenascin-W: Discovery, Evolution, and Future Prospects.
Degen M., Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.623305
, & Tucker R.P. (2021). Tenascin-W: Discovery, Evolution, and Future Prospects.
Born, Gordian, Nikolova, Marina, Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
, Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells.
Born, Gordian, Nikolova, Marina, Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211044855
, Treutlein, Barbara, García-García, Andrés, & Martin, Ivan. (2021). Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells.
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. 11, 775136. https://doi.org/10.3389/fonc.2021.775136
, Schaefer DJ, & Martin I. (2021).
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. 11, 775136. https://doi.org/10.3389/fonc.2021.775136
, Schaefer DJ, & Martin I. (2021).
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Martin I, & Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
. (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Martin I, & Journal of Tissue Engineering and Regenerative Medicine, 14(12), 1908–1917. https://doi.org/10.1002/term.3141
. (2020). Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.
Jalili-Firoozinezhad S., Filippi M., Mohabatpour F., Letourneur D., & Materials Today, 40, 193–214. https://doi.org/10.1016/j.mattod.2020.05.022
(2020). Chicken egg white: Hatching of a new old biomaterial.
Jalili-Firoozinezhad S., Filippi M., Mohabatpour F., Letourneur D., & Materials Today, 40, 193–214. https://doi.org/10.1016/j.mattod.2020.05.022
(2020). Chicken egg white: Hatching of a new old biomaterial.
Filippi M, Born G, Chaaban M, & Frontiers in Bioengineering and Biotechnology, 8, 474. https://doi.org/10.3389/fbioe.2020.00474
. (2020). Natural Polymeric Scaffolds in Bone Regeneration.
Filippi M, Born G, Chaaban M, & Frontiers in Bioengineering and Biotechnology, 8, 474. https://doi.org/10.3389/fbioe.2020.00474
. (2020). Natural Polymeric Scaffolds in Bone Regeneration.
Filippi M, Born G, Felder-Flesch D, & Histology and Histopathology, 35(4), 331–350. https://doi.org/10.14670/HH-18-184
. (2020). Use of nanoparticles in skeletal tissue regeneration and engineering.
Filippi M, Born G, Felder-Flesch D, & Histology and Histopathology, 35(4), 331–350. https://doi.org/10.14670/HH-18-184
. (2020). Use of nanoparticles in skeletal tissue regeneration and engineering.
Nguyen D.-V., Perton F., Voirin E., Cotin G., Begin-Colin S., Felder-Flesch D., Hugoni L., Lavalle P., Filippi M., Power L., New Journal of Chemistry, 44(8), 3206–3214. https://doi.org/10.1039/c9nj05565g
, Shi D., & Krafft M.-P. (2020). Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons.
Nguyen D.-V., Perton F., Voirin E., Cotin G., Begin-Colin S., Felder-Flesch D., Hugoni L., Lavalle P., Filippi M., Power L., New Journal of Chemistry, 44(8), 3206–3214. https://doi.org/10.1039/c9nj05565g
, Shi D., & Krafft M.-P. (2020). Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons.
Siemer S, Wünsch D, Khamis A, Lu Q, Nanomaterials, 10(2). https://doi.org/10.3390/nano10020383
, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, & Gribko A. (2020). Nano meets micro-translational nanotechnology in medicine: Nano-based applications for early tumor detection and therapy.
Siemer S, Wünsch D, Khamis A, Lu Q, Nanomaterials, 10(2). https://doi.org/10.3390/nano10020383
, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, & Gribko A. (2020). Nano meets micro-translational nanotechnology in medicine: Nano-based applications for early tumor detection and therapy.
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, Martin I, & Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
. (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.
Huang RL, Guerrero J, Senn AS, Kappos EA, Liu K, Li Q, Dufrane D, Schaefer DJ, Martin I, & Acta Biomaterialia, 102, 458–467. https://doi.org/10.1016/j.actbio.2019.11.046
. (2020). Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.
Largo, Rene’ D., Burger, Maximilian G., Harschnitz, Oliver, Waschkies, Conny F., Grosso, Andrea, Scotti, Celeste, Kaempfen, Alexandre, Gueven, Sinan, Jundt, Gernot, Frontiers in bioengineering and biotechnology, 8, 755. https://doi.org/10.3389/fbioe.2020.00755
, Schaefer, Dirk J., Banfi, Andrea, & Di Maggio, Nunzia. (2020). VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts.
Largo, Rene’ D., Burger, Maximilian G., Harschnitz, Oliver, Waschkies, Conny F., Grosso, Andrea, Scotti, Celeste, Kaempfen, Alexandre, Gueven, Sinan, Jundt, Gernot, Frontiers in bioengineering and biotechnology, 8, 755. https://doi.org/10.3389/fbioe.2020.00755
, Schaefer, Dirk J., Banfi, Andrea, & Di Maggio, Nunzia. (2020). VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts.
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, & Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
. (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, & Biomaterials, 223, 119468. https://doi.org/10.1016/j.biomaterials.2019.119468
. (2019). Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, Martin I, Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/sap.0000000000001857
, & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution.
Lunger A, Ismail T, Todorov A, Buergin J, Lunger F, Oberhauser I, Haug M, Kalbermatten DF, Largo RD, Martin I, Annals of Plastic Surgery, 83(4), 464–467. https://doi.org/10.1097/sap.0000000000001857
, & Schaefer DJ. (2019). Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution.
Epple C, Haumer A, Ismail T, Lunger A, Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
, Schaefer DJ, & Martin I. (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction.
Epple C, Haumer A, Ismail T, Lunger A, Biomaterials, 192, 118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008
, Schaefer DJ, & Martin I. (2019). Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction.
Filippi, Miriam, Nguyen, Dinh-Vu, Garello, Francesca, Perton, Francis, Bégin-Colin, Sylvie, Felder-Flesch, Delphine, Power, Laura, & Nanoscale, 11(46), 22559–22574. https://doi.org/10.1039/c9nr08436c
. (2019). Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues.
Filippi, Miriam, Nguyen, Dinh-Vu, Garello, Francesca, Perton, Francis, Bégin-Colin, Sylvie, Felder-Flesch, Delphine, Power, Laura, & Nanoscale, 11(46), 22559–22574. https://doi.org/10.1039/c9nr08436c
. (2019). Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues.
Guerrero J, Pigeot S, Müller J, Schaefer DJ, Martin I, & Acta biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
. (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
Guerrero J, Pigeot S, Müller J, Schaefer DJ, Martin I, & Acta biomaterialia, 77, 142–154. https://doi.org/10.1016/j.actbio.2018.07.004
. (2018). Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
, , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate.
Blache U., Vallmajo-Martin Q., Horton E.R., Guerrero J., Djonov V., EMBO Reports, 19(8). https://doi.org/10.15252/embr.201845964
, , Erler J.T., Martin I., Snedeker J.G., Milleret V., & Ehrbar M. (2018). Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate.
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., Martin I., Knuesel I., & Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
(2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis.
Rossi E., Mracsko E., Papadimitropoulos A., Allafi N., Reinhardt D., Mehrkens A., Martin I., Knuesel I., & Tissue Engineering - Part C: Methods, 24(7), 391–398. https://doi.org/10.1089/ten.tec.2018.0061
(2018). An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis.
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, Martin I, & Acta biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
. (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.
Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos EA, Gerges I, Lenardi C, Martin I, & Acta biomaterialia, 73, 154–166. https://doi.org/10.1016/j.actbio.2018.04.039
. (2018). Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.
Menzi N, Osinga R, Todorov A, Schaefer DJ, Martin I, & Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
. (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.
Menzi N, Osinga R, Todorov A, Schaefer DJ, Martin I, & Cytotechnology, 70(2), 807–817. https://doi.org/10.1007/s10616-018-0190-z
. (2018). Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.
Fennema E.M., Tchang L.A.H., Yuan H., van Blitterswijk C.A., Martin I., Journal of Tissue Engineering and Regenerative Medicine, 12(1), e150–e158. https://doi.org/10.1002/term.2453
, & de Boer J. (2018). Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study.
Fennema E.M., Tchang L.A.H., Yuan H., van Blitterswijk C.A., Martin I., Journal of Tissue Engineering and Regenerative Medicine, 12(1), e150–e158. https://doi.org/10.1002/term.2453
, & de Boer J. (2018). Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study.
Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, The Journal of investigative dermatology, 137(12), 2560–2569. https://doi.org/10.1016/j.jid.2017.06.027
, Meuli M, & Reichmann E. (2017). Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.
Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, The Journal of investigative dermatology, 137(12), 2560–2569. https://doi.org/10.1016/j.jid.2017.06.027
, Meuli M, & Reichmann E. (2017). Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.
Ismail T, Osinga R., Todorov A Jr, Haumer A., Tchang L.A., Epple C., Allafi N, Menzi N., Largo R.D., Kaempfen A., Martin I., Schaefer D.J., & Acta Biomaterialia, 63, 236–245. https://doi.org/10.1016/j.actbio.2017.09.003
(2017). Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.
Ismail T, Osinga R., Todorov A Jr, Haumer A., Tchang L.A., Epple C., Allafi N, Menzi N., Largo R.D., Kaempfen A., Martin I., Schaefer D.J., & Acta Biomaterialia, 63, 236–245. https://doi.org/10.1016/j.actbio.2017.09.003
(2017). Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scientific reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
, & Marsano A. (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells.
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scientific reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
, & Marsano A. (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells.
Jalili-Firoozinezhad S, Martin I, & Materials science & engineering. C, Materials for biological applications, 76, 543–550. https://doi.org/10.1016/j.msec.2017.03.140
. (2017). Bimodal morphological analyses of native and engineered tissues.
Jalili-Firoozinezhad S, Martin I, & Materials science & engineering. C, Materials for biological applications, 76, 543–550. https://doi.org/10.1016/j.msec.2017.03.140
. (2017). Bimodal morphological analyses of native and engineered tissues.
Todorov A., Scotti C., Barbero A., Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
, , Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity.
Todorov A., Scotti C., Barbero A., Tissue Engineering - Part A, 23(13-14), 708–715. https://doi.org/10.1089/ten.tea.2016.0553
, , Papadimitropoulos A., & Martin I. (2017). Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity.
Ismail T, Bürgin J, Todorov A, Osinga R, Menzi N, Largo RD, Haug M, Martin I, Journal of Plastic, Reconstructive & Aesthetic Surgery : JPRAS, 70(5), 596–605. https://doi.org/10.1016/j.bjps.2017.01.023
, & Schaefer DJ. (2017). Low osmolality and shear stress during liposuction impair cell viability in autologous fat grafting.
Ismail T, Bürgin J, Todorov A, Osinga R, Menzi N, Largo RD, Haug M, Martin I, Journal of Plastic, Reconstructive & Aesthetic Surgery : JPRAS, 70(5), 596–605. https://doi.org/10.1016/j.bjps.2017.01.023
, & Schaefer DJ. (2017). Low osmolality and shear stress during liposuction impair cell viability in autologous fat grafting.
Di Maggio, Nunzia, Martella, Elisa, Frismantiene, Agne, Resink, Therese J., Schreiner, Simone, Lucarelli, Enrico, Jaquiery, Claude, Schaefer, Dirk J., Martin, Ivan, & Scientific Reports, 7. https://doi.org/10.1038/srep44398
. (2017). Extracellular matrix and α 5 β 1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells.
Di Maggio, Nunzia, Martella, Elisa, Frismantiene, Agne, Resink, Therese J., Schreiner, Simone, Lucarelli, Enrico, Jaquiery, Claude, Schaefer, Dirk J., Martin, Ivan, & Scientific Reports, 7. https://doi.org/10.1038/srep44398
. (2017). Extracellular matrix and α 5 β 1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells.
Jalili-Firoozinezhad S., Mohamadzadeh Moghadam M.H., Ghanian M.H., Ashtiani M.K., Alimadadi H., Baharvand H., Martin I., & RSC Advances, 7(63), 39628–39634. https://doi.org/10.1039/c7ra06178a
(2017). Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications.
Jalili-Firoozinezhad S., Mohamadzadeh Moghadam M.H., Ghanian M.H., Ashtiani M.K., Alimadadi H., Baharvand H., Martin I., & RSC Advances, 7(63), 39628–39634. https://doi.org/10.1039/c7ra06178a
(2017). Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications.
Marsano, Anna, Cerino, Giulia, Gaudiello, Emanuele, Muraro, Manuele Giuseppe, Martin, Ivan, Eckstein, Friedrich, & Pericytes Accelerate the in vivo Angiogenesis in mm-Thick Engineered Tissues. 54, 53. KARGER.
. (2017).
Marsano, Anna, Cerino, Giulia, Gaudiello, Emanuele, Muraro, Manuele Giuseppe, Martin, Ivan, Eckstein, Friedrich, & Pericytes Accelerate the in vivo Angiogenesis in mm-Thick Engineered Tissues. 54, 53. KARGER.
. (2017).
Sutter, Sarah, Todorov, Atanas, Ismail, Tarek, Haumer, Alexander, Fulco, Ilario, Schulz, Georg, Contrast Media & Molecular Imaging, 2017, 4035160. https://doi.org/10.1155/2017/4035160
, , Kaempfen, Alexandre, Martin, Ivan, & Schaefer, Dirk J. (2017). Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid.
Sutter, Sarah, Todorov, Atanas, Ismail, Tarek, Haumer, Alexander, Fulco, Ilario, Schulz, Georg, Contrast Media & Molecular Imaging, 2017, 4035160. https://doi.org/10.1155/2017/4035160
, , Kaempfen, Alexandre, Martin, Ivan, & Schaefer, Dirk J. (2017). Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid.
Tchang, Laurent A., Pippenger, Benjamin E., Todorov, Atanas, Wolf, Francine, Burger, Maximilian G., Jaquiery, Claude, Bieback, Karen, Martin, Ivan, Schaefer, Dirk J., & Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1542–1552. https://doi.org/10.1002/term.2054
. (2017). Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts.
Tchang, Laurent A., Pippenger, Benjamin E., Todorov, Atanas, Wolf, Francine, Burger, Maximilian G., Jaquiery, Claude, Bieback, Karen, Martin, Ivan, Schaefer, Dirk J., & Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1542–1552. https://doi.org/10.1002/term.2054
. (2017). Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts.
Herrmann, M., Bara, J. J., Sprecher, C. M., Menzel, U., Jalowiec, J. M., Osinga, R., European Cells and Materials, 31, 236–249. https://doi.org/10.22203/ecm.v031a16
, Alini, M., & Verrier, S. (2016). Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues.
Herrmann, M., Bara, J. J., Sprecher, C. M., Menzel, U., Jalowiec, J. M., Osinga, R., European Cells and Materials, 31, 236–249. https://doi.org/10.22203/ecm.v031a16
, Alini, M., & Verrier, S. (2016). Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues.
Klar, Agnes S., Güven, Sinan, Zimoch, Jakub, Zapiórkowska, Natalia A., Biedermann, Thomas, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Martin, Ivan, Pediatric Surgery International, 32(1), 17–27. https://doi.org/10.1007/s00383-015-3808-7
, Reichmann, Ernst, & Meuli, Martin. (2016). Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute.
Klar, Agnes S., Güven, Sinan, Zimoch, Jakub, Zapiórkowska, Natalia A., Biedermann, Thomas, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Martin, Ivan, Pediatric Surgery International, 32(1), 17–27. https://doi.org/10.1007/s00383-015-3808-7
, Reichmann, Ernst, & Meuli, Martin. (2016). Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute.
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, Barbero, Andrea, Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & Stem Cells Translational Medicine, 5(8), 1090–1097. https://doi.org/10.5966/sctm.2015-0256
. (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
Osinga, Rik, Di Maggio, Nunzia, Todorov, Atanas, Allafi, Nima, Barbero, Andrea, Laurent, Frédéric, Schaefer, Dirk Johannes, Martin, Ivan, & Stem Cells Translational Medicine, 5(8), 1090–1097. https://doi.org/10.5966/sctm.2015-0256
. (2016). Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
Saxer, Franziska, Stem Cells, 34(12), 2956–2966. https://doi.org/10.1002/stem.2478
, Todorov, Atanas, Studer, Patrick, Miot, Sylvie, Schreiner, Simone, Güven, Sinan, Tchang, Laurent A. H., Haug, Martin, Heberer, Michael, Schaefer, Dirk J., Rikli, Daniel, Martin, Ivan, & Jakob, Marcel. (2016). Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study.
Saxer, Franziska, Stem Cells, 34(12), 2956–2966. https://doi.org/10.1002/stem.2478
, Todorov, Atanas, Studer, Patrick, Miot, Sylvie, Schreiner, Simone, Güven, Sinan, Tchang, Laurent A. H., Haug, Martin, Heberer, Michael, Schaefer, Dirk J., Rikli, Daniel, Martin, Ivan, & Jakob, Marcel. (2016). Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study.
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, Barbero, Andrea, Bourgine, Paul E., Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
, Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
Todorov, Atanas, Kreutz, Matthias, Haumer, Alexander, Scotti, Celeste, Barbero, Andrea, Bourgine, Paul E., Stem Cells Translational Medicine, 5(12), 1684–1694. https://doi.org/10.5966/sctm.2016-0006
, Jaquiery, Claude, & Martin, Ivan. (2016). Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
Chiovaro, Francesca, Martina, Enrico, Bottos, Alessia, International Journal of Cancer, 137(8), 1842–1854. https://doi.org/10.1002/ijc.29565
, Hynes, Nancy E., & Chiquet-Ehrismann, Ruth. (2015). Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells.
Chiovaro, Francesca, Martina, Enrico, Bottos, Alessia, International Journal of Cancer, 137(8), 1842–1854. https://doi.org/10.1002/ijc.29565
, Hynes, Nancy E., & Chiquet-Ehrismann, Ruth. (2015). Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells.
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, Marsano, Anna, Aghdami, Nasser, Advanced Healthcare Materials, 4(15), 2281–2290. https://doi.org/10.1002/adhm.201500482
, Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration.
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, Marsano, Anna, Aghdami, Nasser, Advanced Healthcare Materials, 4(15), 2281–2290. https://doi.org/10.1002/adhm.201500482
, Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration.
Kaempfen, Alexandre, Todorov, Atanas, Güven, Sinan, Largo, René D., Jaquiéry, Claude, International Journal of Molecular Sciences, 16(6), 12616–12630. https://doi.org/10.3390/ijms160612616
, Martin, Ivan, & Schaefer, Dirk J. (2015). Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model.
Kaempfen, Alexandre, Todorov, Atanas, Güven, Sinan, Largo, René D., Jaquiéry, Claude, International Journal of Molecular Sciences, 16(6), 12616–12630. https://doi.org/10.3390/ijms160612616
, Martin, Ivan, & Schaefer, Dirk J. (2015). Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model.
Kappos, Elisabeth A., Engels, Patricia E., Tremp, Mathias, Meyer zu Schwabedissen, Moritz, di Summa, Pietro, Fischmann, Arne, von Felten, Stefanie, Stem Cells and Development, 24(18), 2127–2141. https://doi.org/10.1089/scd.2014.0424
, , Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit.
Kappos, Elisabeth A., Engels, Patricia E., Tremp, Mathias, Meyer zu Schwabedissen, Moritz, di Summa, Pietro, Fischmann, Arne, von Felten, Stefanie, Stem Cells and Development, 24(18), 2127–2141. https://doi.org/10.1089/scd.2014.0424
, , Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit.
Osinga, Rik, Osinga, Rik, Menzi, Nadia R., Tchang, Laurent A. H., Caviezel, Daniel, Kalbermatten, Daniel F., Martin, Ivan, Schaefer, Dirk J., Plastic and Reconstructive Surgery, 135(6), 1618–1628. https://doi.org/10.1097/prs.0000000000001288
, & Largo, Rene D. (2015). Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting.
Osinga, Rik, Osinga, Rik, Menzi, Nadia R., Tchang, Laurent A. H., Caviezel, Daniel, Kalbermatten, Daniel F., Martin, Ivan, Schaefer, Dirk J., Plastic and Reconstructive Surgery, 135(6), 1618–1628. https://doi.org/10.1097/prs.0000000000001288
, & Largo, Rene D. (2015). Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting.
Papadimitropoulos, Adam, Scotti, Celeste, Bourgine, Paul, Bone, 70, 66–72. https://doi.org/10.1016/j.bone.2014.09.007
, & Martin, Ivan. (2015). Engineered decellularized matrices to instruct bone regeneration processes.
Papadimitropoulos, Adam, Scotti, Celeste, Bourgine, Paul, Bone, 70, 66–72. https://doi.org/10.1016/j.bone.2014.09.007
, & Martin, Ivan. (2015). Engineered decellularized matrices to instruct bone regeneration processes.
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, Journal of Cellular and Molecular Medicine, 19(6), 1390–1399. https://doi.org/10.1111/jcmm.12526
, Walboomers, X. Frank, Barbero, Andrea, & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes.
Pippenger, Benjamin E., Ventura, Manuela, Pelttari, Karoliina, Feliciano, Sandra, Jaquiery, Claude, Journal of Cellular and Molecular Medicine, 19(6), 1390–1399. https://doi.org/10.1111/jcmm.12526
, Walboomers, X. Frank, Barbero, Andrea, & Martin, Ivan. (2015). Bone-forming capacity of adult human nasal chondrocytes.
Tremp, Mathias, Meyer Zu Schwabedissen, Moritz, Kappos, Elisabeth A., Engels, Patricia E., Fischmann, Arne, Cell Transplantation, 24(2), 203–211. https://doi.org/10.3727/096368913x676934
, Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI.
Tremp, Mathias, Meyer Zu Schwabedissen, Moritz, Kappos, Elisabeth A., Engels, Patricia E., Fischmann, Arne, Cell Transplantation, 24(2), 203–211. https://doi.org/10.3727/096368913x676934
, Schaefer, Dirk J., & Kalbermatten, Daniel F. (2015). The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI.
Herrmann M., Laschke M.W., Alini M., Vascularization, Survival, and Functionality of Tissue-Engineered Constructs (pp. 471–496). Elsevier Inc. https://doi.org/10.1016/b978-0-12-420145-3.00014-6
, & Verrier S. (2014).
Herrmann M., Laschke M.W., Alini M., Vascularization, Survival, and Functionality of Tissue-Engineered Constructs (pp. 471–496). Elsevier Inc. https://doi.org/10.1016/b978-0-12-420145-3.00014-6
, & Verrier S. (2014).
Saxer, F., Studer, P., Robust-regeneration of osteoporotic bone using stem cell transplantation. 101, 13. WILEY-BLACKWELL.
, Miot, S., Todorov, A., Haug, M., Schaefer, D., Rikli, D., Schreiner, S., Martin, I., & Jakob, M. (2014).
Saxer, F., Studer, P., Robust-regeneration of osteoporotic bone using stem cell transplantation. 101, 13. WILEY-BLACKWELL.
, Miot, S., Todorov, A., Haug, M., Schaefer, D., Rikli, D., Schreiner, S., Martin, I., & Jakob, M. (2014).
Tremp, M., Sieber, P., Schwabedissen, M. M. Zu, Kappos, E. A., Engels, P. E., Fischmann, A., The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. 8, 404. WILEY-BLACKWELL.
, Schaefer, D. J., & Kalbermatten, D. F. (2014).
Tremp, M., Sieber, P., Schwabedissen, M. M. Zu, Kappos, E. A., Engels, P. E., Fischmann, A., The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. 8, 404. WILEY-BLACKWELL.
, Schaefer, D. J., & Kalbermatten, D. F. (2014).
Bourgine, P., LeMagnen, C., Pigeot, S., Geurts, J., Stem Cell Research, 12(2), 584–598. https://doi.org/10.1016/j.scr.2013.12.006
, & Martin, I. (2014). Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival.
Bourgine, P., LeMagnen, C., Pigeot, S., Geurts, J., Stem Cell Research, 12(2), 584–598. https://doi.org/10.1016/j.scr.2013.12.006
, & Martin, I. (2014). Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival.
Klar, Agnieszka S., Güven, Sinan, Biedermann, Thomas, Luginbühl, Joachim, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Meuli, Martin, Martin, Ivan, Biomaterials, 35(19), 5065–5078. https://doi.org/10.1016/j.biomaterials.2014.02.049
, & Reichmann, Ernst. (2014). Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells.
Klar, Agnieszka S., Güven, Sinan, Biedermann, Thomas, Luginbühl, Joachim, Böttcher-Haberzeth, Sophie, Meuli-Simmen, Claudia, Meuli, Martin, Martin, Ivan, Biomaterials, 35(19), 5065–5078. https://doi.org/10.1016/j.biomaterials.2014.02.049
, & Reichmann, Ernst. (2014). Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells.
Largo, Rene D., Tchang, Laurent A. H., Mele, Valentina, Journal of Plastic, Reconstructive & Aesthetic Surgery, 67(4), 437–448. https://doi.org/10.1016/j.bjps.2013.11.011
, Harder, Yves, Wettstein, Reto, & Schaefer, Dirk J. (2014). Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review.
Largo, Rene D., Tchang, Laurent A. H., Mele, Valentina, Journal of Plastic, Reconstructive & Aesthetic Surgery, 67(4), 437–448. https://doi.org/10.1016/j.bjps.2013.11.011
, Harder, Yves, Wettstein, Reto, & Schaefer, Dirk J. (2014). Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review.
Mehrkens, A., Di Maggio, N., Gueven, S., Schaefer, D., Tissue Engineering, 20(5-6), 1081–1088. https://doi.org/10.1089/ten.tea.2013.0273
, Banfi, A., & Martin, I. (2014). Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction.
Mehrkens, A., Di Maggio, N., Gueven, S., Schaefer, D., Tissue Engineering, 20(5-6), 1081–1088. https://doi.org/10.1089/ten.tea.2013.0273
, Banfi, A., & Martin, I. (2014). Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction.
Müller, Andreas A., Forraz, Nico, Gueven, Sinan, Atzeni, Gianluigi, Degoul, Olivier, Pagnon-Minot, Aurélie, Hartmann, Daniel, Martin, Ivan, Plastic and Reconstructive Surgery, 134(1), 59e–69e. https://doi.org/10.1097/prs.0000000000000305
, & McGuckin, Colin. (2014). Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture.
Müller, Andreas A., Forraz, Nico, Gueven, Sinan, Atzeni, Gianluigi, Degoul, Olivier, Pagnon-Minot, Aurélie, Hartmann, Daniel, Martin, Ivan, Plastic and Reconstructive Surgery, 134(1), 59e–69e. https://doi.org/10.1097/prs.0000000000000305
, & McGuckin, Colin. (2014). Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture.
Helmrich, U., Di Maggio, N., Guven, S., Groppa, E., Melly, L., Largo, R. D., Heberer, M., Martin, I., Biomaterials, 34(21), 5025–5035. https://doi.org/10.1016/j.biomaterials.2013.03.040
, & Banfi, A. (2013). Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors.
Helmrich, U., Di Maggio, N., Guven, S., Groppa, E., Melly, L., Largo, R. D., Heberer, M., Martin, I., Biomaterials, 34(21), 5025–5035. https://doi.org/10.1016/j.biomaterials.2013.03.040
, & Banfi, A. (2013). Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors.
Heng, B. C., Heinimann, K., Miny, P., Iezzi, G., Glatz, K., Metabolic Engineering, 18, 9–24. https://doi.org/10.1016/j.ymben.2013.02.004
, Zulewski, H., & Fussenegger, M. (2013). mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient.
Heng, B. C., Heinimann, K., Miny, P., Iezzi, G., Glatz, K., Metabolic Engineering, 18, 9–24. https://doi.org/10.1016/j.ymben.2013.02.004
, Zulewski, H., & Fussenegger, M. (2013). mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient.
World Journal of Stem Cells, 5(1), 1–8. https://doi.org/10.4252/wjsc.v5.i1.1
, Di Maggio, Nunzia Di, & McNagny, Kelly M. (2013). A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue.
World Journal of Stem Cells, 5(1), 1–8. https://doi.org/10.4252/wjsc.v5.i1.1
, Di Maggio, Nunzia Di, & McNagny, Kelly M. (2013). A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue.
Güven, Sinan, Karagianni, Marianna, Schwalbe, Mandy, Schreiner, Simone, Farhadi, Jian, Bula, Sylvain, Bieback, Karen, Martin, Ivan, & Tissue Engineering. Part C, 18(8), 575–582. https://doi.org/10.1089/ten.tec.2011.0617
. (2012). Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology.
Güven, Sinan, Karagianni, Marianna, Schwalbe, Mandy, Schreiner, Simone, Farhadi, Jian, Bula, Sylvain, Bieback, Karen, Martin, Ivan, & Tissue Engineering. Part C, 18(8), 575–582. https://doi.org/10.1089/ten.tec.2011.0617
. (2012). Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology.
Jakob, M., Saxer, F., Scotti, C., Schreiner, S., Studer, P., European Surgical Research, 49(1), 1–7. https://doi.org/10.1159/000338362
, Heberer, M., & Martin, I. (2012). Perspective on the evolution of cell-based bone tissue engineering strategies.
Jakob, M., Saxer, F., Scotti, C., Schreiner, S., Studer, P., European Surgical Research, 49(1), 1–7. https://doi.org/10.1159/000338362
, Heberer, M., & Martin, I. (2012). Perspective on the evolution of cell-based bone tissue engineering strategies.
Martin I., Jakob M., Papadimitropoulos A., Scotti C., Wendt D., & European Cells and Materials, 24(SUPPL. 1), 22.
(2012). Proposed evolution of bone tissue engineering strategies.
Martin I., Jakob M., Papadimitropoulos A., Scotti C., Wendt D., & European Cells and Materials, 24(SUPPL. 1), 22.
(2012). Proposed evolution of bone tissue engineering strategies.
Mehrkens, A., Saxer, F., Guven, S., Hoffmann, W., Muller, A. M., Jakob, M., Weber, F. E., Martin, I., & European Cells & Materials, 24, 308–319. https://doi.org/10.22203/ecm.v024a22
(2012). Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2.
Mehrkens, A., Saxer, F., Guven, S., Hoffmann, W., Muller, A. M., Jakob, M., Weber, F. E., Martin, I., & European Cells & Materials, 24, 308–319. https://doi.org/10.22203/ecm.v024a22
(2012). Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2.
Sadr, N., Pippenger, B. E., Biomaterials, 33(20), 5085–5093. https://doi.org/10.1016/j.biomaterials.2012.03.082
, Wendt, D., Mantero, S., Martin, I., & Papadimitropoulos, A. (2012). Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix.
Sadr, N., Pippenger, B. E., Biomaterials, 33(20), 5085–5093. https://doi.org/10.1016/j.biomaterials.2012.03.082
, Wendt, D., Mantero, S., Martin, I., & Papadimitropoulos, A. (2012). Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix.
Güven, Sinan, Mehrkens, Arne, Saxer, Franziska, Schaefer, Dirk J., Martinetti, Roberta, Martin, Ivan, & Biomaterials, 32(25), 5801–5809. https://doi.org/10.1016/j.biomaterials.2011.04.064
. (2011). Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue.
Güven, Sinan, Mehrkens, Arne, Saxer, Franziska, Schaefer, Dirk J., Martinetti, Roberta, Martin, Ivan, & Biomaterials, 32(25), 5801–5809. https://doi.org/10.1016/j.biomaterials.2011.04.064
. (2011). Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue.
Papadimitropoulos A., European Cells and Materials, 21, 445–458. https://doi.org/10.22203/ecm.v021a33
, , Guven S., Theilgaard N., Crooijmans H.J.A., Santini F., Scheffler K., Zallone A., & Martin I. (2011). A 3D in vitro bone organ model using human progenitor cells.
Papadimitropoulos A., European Cells and Materials, 21, 445–458. https://doi.org/10.22203/ecm.v021a33
, , Guven S., Theilgaard N., Crooijmans H.J.A., Santini F., Scheffler K., Zallone A., & Martin I. (2011). A 3D in vitro bone organ model using human progenitor cells.
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, Arthritis & Rheumatism, 62(12), 3815–3825. https://doi.org/10.1002/art.27736
, Barbero, Andrea, Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells.
Bocelli-Tyndall, Chiara, Zajac, Paul, Di Maggio, Nunzia, Trella, Emanuele, Benvenuto, Federica, Iezzi, Giandomenica, Arthritis & Rheumatism, 62(12), 3815–3825. https://doi.org/10.1002/art.27736
, Barbero, Andrea, Schaeren, Stefan, Pistoia, Vito, Spagnoli, Giulio, Vukcevic, Mirko, Martin, Ivan, & Tyndall, Alan. (2010). Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells.
Kossowska-Tomaszczuk, Katarzyna, Pelczar, Pawel, Güven, Sinan, Kowalski, Jacek, Volpi, Emanuela, De Geyter, Christian, & Tissue Engineering, 16(6), 2063–2073. https://doi.org/10.1089/ten.tea.2009.0684
. (2010). A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment.
Kossowska-Tomaszczuk, Katarzyna, Pelczar, Pawel, Güven, Sinan, Kowalski, Jacek, Volpi, Emanuela, De Geyter, Christian, & Tissue Engineering, 16(6), 2063–2073. https://doi.org/10.1089/ten.tea.2009.0684
. (2010). A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment.
Müller, A. M., Mehrkens, A., Schäfer, D. J., Jaquiery, C., Güven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., European Cells and Materials, 19, 127–135. https://doi.org/10.22203/ecm.v019a13
, & Martin, I. (2010). Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue.
Müller, A. M., Mehrkens, A., Schäfer, D. J., Jaquiery, C., Güven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., European Cells and Materials, 19, 127–135. https://doi.org/10.22203/ecm.v019a13
, & Martin, I. (2010). Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue.
Piccinini E., Wendt D., Ceramic granules coated with fibrin sealant as a scaffold for perfusion bioreactor in bone tissue engineering. 20, 38.
, , & Martin I. (2010).
Piccinini E., Wendt D., Ceramic granules coated with fibrin sealant as a scaffold for perfusion bioreactor in bone tissue engineering. 20, 38.
, , & Martin I. (2010).
Journal of Cellular Physiology, 225(2), 348–353. https://doi.org/10.1002/jcp.22313
, Müller, Andreas M., Schäfer, Dirk J., Banfi, Andrea, & Martin, Ivan. (2010). Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts.
Journal of Cellular Physiology, 225(2), 348–353. https://doi.org/10.1002/jcp.22313
, Müller, Andreas M., Schäfer, Dirk J., Banfi, Andrea, & Martin, Ivan. (2010). Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts.
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Proceedings of the National Academy of Sciences, 107(16), 7251–7256. https://doi.org/10.1073/pnas.1000302107
, Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, Barbero, Andrea, & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering.
Scotti, Celeste, Tonnarelli, Beatrice, Papadimitropoulos, Adam, Proceedings of the National Academy of Sciences, 107(16), 7251–7256. https://doi.org/10.1073/pnas.1000302107
, Schaeren, Stefan, Schauerte, Alexandra, Lopez-Rios, Javier, Zeller, Rolf, Barbero, Andrea, & Martin, Ivan. (2010). Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering.
Martin, I., Papadimitropoulos, A., New Biotechnology, 25, S22. https://doi.org/10.1016/j.nbt.2009.06.056
, & Wendt, D. (2009). Mesenchymal stem cell expansion in 3D perfusion systems [Journal-article].
Martin, I., Papadimitropoulos, A., New Biotechnology, 25, S22. https://doi.org/10.1016/j.nbt.2009.06.056
, & Wendt, D. (2009). Mesenchymal stem cell expansion in 3D perfusion systems [Journal-article].
Papadimitropoulos A., Mehrkens A., Theilgaard N., An in vitro model of bone organ starting from progenitor cell populations. 18, 56.
, , & Martin I. (2009).
Papadimitropoulos A., Mehrkens A., Theilgaard N., An in vitro model of bone organ starting from progenitor cell populations. 18, 56.
, , & Martin I. (2009).
Scotti C., Papadimitropoulos A., Tonnarelli B., In vivo formation of bone tissue by adult human mesenchymal stem cells depends on the stage of in vitro chondrogenic differentiation. 18, 4.
, , Barbero A., & Martin I. (2009).
Scotti C., Papadimitropoulos A., Tonnarelli B., In vivo formation of bone tissue by adult human mesenchymal stem cells depends on the stage of in vitro chondrogenic differentiation. 18, 4.
, , Barbero A., & Martin I. (2009).
Kossowska-Tomaszczuk, Katarzyna, De Geyter, Christian, De Geyter, Maria, Martin, Ivan, Holzgreve, Wolfgang, Stem Cells, 27(1), 210–219. https://doi.org/10.1634/stemcells.2008-0233
, & Zhang, Hong. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles.
Kossowska-Tomaszczuk, Katarzyna, De Geyter, Christian, De Geyter, Maria, Martin, Ivan, Holzgreve, Wolfgang, Stem Cells, 27(1), 210–219. https://doi.org/10.1634/stemcells.2008-0233
, & Zhang, Hong. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles.
Montjovent, Marc-Olivier, Bocelli-Tyndall, Chiara, Scaletta, Corinne, Tissue engineering. Part A, 15(7), 1523–1532. https://doi.org/10.1089/ten.tea.2008.0222
, Mark, Silke, Martin, Ivan, Applegate, Lee Ann, & Pioletti, Dominique P. (2009). In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications.
Montjovent, Marc-Olivier, Bocelli-Tyndall, Chiara, Scaletta, Corinne, Tissue engineering. Part A, 15(7), 1523–1532. https://doi.org/10.1089/ten.tea.2008.0222
, Mark, Silke, Martin, Ivan, Applegate, Lee Ann, & Pioletti, Dominique P. (2009). In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications.
Müller, Andreas M, Davenport, Michael, Verrier, Sophie, Droeser, Raoul, Alini, Mauro, Bocelli-Tyndall, Chiara, Schaefer, Dirk J, Martin, Ivan, & Tissue engineering. Part A, 15(4), 869–875. https://doi.org/10.1089/ten.tea.2008.0498
. (2009). Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue.
Müller, Andreas M, Davenport, Michael, Verrier, Sophie, Droeser, Raoul, Alini, Mauro, Bocelli-Tyndall, Chiara, Schaefer, Dirk J, Martin, Ivan, & Tissue engineering. Part A, 15(4), 869–875. https://doi.org/10.1089/ten.tea.2008.0498
. (2009). Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue.
Montjovent M.-O., Mark S., Mathieu L., Scaletta C., Bone, 42(3), 554–564. https://doi.org/10.1016/j.bone.2007.10.018
, Delabarde C., Zambelli P.-Y., Bourban P.-E., Applegate L.A., & Pioletti D.P. (2008). Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.
Montjovent M.-O., Mark S., Mathieu L., Scaletta C., Bone, 42(3), 554–564. https://doi.org/10.1016/j.bone.2007.10.018
, Delabarde C., Zambelli P.-Y., Bourban P.-E., Applegate L.A., & Pioletti D.P. (2008). Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.
Larghero, J, Farge, D, Braccini, A, Lecourt, S, Annals of the Rheumatic Diseases : ARD, 67(4), 443–449. https://doi.org/10.1136/ard.2007.071233
, Foïs, E, Verrecchia, F, Daikeler, T, Gluckman, E, Tyndall, A, & Bocelli-Tyndall, C. (2008). Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis.
Larghero, J, Farge, D, Braccini, A, Lecourt, S, Annals of the Rheumatic Diseases : ARD, 67(4), 443–449. https://doi.org/10.1136/ard.2007.071233
, Foïs, E, Verrecchia, F, Daikeler, T, Gluckman, E, Tyndall, A, & Bocelli-Tyndall, C. (2008). Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis.
Stem Cells, 25(7), 1823–1829. https://doi.org/10.1634/stemcells.2007-0124
, Galli, Raffaele, Jaquiery, Claude, Farhadi, Jian, & Martin, Ivan. (2007). Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity.
Stem Cells, 25(7), 1823–1829. https://doi.org/10.1634/stemcells.2007-0124
, Galli, Raffaele, Jaquiery, Claude, Farhadi, Jian, & Martin, Ivan. (2007). Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity.
Timmins, Nicholas E, Tissue engineering, 13(8), 2021–2028. https://doi.org/10.1089/ten.2006.0158
, Früh, Jennifer-Annika, Heberer, Michael, Martin, Ivan, & Jakob, Marcel. (2007). Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion).
Timmins, Nicholas E, Tissue engineering, 13(8), 2021–2028. https://doi.org/10.1089/ten.2006.0158
, Früh, Jennifer-Annika, Heberer, Michael, Martin, Ivan, & Jakob, Marcel. (2007). Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion).
Linscheid, Philippe, Seboek, Dalma, Zulewski, Henryk, American Journal of Physiology. Endocrinology and Metabolism, 290(6), E1068–77. https://doi.org/10.1152/ajpendo.00374.2005
, Blau, Nenad, Keller, Ulrich, & Muller, Beat. (2006). Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide.
Linscheid, Philippe, Seboek, Dalma, Zulewski, Henryk, American Journal of Physiology. Endocrinology and Metabolism, 290(6), E1068–77. https://doi.org/10.1152/ajpendo.00374.2005
, Blau, Nenad, Keller, Ulrich, & Muller, Beat. (2006). Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide.
Oncogene, 24(9), 1525–1532. https://doi.org/10.1038/sj.onc.1208342
, Tucker RP, Degen M, Brown-Luedi M, Andres AC, & Chiquet-Ehrismann R. (2005). Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro.
Oncogene, 24(9), 1525–1532. https://doi.org/10.1038/sj.onc.1208342
, Tucker RP, Degen M, Brown-Luedi M, Andres AC, & Chiquet-Ehrismann R. (2005). Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro.
Journal of Cell Science, 117(Pt 4), 571–581. https://doi.org/10.1242/jcs.00867
, Tucker RP, Samandari E, Brown-Luedi M, Martin D, & Chiquet-Ehrismann R. (2004). Murine tenascin-W: a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development.
Journal of Cell Science, 117(Pt 4), 571–581. https://doi.org/10.1242/jcs.00867
, Tucker RP, Samandari E, Brown-Luedi M, Martin D, & Chiquet-Ehrismann R. (2004). Murine tenascin-W: a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development.
Scherberich, A., Giannone, G., Perennou, E., Takeda, K., Boucheix, C., Rubinstein, E., Lanza, F., & Beretz, A. (2002). FAK-mediated inhibition of vascular smooth muscle cell migration by the tetraspanin CD9. Thrombosis and Haemostasis, 87(6), 1043–1050. https://doi.org/10.1055/s-0037-1613130
Scherberich, A., Giannone, G., Perennou, E., Takeda, K., Boucheix, C., Rubinstein, E., Lanza, F., & Beretz, A. (2002). FAK-mediated inhibition of vascular smooth muscle cell migration by the tetraspanin CD9. Thrombosis and Haemostasis, 87(6), 1043–1050. https://doi.org/10.1055/s-0037-1613130