Publications
121 found
Show per page
Dölz, Jürgen, Engineering with Computers, 40(6), 3651–3661. https://doi.org/10.1007/s00366-024-02013-y
, & Multerer, Michael. (2024). Solving acoustic scattering problems by the isogeometric boundary element method [Journal-article].
Dölz, Jürgen, Engineering with Computers, 40(6), 3651–3661. https://doi.org/10.1007/s00366-024-02013-y
, & Multerer, Michael. (2024). Solving acoustic scattering problems by the isogeometric boundary element method [Journal-article].
Advances in Computational Mathematics, 50(5). https://doi.org/10.1007/s10444-024-10187-8
, Herrmann, Lukas, Kirchner, Kristin, & Schwab, Christoph. (2024). Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction [Journal-article].
Advances in Computational Mathematics, 50(5). https://doi.org/10.1007/s10444-024-10187-8
, Herrmann, Lukas, Kirchner, Kristin, & Schwab, Christoph. (2024). Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction [Journal-article].
Numerische Mathematik, 156(3), 853–899. https://doi.org/10.1007/s00211-024-01403-0
, & von Rickenbach, Remo. (2024). Compression of boundary integral operators discretized by anisotropic wavelet bases [Journal-article].
Numerische Mathematik, 156(3), 853–899. https://doi.org/10.1007/s00211-024-01403-0
, & von Rickenbach, Remo. (2024). Compression of boundary integral operators discretized by anisotropic wavelet bases [Journal-article].
Numerische Mathematik, 156(3), 1085–1114. https://doi.org/10.1007/s00211-024-01409-8
, Multerer, M., Schenk, O., & Schwab, Ch. (2024). Multiresolution kernel matrix algebra [Journal-article].
Numerische Mathematik, 156(3), 1085–1114. https://doi.org/10.1007/s00211-024-01409-8
, Multerer, M., Schenk, O., & Schwab, Ch. (2024). Multiresolution kernel matrix algebra [Journal-article].
Mathematical Models and Methods in Applied Sciences, 34(05), 881–917. https://doi.org/10.1142/s0218202524500179
, Schmidlin, Marc, & Schwab, Christoph. (2024). The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs [Journal-article].
Mathematical Models and Methods in Applied Sciences, 34(05), 881–917. https://doi.org/10.1142/s0218202524500179
, Schmidlin, Marc, & Schwab, Christoph. (2024). The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs [Journal-article].
Kamber, Lars, Bürli, Christine, PLOS Neglected Tropical Diseases, 18(2), e0011362. https://doi.org/10.1371/journal.pntd.0011362
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2024). Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence [Journal-article].
Kamber, Lars, Bürli, Christine, PLOS Neglected Tropical Diseases, 18(2), e0011362. https://doi.org/10.1371/journal.pntd.0011362
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2024). Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence [Journal-article].
Felber, Luzia N., SIAM Journal on Imaging Sciences, 17(1), 61–90. https://doi.org/10.1137/23m1565346
, & Schmidlin, Marc. (2024). Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems [Journal-article].
Felber, Luzia N., SIAM Journal on Imaging Sciences, 17(1), 61–90. https://doi.org/10.1137/23m1565346
, & Schmidlin, Marc. (2024). Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems [Journal-article].
Hakula, Harri, Numerische Mathematik, 156(1), 273–317. https://doi.org/10.1007/s00211-023-01392-6
, Kaarnioja, Vesa, Kuo, Frances Y., & Sloan, Ian H. (2024). Uncertainty quantification for random domains using periodic random variables [Journal-article].
Hakula, Harri, Numerische Mathematik, 156(1), 273–317. https://doi.org/10.1007/s00211-023-01392-6
, Kaarnioja, Vesa, Kuo, Frances Y., & Sloan, Ian H. (2024). Uncertainty quantification for random domains using periodic random variables [Journal-article].
SIAM/ASA Journal on Uncertainty Quantification, 12(2), 503–523. https://doi.org/10.1137/23m1578589
, Karnaev, Viacheslav, & Schmidlin, Marc. (2024). Quantifying Domain Uncertainty in Linear Elasticity [Journal-article].
SIAM/ASA Journal on Uncertainty Quantification, 12(2), 503–523. https://doi.org/10.1137/23m1578589
, Karnaev, Viacheslav, & Schmidlin, Marc. (2024). Quantifying Domain Uncertainty in Linear Elasticity [Journal-article].
Multiscale, Nonlinear and Adaptive Approximation II (pp. 299–326). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75802-7_14
, & Multerer, Michael. (2024). Samplets: Wavelet Concepts for Scattered Data. In Ron DeVore and Angea Kunoth, (ed.),
Multiscale, Nonlinear and Adaptive Approximation II (pp. 299–326). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75802-7_14
, & Multerer, Michael. (2024). Samplets: Wavelet Concepts for Scattered Data. In Ron DeVore and Angea Kunoth, (ed.),
Ben Bader, Seif, SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1329–1356. https://doi.org/10.1137/21m1418320
, Krause, Rolf, Multerer, Michael D., Quaglino, Alessio, & Schmidlin, Marc. (2023). Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology [Journal-article].
Ben Bader, Seif, SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1329–1356. https://doi.org/10.1137/21m1418320
, Krause, Rolf, Multerer, Michael D., Quaglino, Alessio, & Schmidlin, Marc. (2023). Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology [Journal-article].
Dambrine, Marc, Computational Methods in Applied Mathematics, 23(2), 333–352. https://doi.org/10.1515/cmam-2022-0038
, & Puig, Benedicte. (2023). Bernoulli free boundary problems under uncertainty: the convex case.
Dambrine, Marc, Computational Methods in Applied Mathematics, 23(2), 333–352. https://doi.org/10.1515/cmam-2022-0038
, & Puig, Benedicte. (2023). Bernoulli free boundary problems under uncertainty: the convex case.
Fallahpour, Merlin, & Optimization and Engineering, 24(3), 2115–2143. https://doi.org/10.1007/s11081-022-09768-7
. (2023). Shape optimization for composite materials in linear elasticity.
Fallahpour, Merlin, & Optimization and Engineering, 24(3), 2115–2143. https://doi.org/10.1007/s11081-022-09768-7
. (2023). Shape optimization for composite materials in linear elasticity.
Griebel, Michael, & Foundations of Computational Mathematics, 23(1), 219–240. https://doi.org/10.1007/s10208-021-09544-6
. (2023). Analysis of tensor approximation schemes for continuous functions.
Griebel, Michael, & Foundations of Computational Mathematics, 23(1), 219–240. https://doi.org/10.1007/s10208-021-09544-6
. (2023). Analysis of tensor approximation schemes for continuous functions.
Griebel, Michael, Mathematics of Computation, 92(342), 1729–1746. https://doi.org/10.1090/mcom/3813
, & Schneider, Reinhold. (2023). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness.
Griebel, Michael, Mathematics of Computation, 92(342), 1729–1746. https://doi.org/10.1090/mcom/3813
, & Schneider, Reinhold. (2023). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness.
Brügger, Rahel, & SIAM Journal on Control and Optimization (SICON), 60(1), 310–329. https://doi.org/10.1137/21m1411007
. (2022). On the reformulation of the Classical Stefan problem as a shape optimization problem.
Brügger, Rahel, & SIAM Journal on Control and Optimization (SICON), 60(1), 310–329. https://doi.org/10.1137/21m1411007
. (2022). On the reformulation of the Classical Stefan problem as a shape optimization problem.
Brügger, Rahel, Integral Equations and Operator Theory, 94(2), 10. https://doi.org/10.1007/s00020-022-02691-7
, & Tausch, Johannes. (2022). Boundary integral operators for the heat equation.
Brügger, Rahel, Integral Equations and Operator Theory, 94(2), 10. https://doi.org/10.1007/s00020-022-02691-7
, & Tausch, Johannes. (2022). Boundary integral operators for the heat equation.
Dahlke, Stephan, SIAM Journal on Scientific Computing, 44(4), A2691–A2708.
, & Surowiec, Thomas M. (2022). A wavelet-based approach for the optimal control of non-local operator equations.
Dahlke, Stephan, SIAM Journal on Scientific Computing, 44(4), A2691–A2708.
, & Surowiec, Thomas M. (2022). A wavelet-based approach for the optimal control of non-local operator equations.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 388, 114242. https://doi.org/10.1016/j.cma.2021.114242
, Jerez-Hanckes, Carlos, & Multerer, Michael. (2022). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 388, 114242. https://doi.org/10.1016/j.cma.2021.114242
, Jerez-Hanckes, Carlos, & Multerer, Michael. (2022). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering.
Algorithmische Mathematik: Graphen, Numerik und Probabilistik (1 ed.). Springer Spektrum. https://doi.org/10.1007/978-3-642-41952-2
, & Multerer, Michael. (2022).
Algorithmische Mathematik: Graphen, Numerik und Probabilistik (1 ed.). Springer Spektrum. https://doi.org/10.1007/978-3-642-41952-2
, & Multerer, Michael. (2022).
Journal of Computational Physics, 471, 111616.
, & Multerer, Michael. (2022). Samplets: Construction and scattered data compression.
Journal of Computational Physics, 471, 111616.
, & Multerer, Michael. (2022). Samplets: Construction and scattered data compression.
Computer Methods in Applied Mechanics and Engineering, 391, 114552. https://doi.org/10.1016/j.cma.2021.114552
, Multerer, Michael, & von Rickenbach, Remo. (2022). Isogeometric shape optimization of periodic structures in three dimensions.
Computer Methods in Applied Mechanics and Engineering, 391, 114552. https://doi.org/10.1016/j.cma.2021.114552
, Multerer, Michael, & von Rickenbach, Remo. (2022). Isogeometric shape optimization of periodic structures in three dimensions.
Stochastics and Partial Differential Equations, 10(4), 1619–1650. https://doi.org/10.1007/s40072-021-00214-w
, & Schmidlin, Marc. (2022). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM.
Stochastics and Partial Differential Equations, 10(4), 1619–1650. https://doi.org/10.1007/s40072-021-00214-w
, & Schmidlin, Marc. (2022). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM.
Brügger, Rahel, SIAM Journal on Control and Optimization (SICON), 59(2), 931–953. https://doi.org/10.1137/19m1268628
, & Tausch, Johannes. (2021). On the numerical solution of a time-dependent shape optimization problem for the heat equation.
Brügger, Rahel, SIAM Journal on Control and Optimization (SICON), 59(2), 931–953. https://doi.org/10.1137/19m1268628
, & Tausch, Johannes. (2021). On the numerical solution of a time-dependent shape optimization problem for the heat equation.
Oberwolfach Reports, 18(3), Article 3. https://ems.press/journals/owr
. (2021). Multilevel approximation of Gaussian random fields (Patent No. 3).
Oberwolfach Reports, 18(3), Article 3. https://ems.press/journals/owr
. (2021). Multilevel approximation of Gaussian random fields (Patent No. 3).
Communications in Computational Physics, 29(4), 1152–1185. https://doi.org/10.4208/cicp.oa-2020-0060
, Jakeman, John D., & Zaspel, Peter. (2021). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration.
Communications in Computational Physics, 29(4), 1152–1185. https://doi.org/10.4208/cicp.oa-2020-0060
, Jakeman, John D., & Zaspel, Peter. (2021). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration.
SIAM Journal on Control and Optimization (SICON), 59(6), 4538–4562. https://doi.org/10.1137/20m1370604
, & Kalmykov, Ilja. (2021). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control.
SIAM Journal on Control and Optimization (SICON), 59(6), 4538–4562. https://doi.org/10.1137/20m1370604
, & Kalmykov, Ilja. (2021). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control.
Journal of Computational Physics, 428, 110056. https://doi.org/10.1016/j.jcp.2020.110056
, & Multerer, Michael D. (2021). A fast direct solver for nonlocal operators in wavelet coordinates.
Journal of Computational Physics, 428, 110056. https://doi.org/10.1016/j.jcp.2020.110056
, & Multerer, Michael D. (2021). A fast direct solver for nonlocal operators in wavelet coordinates.
Structural and Multidisciplinary Optimization, 64(4), 2225–2242. https://doi.org/10.1007/s00158-021-02979-z
, Tröndle, Dennis, & Zimmermann, Markus. (2021). Approximating solution spaces as a product of polygons.
Structural and Multidisciplinary Optimization, 64(4), 2225–2242. https://doi.org/10.1007/s00158-021-02979-z
, Tröndle, Dennis, & Zimmermann, Markus. (2021). Approximating solution spaces as a product of polygons.
Brügger, Rahel, Croce, Roberto, & ESAIM. Control, optimisation and calculus of variations, 26(56). https://doi.org/10.1051/cocv/2019030
. (2020). Solving a Bernoulli type free boundary problem with random diffusion.
Brügger, Rahel, Croce, Roberto, & ESAIM. Control, optimisation and calculus of variations, 26(56). https://doi.org/10.1051/cocv/2019030
. (2020). Solving a Bernoulli type free boundary problem with random diffusion.
Dambrine, Marc, & Multiscale Modeling and Simulation, 18(2), 1136–1152. https://doi.org/10.1137/19m1274638
. (2020). Shape optimization for composite materials and scaffolds.
Dambrine, Marc, & Multiscale Modeling and Simulation, 18(2), 1136–1152. https://doi.org/10.1137/19m1274638
. (2020). Shape optimization for composite materials and scaffolds.
Dölz, Jürgen, SoftwareX, 11, 100476. https://doi.org/10.1016/j.softx.2020.100476
, Kurz, Stefan, Multerer, Michael D., Schöps, Sebastian, & Wolf, Felix. (2020). Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation.
Dölz, Jürgen, SoftwareX, 11, 100476. https://doi.org/10.1016/j.softx.2020.100476
, Kurz, Stefan, Multerer, Michael D., Schöps, Sebastian, & Wolf, Felix. (2020). Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation.
Griebel, Michael, SIAM Journal on Numerical Analysis, 58(1), 684–705. https://doi.org/10.1137/18m1236265
, & Multerer, Michael D. (2020). Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains.
Griebel, Michael, SIAM Journal on Numerical Analysis, 58(1), 684–705. https://doi.org/10.1137/18m1236265
, & Multerer, Michael D. (2020). Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains.
Oberwolfach Reports, 17(5), Article 5. European Mathematical Society.
. (2020). A wavelet-based approach for the optimal control of nonlocal operator equations (Patent No. 5).
Oberwolfach Reports, 17(5), Article 5. European Mathematical Society.
. (2020). A wavelet-based approach for the optimal control of nonlocal operator equations (Patent No. 5).
Stochastics and Partial Differential Equations, 8(1), 54–81. https://doi.org/10.1007/s40072-019-00142-w
, & Schmidlin, Marc. (2020). Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion.
Stochastics and Partial Differential Equations, 8(1), 54–81. https://doi.org/10.1007/s40072-019-00142-w
, & Schmidlin, Marc. (2020). Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion.
Alassi, Sepideh, Schweizer, Tobias, Hawkins, Michael, Iliffe, Robert, Rosenthaler, Lukas, Mattmüller, Martin, & Newton virtually meets Euler and Bernoulli. https://doi.org/10411/eljh8x
. (2019, January 1).
Alassi, Sepideh, Schweizer, Tobias, Hawkins, Michael, Iliffe, Robert, Rosenthaler, Lukas, Mattmüller, Martin, & Newton virtually meets Euler and Bernoulli. https://doi.org/10411/eljh8x
. (2019, January 1).
Balazs, Peter, & Numerical Functional Analysis and Optimization, 40(1), 65–84. https://doi.org/10.1080/01630563.2018.1495232
. (2019). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing.
Balazs, Peter, & Numerical Functional Analysis and Optimization, 40(1), 65–84. https://doi.org/10.1080/01630563.2018.1495232
. (2019). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing.
Bugeanu, Monica, & International journal of quantum chemistry, 119(1), e25695. https://doi.org/10.1002/qua.25695
. (2019). Parametric representation of molecular surfaces.
Bugeanu, Monica, & International journal of quantum chemistry, 119(1), e25695. https://doi.org/10.1002/qua.25695
. (2019). Parametric representation of molecular surfaces.
Caubet, Fabien, Dambrine, Marc, & SIAM journal on applied mathematics, 79(1), 415–435. https://doi.org/10.1137/18m1186071
. (2019). A new method for the data completion problem and application to obstacle detection.
Caubet, Fabien, Dambrine, Marc, & SIAM journal on applied mathematics, 79(1), 415–435. https://doi.org/10.1137/18m1186071
. (2019). A new method for the data completion problem and application to obstacle detection.
Dambrine, Marc, ESAIM: Control, Optimisation and Calculus of Variations, 25, 84. https://doi.org/10.1051/cocv/2018010
, & Puig, Benedicte. (2019). Incorporating knowledge on the measurement noise in electrical impedance tomography.
Dambrine, Marc, ESAIM: Control, Optimisation and Calculus of Variations, 25, 84. https://doi.org/10.1051/cocv/2018010
, & Puig, Benedicte. (2019). Incorporating knowledge on the measurement noise in electrical impedance tomography.
Dölz, Jürgen, Gerig, Thomas, Lüthi, Marcel, Journal of Mathematical Imaging and Vision, 61(4), 443–457. https://doi.org/10.1007/s10851-018-0854-5
, & Vetter, Thomas. (2019). Error-Controlled Model Approximation for Gaussian Process Morphable Models.
Dölz, Jürgen, Gerig, Thomas, Lüthi, Marcel, Journal of Mathematical Imaging and Vision, 61(4), 443–457. https://doi.org/10.1007/s10851-018-0854-5
, & Vetter, Thomas. (2019). Error-Controlled Model Approximation for Gaussian Process Morphable Models.
Eppler, Karsten, Journal of Mathematical Study, 52(3), 227–243. https://doi.org/10.4208/jms.v52n3.19.01
, Schlenkrich, Sebastian, & Walther, Andrea. (2019). Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation.
Eppler, Karsten, Journal of Mathematical Study, 52(3), 227–243. https://doi.org/10.4208/jms.v52n3.19.01
, Schlenkrich, Sebastian, & Walther, Andrea. (2019). Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation.
Griebel, Michael, & IMA journal of numerical analysis, 39(4), 1652–1671. https://doi.org/10.1093/imanum/dry039
. (2019). Singular value decomposition versus sparse grids: Refined complexity estimates.
Griebel, Michael, & IMA journal of numerical analysis, 39(4), 1652–1671. https://doi.org/10.1093/imanum/dry039
. (2019). Singular value decomposition versus sparse grids: Refined complexity estimates.
Oberwolfach Reports, 16(33), Article 33. European Mathematical Society.
. (2019). About a fast isogeometric boundary element method (Patent No. 33).
Oberwolfach Reports, 16(33), Article 33. European Mathematical Society.
. (2019). About a fast isogeometric boundary element method (Patent No. 33).
SIAM journal on matrix analysis and applications, 40(1), 147–174. https://doi.org/10.1137/18m1189373
, Dölz, Jürgen, & Multerer, Michael D. (2019). On the Best Approximation of the Hierarchical Matrix Product.
SIAM journal on matrix analysis and applications, 40(1), 147–174. https://doi.org/10.1137/18m1189373
, Dölz, Jürgen, & Multerer, Michael D. (2019). On the Best Approximation of the Hierarchical Matrix Product.
Engineering analysis with boundary elements, 101, 243–251. https://doi.org/10.1016/j.enganabound.2018.11.005
, Ilić, Nikola, & Multerer, Michael D. (2019). Rapid computation of far-field statistics for random obstacle scattering.
Engineering analysis with boundary elements, 101, 243–251. https://doi.org/10.1016/j.enganabound.2018.11.005
, Ilić, Nikola, & Multerer, Michael D. (2019). Rapid computation of far-field statistics for random obstacle scattering.
Structural and multidisciplinary optimization, 60(2), 501–512. https://doi.org/10.1007/s00158-019-02221-x
, Tröndle, Dennis, & Zimmermann, Markus. (2019). A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables.
Structural and multidisciplinary optimization, 60(2), 501–512. https://doi.org/10.1007/s00158-019-02221-x
, Tröndle, Dennis, & Zimmermann, Markus. (2019). A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables.
Journal of scientific computing, 78(2), 1272–1290. https://doi.org/10.1007/s10915-018-0807-6
, & Zaspel, Peter. (2019). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems.
Journal of scientific computing, 78(2), 1272–1290. https://doi.org/10.1007/s10915-018-0807-6
, & Zaspel, Peter. (2019). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems.
Zaspel, Peter, Huang, Bing, Journal of Chemical Theory and Computation, 15(3), 1546–1559. https://doi.org/10.1021/acs.jctc.8b00832
, & von Lilienfeld, Anatole O. (2019). Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited.
Zaspel, Peter, Huang, Bing, Journal of Chemical Theory and Computation, 15(3), 1546–1559. https://doi.org/10.1021/acs.jctc.8b00832
, & von Lilienfeld, Anatole O. (2019). Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited.
Advanced Finite Element Methods with Applications (pp. 143–164). Springer Nature. https://doi.org/10.1007/978-3-030-14244-5_8
, & Moor, Manuela. (2019). Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation. In Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.),
Advanced Finite Element Methods with Applications (pp. 143–164). Springer Nature. https://doi.org/10.1007/978-3-030-14244-5_8
, & Moor, Manuela. (2019). Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation. In Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.),
Alassi, Sepideh, Schweizer, Tobias, Mattmüller, Martin, Rosenthaler, Lukas, & A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach. https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/
. (2018, January 1).
Alassi, Sepideh, Schweizer, Tobias, Mattmüller, Martin, Rosenthaler, Lukas, & A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach. https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/
. (2018, January 1).
Brügger, Rahel, Croce, Roberto, & Mathematical Methods in the Applied Sciences, 41(10), 3653–3671. https://doi.org/10.1002/mma.4853
. (2018). Solving a free boundary problem with non-constant coefficients.
Brügger, Rahel, Croce, Roberto, & Mathematical Methods in the Applied Sciences, 41(10), 3653–3671. https://doi.org/10.1002/mma.4853
. (2018). Solving a free boundary problem with non-constant coefficients.
Bürli, Christine, Mathematical biosciences : an international journal, 303, 115–125. https://doi.org/10.1016/j.mbs.2018.06.008
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Analysis of interventions against the liver fluke, Opisthorchis viverrini.
Bürli, Christine, Mathematical biosciences : an international journal, 303, 115–125. https://doi.org/10.1016/j.mbs.2018.06.008
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Analysis of interventions against the liver fluke, Opisthorchis viverrini.
Bürli, Christine, Journal of Theoretical Biology, 439, 181–194. https://doi.org/10.1016/j.jtbi.2017.11.020
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini.
Bürli, Christine, Journal of Theoretical Biology, 439, 181–194. https://doi.org/10.1016/j.jtbi.2017.11.020
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini.
Dahlke, Stephan, Numerical Functional Analysis and Optimization, 39(2), 208–232. https://doi.org/10.1080/01630563.2017.1359623
, Utzinger, Manuela, & Weimar, Markus. (2018). Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments.
Dahlke, Stephan, Numerical Functional Analysis and Optimization, 39(2), 208–232. https://doi.org/10.1080/01630563.2017.1359623
, Utzinger, Manuela, & Weimar, Markus. (2018). Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments.
Dölz, Jürgen, & Journal of Computational Physics, 371, 506–527. https://doi.org/10.1016/j.jcp.2018.05.040
. (2018). Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains.
Dölz, Jürgen, & Journal of Computational Physics, 371, 506–527. https://doi.org/10.1016/j.jcp.2018.05.040
. (2018). Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 330, 83–101. https://doi.org/10.1016/j.cma.2017.10.020
, Kurz, Stefan, Schöps, Sebastian, & Wolf, Felix. (2018). A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 330, 83–101. https://doi.org/10.1016/j.cma.2017.10.020
, Kurz, Stefan, Schöps, Sebastian, & Wolf, Felix. (2018). A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems.
Haji-Ali, Abdul-Lateef, Journal of complexity, 47, 62–85. https://doi.org/10.1016/j.jco.2018.02.003
, Peters, Michael, & Siebenmorgen, Markus. (2018). Novel results for the anisotropic sparse grid quadrature.
Haji-Ali, Abdul-Lateef, Journal of complexity, 47, 62–85. https://doi.org/10.1016/j.jco.2018.02.003
, Peters, Michael, & Siebenmorgen, Markus. (2018). Novel results for the anisotropic sparse grid quadrature.
Oberwolfach Reports, 15(3), Article 3. https://doi.org/10.4171/owr/2018/38
. (2018). Shape optimization under uncertainty (Patent No. 3).
Oberwolfach Reports, 15(3), Article 3. https://doi.org/10.4171/owr/2018/38
. (2018). Shape optimization under uncertainty (Patent No. 3).
Applied Numerical Mathematics, 125, 159–171. https://doi.org/10.1016/j.apnum.2017.11.002
, & Peters, Michael D. (2018). The second order perturbation approach for elliptic partial differential equations on random domains.
Applied Numerical Mathematics, 125, 159–171. https://doi.org/10.1016/j.apnum.2017.11.002
, & Peters, Michael D. (2018). The second order perturbation approach for elliptic partial differential equations on random domains.
Numerische Mathematik, 140(1), 239–264. https://doi.org/10.1007/s00211-018-0963-5
, & Tausch, Johannes. (2018). A fast sparse grid based space-time boundary element method for the nonstationary heat equation.
Numerische Mathematik, 140(1), 239–264. https://doi.org/10.1007/s00211-018-0963-5
, & Tausch, Johannes. (2018). A fast sparse grid based space-time boundary element method for the nonstationary heat equation.
Journal of Computational Mathematics, 36(1), 90–109. https://doi.org/10.4208/jcm.1610-m2016-0496
, & Utzinger, Manuela. (2018). On adaptive wavelet boundary element methods.
Journal of Computational Mathematics, 36(1), 90–109. https://doi.org/10.4208/jcm.1610-m2016-0496
, & Utzinger, Manuela. (2018). On adaptive wavelet boundary element methods.
Mathematical News / Mathematische Nachrichten, 291(1), 55–85. https://doi.org/10.1002/mana.201600024
, Wendland, Wolfgang L., & Zorii, Natalia. (2018). Minimal energy problems for strongly singular Riesz kernels.
Mathematical News / Mathematische Nachrichten, 291(1), 55–85. https://doi.org/10.1002/mana.201600024
, Wendland, Wolfgang L., & Zorii, Natalia. (2018). Minimal energy problems for strongly singular Riesz kernels.
Vogt, Marc Eric, Duddeck, Fabian, Proceedings in Applied Mathematics and Mechanics, 18(1), e201800103 (2 pp.). https://doi.org/10.1002/pamm.201800103
, Stutz, Florian, Wahle, Martin, & Zimmermann, Markus. (2018). Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm.
Vogt, Marc Eric, Duddeck, Fabian, Proceedings in Applied Mathematics and Mechanics, 18(1), e201800103 (2 pp.). https://doi.org/10.1002/pamm.201800103
, Stutz, Florian, Wahle, Martin, & Zimmermann, Markus. (2018). Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm.
Dambrine, Marc, Greff, Isabelle, Journal of Computational Physics, 330, 943–959. https://doi.org/10.1016/j.jcp.2016.10.044
, & Puig, Benedicte. (2017). Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness.
Dambrine, Marc, Greff, Isabelle, Journal of Computational Physics, 330, 943–959. https://doi.org/10.1016/j.jcp.2016.10.044
, & Puig, Benedicte. (2017). Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness.
Dambrine, Marc, International Journal for Uncertainty Quantification, 7(4), 335–353. https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550
, Peters, Michael, & Puig, Benedicte. (2017). On Bernoulli’s free boundary problem with a random boundary.
Dambrine, Marc, International Journal for Uncertainty Quantification, 7(4), 335–353. https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550
, Peters, Michael, & Puig, Benedicte. (2017). On Bernoulli’s free boundary problem with a random boundary.
Dölz, Jürgen, SIAM Journal on Scientific Computing, 39(4), B618–B639. https://doi.org/10.1137/16m1074813
, & Peters, Michael. (2017). H-matrix based second moment analysis for rough random fields and finite element discretizations.
Dölz, Jürgen, SIAM Journal on Scientific Computing, 39(4), B618–B639. https://doi.org/10.1137/16m1074813
, & Peters, Michael. (2017). H-matrix based second moment analysis for rough random fields and finite element discretizations.
Dölz, Jürgen, Numerische Mathematik, 135(4), 1045–1071. https://doi.org/10.1007/s00211-016-0825-y
, & Schwab, Christoph. (2017). Covariance regularity and H-matrix approximation for rough random fields.
Dölz, Jürgen, Numerische Mathematik, 135(4), 1045–1071. https://doi.org/10.1007/s00211-016-0825-y
, & Schwab, Christoph. (2017). Covariance regularity and H-matrix approximation for rough random fields.
Oberwolfach Reports, 2017(4), Article 4. European Mathematical Society.
. (2017). On shape optimization with parabolic state equation (Patent No. 4).
Oberwolfach Reports, 2017(4), Article 4. European Mathematical Society.
. (2017). On shape optimization with parabolic state equation (Patent No. 4).
Oberwolfach Reports, 2017(17), Article 17. https://doi.org/10.4171/owr/2017/17
. (2017). Novel results for the anisotropic sparse grid quadrature (Patent No. 17).
Oberwolfach Reports, 2017(17), Article 17. https://doi.org/10.4171/owr/2017/17
. (2017). Novel results for the anisotropic sparse grid quadrature (Patent No. 17).
SIAM Journal on Numerical Analysis, 55(2), 1002–1023. https://doi.org/10.1137/16m1085760
, Peters, Michael, & Schmidlin, Marc. (2017). Uncertainty quantification for PDEs with anisotropic random diffusion.
SIAM Journal on Numerical Analysis, 55(2), 1002–1023. https://doi.org/10.1137/16m1085760
, Peters, Michael, & Schmidlin, Marc. (2017). Uncertainty quantification for PDEs with anisotropic random diffusion.
Mathematics of Computation, 86, 771–797. https://doi.org/10.1090/mcom/3107
, Peters, Michael, & Siebenmorgen, Markus. (2017). On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion.
Mathematics of Computation, 86, 771–797. https://doi.org/10.1090/mcom/3107
, Peters, Michael, & Siebenmorgen, Markus. (2017). On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion.
Schweizer, Tobias, Alassi, Sepideh, Mattmüller, Martin, Rosenthaler, Lukas, & Integrating historical scientific texts into the Bernoulli-Euler Online platform. https://dh2017.adho.org/abstracts/DH2017-abstracts.pdf
. (2017, January 1).
Schweizer, Tobias, Alassi, Sepideh, Mattmüller, Martin, Rosenthaler, Lukas, & Integrating historical scientific texts into the Bernoulli-Euler Online platform. https://dh2017.adho.org/abstracts/DH2017-abstracts.pdf
. (2017, January 1).
Topological Optimization and Optimal Transport In the Applied Sciences (pp. 20–39). De Gruyter. https://doi.org/10.1515/9783110430417-002
, & Peters, Michael. (2017). Solution of free boundary problems in the presence of geometric uncertainties. In Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.),
Topological Optimization and Optimal Transport In the Applied Sciences (pp. 20–39). De Gruyter. https://doi.org/10.1515/9783110430417-002
, & Peters, Michael. (2017). Solution of free boundary problems in the presence of geometric uncertainties. In Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.),
Dambrine, M., Greff, I., SIAM journal on numerical analysis, 54(2), 921–941. https://doi.org/10.1137/140998652
, & Puig, B. (2016). Numerical solution of the Poisson equation on domains with a thin layer of random thickness.
Dambrine, M., Greff, I., SIAM journal on numerical analysis, 54(2), 921–941. https://doi.org/10.1137/140998652
, & Puig, B. (2016). Numerical solution of the Poisson equation on domains with a thin layer of random thickness.
Dölz, Jürgen, International Journal for Numerical Methods in Engineering, 108(13), 1705–1728. https://doi.org/10.1002/nme.5274
, & Peters, Michael. (2016). An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces.
Dölz, Jürgen, International Journal for Numerical Methods in Engineering, 108(13), 1705–1728. https://doi.org/10.1002/nme.5274
, & Peters, Michael. (2016). An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces.
Graff, Lavinia, Structural and Multidisciplinary Optimization, 54(4), 811–829. https://doi.org/10.1007/s00158-016-1454-x
, & Zimmermann, Markus. (2016). On the computation of solution spaces in high dimensions.
Graff, Lavinia, Structural and Multidisciplinary Optimization, 54(4), 811–829. https://doi.org/10.1007/s00158-016-1454-x
, & Zimmermann, Markus. (2016). On the computation of solution spaces in high dimensions.
Oberwolfach Reports, 13(1), Article 1. European Mathematical Society.
. (2016). On fast boundary element methods for parametric surfaces (Patent No. 1).
Oberwolfach Reports, 13(1), Article 1. European Mathematical Society.
. (2016). On fast boundary element methods for parametric surfaces (Patent No. 1).
Computational optimization and applications, 63(1), 237–271. https://doi.org/10.1007/s10589-015-9764-2
, & Loos, Florian. (2016). Optimization of current carrying multicables.
Computational optimization and applications, 63(1), 237–271. https://doi.org/10.1007/s10589-015-9764-2
, & Loos, Florian. (2016). Optimization of current carrying multicables.
SIAM/ASA Journal on Uncertainty Quantification, 4(1), 520–551. https://doi.org/10.1137/130931953
, Peters, Michael, & Siebenmorgen, Markus. (2016). Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient.
SIAM/ASA Journal on Uncertainty Quantification, 4(1), 520–551. https://doi.org/10.1137/130931953
, Peters, Michael, & Siebenmorgen, Markus. (2016). Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient.
Computational Methods in Applied Mathematics, 16(3), 447–458. https://doi.org/10.1515/cmam-2016-0013
, & Schneider, Reinhold. (2016). A Note on Multilevel Based Error Estimation.
Computational Methods in Applied Mathematics, 16(3), 447–458. https://doi.org/10.1515/cmam-2016-0013
, & Schneider, Reinhold. (2016). A Note on Multilevel Based Error Estimation.
Numerical Methods for Partial Differential Equations, 32(6), 1535–1552. https://doi.org/10.1002/num.22060
, Wendland, Wolfgang L., & Zorii, Natalia. (2016). Rapid Solution of Minimal Riesz Energy Problems.
Numerical Methods for Partial Differential Equations, 32(6), 1535–1552. https://doi.org/10.1002/num.22060
, Wendland, Wolfgang L., & Zorii, Natalia. (2016). Rapid Solution of Minimal Riesz Energy Problems.
Numerische Mathematik, 134(4), 823–856. https://doi.org/10.1007/s00211-016-0791-4
, Peters, M., & Siebenmorgen, M. (2016). Analysis of the domain mapping method for elliptic diffusion problems on random domains.
Numerische Mathematik, 134(4), 823–856. https://doi.org/10.1007/s00211-016-0791-4
, Peters, M., & Siebenmorgen, M. (2016). Analysis of the domain mapping method for elliptic diffusion problems on random domains.
Sparse grids and applications - Stuttgart 2014 (pp. 51–77). Springer International Publishing. https://doi.org/10.1007/978-3-319-28262-6_3
, & Peters, Michael. (2016). Combination technique based second moment analysis for elliptic PDEs on random domains. In Garcke, Jochen; Pflüger, Dirk (ed.),
Sparse grids and applications - Stuttgart 2014 (pp. 51–77). Springer International Publishing. https://doi.org/10.1007/978-3-319-28262-6_3
, & Peters, Michael. (2016). Combination technique based second moment analysis for elliptic PDEs on random domains. In Garcke, Jochen; Pflüger, Dirk (ed.),
Bugeanu, Monica, Di Remigio, Roberto, Mozgawa, Krzysztof, Reine, Simen Sommerfelt, Physical Chemistry, Chemical Physics, 17(47), 31566–31581. https://doi.org/10.1039/c5cp03410h
, & Frediani, Luca. (2015). Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements.
Bugeanu, Monica, Di Remigio, Roberto, Mozgawa, Krzysztof, Reine, Simen Sommerfelt, Physical Chemistry, Chemical Physics, 17(47), 31566–31581. https://doi.org/10.1039/c5cp03410h
, & Frediani, Luca. (2015). Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements.
Bugeanu, Monica, & Interfaces and free boundaries, 17(4), 517–537. https://doi.org/10.4171/ifb/352
. (2015). A second order convergent trial method for a free boundary problem in three dimensions.
Bugeanu, Monica, & Interfaces and free boundaries, 17(4), 517–537. https://doi.org/10.4171/ifb/352
. (2015). A second order convergent trial method for a free boundary problem in three dimensions.
Dambrine, Marc, Dapogny, Charles, & SIAM journal on control and optimization, 53(5), 3081–3103. https://doi.org/10.1137/15m1017041
. (2015). Shape optimization for quadratic functionals and states with random right-hand sides.
Dambrine, Marc, Dapogny, Charles, & SIAM journal on control and optimization, 53(5), 3081–3103. https://doi.org/10.1137/15m1017041
. (2015). Shape optimization for quadratic functionals and states with random right-hand sides.
Dambrine, Marc, Mathematical modelling and numerical analysis, 49(5), 1285–1302. https://doi.org/10.1051/m2an/2015012
, & Puig, Benedicte. (2015). Computing quantities of interest for random domains with second order shape sensitivity analysis.
Dambrine, Marc, Mathematical modelling and numerical analysis, 49(5), 1285–1302. https://doi.org/10.1051/m2an/2015012
, & Puig, Benedicte. (2015). Computing quantities of interest for random domains with second order shape sensitivity analysis.
Doelz, J., Journal of scientific computing, 65(1), 387–410. https://doi.org/10.1007/s10915-014-9965-3
, & Peters, M. (2015). H-matrix accelerated second moment analysis for potentials with rough correlation.
Doelz, J., Journal of scientific computing, 65(1), 387–410. https://doi.org/10.1007/s10915-014-9965-3
, & Peters, M. (2015). H-matrix accelerated second moment analysis for potentials with rough correlation.
Oberwolfach Reports, 2015(2), Article 2. European Mathematical Society.
. (2015). Sparse BEM for the heat equation (Patent No. 2).
Oberwolfach Reports, 2015(2), Article 2. European Mathematical Society.
. (2015). Sparse BEM for the heat equation (Patent No. 2).
Mathematical methods in the applied sciences, 38(13), 2850–2863. https://doi.org/10.1002/mma.3268
, & Mitrou, Giannoula. (2015). Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data.
Mathematical methods in the applied sciences, 38(13), 2850–2863. https://doi.org/10.1002/mma.3268
, & Mitrou, Giannoula. (2015). Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data.
Numerical linear algebra with applications, 22(4), 596–617. https://doi.org/10.1002/nla.1976
, Peters, Michael, & Siebenmorgen, Markus. (2015). Efficient approximation of random fields for numerical applications.
Numerical linear algebra with applications, 22(4), 596–617. https://doi.org/10.1002/nla.1976
, Peters, Michael, & Siebenmorgen, Markus. (2015). Efficient approximation of random fields for numerical applications.
Alm, Daniel, Journal of Computational and Applied Mathematics, 267, 131–159. https://doi.org/10.1016/j.cam.2014.01.030
, & Krämer, Ulf. (2014). The H2-wavelet method.
Alm, Daniel, Journal of Computational and Applied Mathematics, 267, 131–159. https://doi.org/10.1016/j.cam.2014.01.030
, & Krämer, Ulf. (2014). The H2-wavelet method.
Fender, Johannes, Graff, L., Journal of Mechanical Design, 136(4), 41007. https://doi.org/10.1115/1.4026647
, & Zimmermann, Markus. (2014). Identifying key parameters for design improvement in high-dimensional systems with uncertainty.
Fender, Johannes, Graff, L., Journal of Mechanical Design, 136(4), 41007. https://doi.org/10.1115/1.4026647
, & Zimmermann, Markus. (2014). Identifying key parameters for design improvement in high-dimensional systems with uncertainty.
Griebel, Michael, & IMA Journal of Numerical Analysis, 34(1), 28–54. https://doi.org/10.1093/imanum/drs047
. (2014). Approximation of bi-variate functions : singular value decomposition versus sparse grids.
Griebel, Michael, & IMA Journal of Numerical Analysis, 34(1), 28–54. https://doi.org/10.1093/imanum/drs047
. (2014). Approximation of bi-variate functions : singular value decomposition versus sparse grids.
Journal of mathematical analysis and applications, 420(1), 177–194. https://doi.org/10.1016/j.jmaa.2014.05.059
, & Mitrou, Giannoula. (2014). Improved trial methods for a class of generalized Bernoulli problems.
Journal of mathematical analysis and applications, 420(1), 177–194. https://doi.org/10.1016/j.jmaa.2014.05.059
, & Mitrou, Giannoula. (2014). Improved trial methods for a class of generalized Bernoulli problems.
Mathematische Nachrichten, 287(1), 48–69. https://doi.org/10.1002/mana.201200053
, Wendland, Wolfgang L., & Zorii, Natalia. (2014). Riesz minimal energy problems on Ck−1,1-manifolds.
Mathematische Nachrichten, 287(1), 48–69. https://doi.org/10.1002/mana.201200053
, Wendland, Wolfgang L., & Zorii, Natalia. (2014). Riesz minimal energy problems on Ck−1,1-manifolds.
Leugering, G., Benner, P., Engell, S., Griewank, A., International series of numerical mathematics (Vol. 165). Birkhäuser. https://doi.org/10.1007/978-3-319-05083-6
, Hinze, M., Rannacher, R., & Ulbrich, S. (2014). Trends in PDE constrained optimization. In
Leugering, G., Benner, P., Engell, S., Griewank, A., International series of numerical mathematics (Vol. 165). Birkhäuser. https://doi.org/10.1007/978-3-319-05083-6
, Hinze, M., Rannacher, R., & Ulbrich, S. (2014). Trends in PDE constrained optimization. In
Griebel, Michael, & Sparse Grids and Applications - Munich 2012 (Lecture Notes in Computational Science and Engineering, p. S. 55–74). Springer. https://doi.org/10.1007/978-3-319-04537-5_3
. (2014). On the convergence of the combination technique. In Garcke, Jochen; Pflüger, Dirk (ed.),
Griebel, Michael, & Sparse Grids and Applications - Munich 2012 (Lecture Notes in Computational Science and Engineering, p. S. 55–74). Springer. https://doi.org/10.1007/978-3-319-04537-5_3
. (2014). On the convergence of the combination technique. In Garcke, Jochen; Pflüger, Dirk (ed.),
Singular Phenomena and Scaling in Mathematical Models (p. S. 361–382). Springer. https://doi.org/10.1007/978-3-319-00786-1_16
. (2014). Second moment analysis for Robin boundary value problems on random domains. In
Singular Phenomena and Scaling in Mathematical Models (p. S. 361–382). Springer. https://doi.org/10.1007/978-3-319-00786-1_16
. (2014). Second moment analysis for Robin boundary value problems on random domains. In