Publications
204 found
Show per page
Journal of Computational and Applied Mathematics, 465, 116545. https://doi.org/10.1016/j.cam.2025.116545
, Kempf, Rüdiger, & Multerer, Michael. (2025). Construction of quasi-localized dual bases in reproducing kernel Hilbert spaces [Journal-article].
Journal of Computational and Applied Mathematics, 465, 116545. https://doi.org/10.1016/j.cam.2025.116545
, Kempf, Rüdiger, & Multerer, Michael. (2025). Construction of quasi-localized dual bases in reproducing kernel Hilbert spaces [Journal-article].
Journal of Computational Physics, 532. https://doi.org/10.1016/j.jcp.2025.113956
, Multerer, Michael, & Quizi, Jacopo. (2025). The dimension weighted fast multipole method for scattered data approximation.
Journal of Computational Physics, 532. https://doi.org/10.1016/j.jcp.2025.113956
, Multerer, Michael, & Quizi, Jacopo. (2025). The dimension weighted fast multipole method for scattered data approximation.
Preprints Fachbereich Mathematik. University of Basel.
, & Karnaev, Viacheslav. (2025). Optimization of the cut configuration for skin grafts. In Preprints Mathematics Faculty of Science (Ed.),
Preprints Fachbereich Mathematik. University of Basel.
, & Karnaev, Viacheslav. (2025). Optimization of the cut configuration for skin grafts. In Preprints Mathematics Faculty of Science (Ed.),
Dambrine, Marc, Gargantini, Giulio, Journal of Computational Physics, 527, 113794. https://doi.org/10.1016/j.jcp.2025.113794
, & Karnaev, Viacheslav. (2025). Shape optimization of a thermoelastic body under thermal uncertainties [Journal-article].
Dambrine, Marc, Gargantini, Giulio, Journal of Computational Physics, 527, 113794. https://doi.org/10.1016/j.jcp.2025.113794
, & Karnaev, Viacheslav. (2025). Shape optimization of a thermoelastic body under thermal uncertainties [Journal-article].
Dölz, Jürgen, Engineering with Computers, 40(6), 3651–3661. https://doi.org/10.1007/s00366-024-02013-y
, & Multerer, Michael. (2024). Solving acoustic scattering problems by the isogeometric boundary element method [Journal-article].
Dölz, Jürgen, Engineering with Computers, 40(6), 3651–3661. https://doi.org/10.1007/s00366-024-02013-y
, & Multerer, Michael. (2024). Solving acoustic scattering problems by the isogeometric boundary element method [Journal-article].
Advances in Computational Mathematics, 50(5). https://doi.org/10.1007/s10444-024-10187-8
, Herrmann, Lukas, Kirchner, Kristin, & Schwab, Christoph. (2024). Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction [Journal-article].
Advances in Computational Mathematics, 50(5). https://doi.org/10.1007/s10444-024-10187-8
, Herrmann, Lukas, Kirchner, Kristin, & Schwab, Christoph. (2024). Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction [Journal-article].
Numerische Mathematik, 156(3), 853–899. https://doi.org/10.1007/s00211-024-01403-0
, & von Rickenbach, Remo. (2024). Compression of boundary integral operators discretized by anisotropic wavelet bases [Journal-article].
Numerische Mathematik, 156(3), 853–899. https://doi.org/10.1007/s00211-024-01403-0
, & von Rickenbach, Remo. (2024). Compression of boundary integral operators discretized by anisotropic wavelet bases [Journal-article].
Numerische Mathematik, 156(3), 1085–1114. https://doi.org/10.1007/s00211-024-01409-8
, Multerer, M., Schenk, O., & Schwab, Ch. (2024). Multiresolution kernel matrix algebra [Journal-article].
Numerische Mathematik, 156(3), 1085–1114. https://doi.org/10.1007/s00211-024-01409-8
, Multerer, M., Schenk, O., & Schwab, Ch. (2024). Multiresolution kernel matrix algebra [Journal-article].
Mathematical Models and Methods in Applied Sciences, 34(5), 881–917. https://doi.org/10.1142/S0218202524500179
, Schmidlin, Marc, & Schwab, Christoph. (2024). The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs [Journal-article].
Mathematical Models and Methods in Applied Sciences, 34(5), 881–917. https://doi.org/10.1142/S0218202524500179
, Schmidlin, Marc, & Schwab, Christoph. (2024). The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs [Journal-article].
Gajendran, E., Harbrecht, H., & von Rickenbach, R. (2024). Hierarchical tensor approximation of high-dimensional functions of isotropic and anisotropic Sobolev smoothness [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2024). Universität Basel.
Gajendran, E., Harbrecht, H., & von Rickenbach, R. (2024). Hierarchical tensor approximation of high-dimensional functions of isotropic and anisotropic Sobolev smoothness [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2024). Universität Basel.
Kamber, Lars, Bürli, Christine, PLOS Neglected Tropical Diseases, 18(2), e0011362. https://doi.org/10.1371/journal.pntd.0011362
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2024). Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence [Journal-article].
Kamber, Lars, Bürli, Christine, PLOS Neglected Tropical Diseases, 18(2), e0011362. https://doi.org/10.1371/journal.pntd.0011362
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2024). Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence [Journal-article].
Hakula, Harri, Numerische Mathematik, 156(1), 273–317. https://doi.org/10.1007/s00211-023-01392-6
, Kaarnioja, Vesa, Kuo, Frances Y., & Sloan, Ian H. (2024). Uncertainty quantification for random domains using periodic random variables [Journal-article].
Hakula, Harri, Numerische Mathematik, 156(1), 273–317. https://doi.org/10.1007/s00211-023-01392-6
, Kaarnioja, Vesa, Kuo, Frances Y., & Sloan, Ian H. (2024). Uncertainty quantification for random domains using periodic random variables [Journal-article].
Felber, Luzia N., SIAM Journal on Imaging Sciences, 17(1), 61–90. https://doi.org/10.1137/23m1565346
, & Schmidlin, Marc. (2024). Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems [Journal-article].
Felber, Luzia N., SIAM Journal on Imaging Sciences, 17(1), 61–90. https://doi.org/10.1137/23m1565346
, & Schmidlin, Marc. (2024). Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems [Journal-article].
Baroli, Davide, IEEE Transactions on Signal Processing, 72, 1813–1823. https://doi.org/10.1109/TSP.2024.3382486
, & Multerer, Michael. (2024). Samplet Basis Pursuit: Multiresolution Scattered Data Approximation With Sparsity Constraints [Journal-article].
Baroli, Davide, IEEE Transactions on Signal Processing, 72, 1813–1823. https://doi.org/10.1109/TSP.2024.3382486
, & Multerer, Michael. (2024). Samplet Basis Pursuit: Multiresolution Scattered Data Approximation With Sparsity Constraints [Journal-article].
Harbrecht, H., & Kalmykov, I. (2024). Sparse grid approximation of the Riccati equation [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2024). Universität Basel.
Harbrecht, H., & Kalmykov, I. (2024). Sparse grid approximation of the Riccati equation [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2024). Universität Basel.
SIAM/ASA Journal on Uncertainty Quantification, 12(2), 503–523. https://doi.org/10.1137/23m1578589
, Karnaev, Viacheslav, & Schmidlin, Marc. (2024). Quantifying Domain Uncertainty in Linear Elasticity [Journal-article].
SIAM/ASA Journal on Uncertainty Quantification, 12(2), 503–523. https://doi.org/10.1137/23m1578589
, Karnaev, Viacheslav, & Schmidlin, Marc. (2024). Quantifying Domain Uncertainty in Linear Elasticity [Journal-article].
Multiscale, Nonlinear and Adaptive Approximation II (pp. 299–326). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75802-7_14
, & Multerer, Michael. (2024). Samplets: Wavelet Concepts for Scattered Data. In Ron DeVore and Angea Kunoth, (ed.),
Multiscale, Nonlinear and Adaptive Approximation II (pp. 299–326). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75802-7_14
, & Multerer, Michael. (2024). Samplets: Wavelet Concepts for Scattered Data. In Ron DeVore and Angea Kunoth, (ed.),
Ben Bader, Seif, SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1329–1356. https://doi.org/10.1137/21m1418320
, Krause, Rolf, Multerer, Michael D., Quaglino, Alessio, & Schmidlin, Marc. (2023). Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology [Journal-article].
Ben Bader, Seif, SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1329–1356. https://doi.org/10.1137/21m1418320
, Krause, Rolf, Multerer, Michael D., Quaglino, Alessio, & Schmidlin, Marc. (2023). Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology [Journal-article].
Dambrine, M., Gargantini, G., Harbrecht, H., & Maynadier, J. (2023). Shape optimization under constraints on the probability
of a quadratic functional to exceed a given treshold [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Dambrine, M., Gargantini, G., Harbrecht, H., & Maynadier, J. (2023). Shape optimization under constraints on the probability
of a quadratic functional to exceed a given treshold [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Harbrecht, H., Karnaev, V., & Schmidlin, M. (2023). Quantifying domain uncertainty in linear elasticity [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Harbrecht, H., Karnaev, V., & Schmidlin, M. (2023). Quantifying domain uncertainty in linear elasticity [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Felber, L. N., Harbrecht, H., & Schmidlin, M. (2023). Identification of sparsely representable diffusion parameters in elliptic problems [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Felber, L. N., Harbrecht, H., & Schmidlin, M. (2023). Identification of sparsely representable diffusion parameters in elliptic problems [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Harbrecht, H., & von Rickenbach, R. (2023). Compression of boundary integral operators discretized by anisotropic wavelet bases [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Harbrecht, H., & von Rickenbach, R. (2023). Compression of boundary integral operators discretized by anisotropic wavelet bases [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2023). Universität Basel.
Dambrine, Marc, Computational Methods in Applied Mathematics, 23(2), 333–352. https://doi.org/10.1515/cmam-2022-0038
, & Puig, Benedicte. (2023). Bernoulli free boundary problems under uncertainty: the convex case.
Dambrine, Marc, Computational Methods in Applied Mathematics, 23(2), 333–352. https://doi.org/10.1515/cmam-2022-0038
, & Puig, Benedicte. (2023). Bernoulli free boundary problems under uncertainty: the convex case.
Fallahpour, Merlin, & Optimization and Engineering, 24(3), 2115–2143. https://doi.org/10.1007/s11081-022-09768-7
. (2023). Shape optimization for composite materials in linear elasticity.
Fallahpour, Merlin, & Optimization and Engineering, 24(3), 2115–2143. https://doi.org/10.1007/s11081-022-09768-7
. (2023). Shape optimization for composite materials in linear elasticity.
Griebel, Michael, & Foundations of Computational Mathematics, 23(1), 219–240. https://doi.org/10.1007/s10208-021-09544-6
. (2023). Analysis of tensor approximation schemes for continuous functions.
Griebel, Michael, & Foundations of Computational Mathematics, 23(1), 219–240. https://doi.org/10.1007/s10208-021-09544-6
. (2023). Analysis of tensor approximation schemes for continuous functions.
Griebel, Michael, Mathematics of Computation, 92(342), 1729–1746. https://doi.org/10.1090/mcom/3813
, & Schneider, Reinhold. (2023). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness.
Griebel, Michael, Mathematics of Computation, 92(342), 1729–1746. https://doi.org/10.1090/mcom/3813
, & Schneider, Reinhold. (2023). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness.
Griebel, M., Harbrecht, H., & Schneider, R. (2022). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2022). Universität Basel.
Griebel, M., Harbrecht, H., & Schneider, R. (2022). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2022). Universität Basel.
Dambrine, M., Preprints Fachbereich Mathematik (Vol. 2022). Universität Basel.
, & Puig, B. (2022). Bernoulli free boundary problems under uncertainty: the convex case [Working Paper]. In
Dambrine, M., Preprints Fachbereich Mathematik (Vol. 2022). Universität Basel.
, & Puig, B. (2022). Bernoulli free boundary problems under uncertainty: the convex case [Working Paper]. In
Harbrecht, H., & Multerer, M. (2022). Samplets: Construction and scattered data compression [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2022). Universität Basel.
Harbrecht, H., & Multerer, M. (2022). Samplets: Construction and scattered data compression [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2022). Universität Basel.
Brügger, Rahel, & SIAM Journal on Control and Optimization (SICON), 60(1), 310–329. https://doi.org/10.1137/21m1411007
. (2022). On the reformulation of the Classical Stefan problem as a shape optimization problem.
Brügger, Rahel, & SIAM Journal on Control and Optimization (SICON), 60(1), 310–329. https://doi.org/10.1137/21m1411007
. (2022). On the reformulation of the Classical Stefan problem as a shape optimization problem.
Brügger, Rahel, Integral Equations and Operator Theory, 94(2), 10. https://doi.org/10.1007/s00020-022-02691-7
, & Tausch, Johannes. (2022). Boundary integral operators for the heat equation.
Brügger, Rahel, Integral Equations and Operator Theory, 94(2), 10. https://doi.org/10.1007/s00020-022-02691-7
, & Tausch, Johannes. (2022). Boundary integral operators for the heat equation.
Dahlke, Stephan, SIAM Journal on Scientific Computing, 44(4), A2691–A2708.
, & Surowiec, Thomas M. (2022). A wavelet-based approach for the optimal control of non-local operator equations.
Dahlke, Stephan, SIAM Journal on Scientific Computing, 44(4), A2691–A2708.
, & Surowiec, Thomas M. (2022). A wavelet-based approach for the optimal control of non-local operator equations.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 388, 114242. https://doi.org/10.1016/j.cma.2021.114242
, Jerez-Hanckes, Carlos, & Multerer, Michael. (2022). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 388, 114242. https://doi.org/10.1016/j.cma.2021.114242
, Jerez-Hanckes, Carlos, & Multerer, Michael. (2022). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering.
Algorithmische Mathematik: Graphen, Numerik und Probabilistik (1 ed.). Springer Spektrum. https://doi.org/10.1007/978-3-642-41952-2
, & Multerer, Michael. (2022).
Algorithmische Mathematik: Graphen, Numerik und Probabilistik (1 ed.). Springer Spektrum. https://doi.org/10.1007/978-3-642-41952-2
, & Multerer, Michael. (2022).
Journal of Computational Physics, 471, 111616.
, & Multerer, Michael. (2022). Samplets: Construction and scattered data compression.
Journal of Computational Physics, 471, 111616.
, & Multerer, Michael. (2022). Samplets: Construction and scattered data compression.
Computer Methods in Applied Mechanics and Engineering, 391, 114552. https://doi.org/10.1016/j.cma.2021.114552
, Multerer, Michael, & von Rickenbach, Remo. (2022). Isogeometric shape optimization of periodic structures in three dimensions.
Computer Methods in Applied Mechanics and Engineering, 391, 114552. https://doi.org/10.1016/j.cma.2021.114552
, Multerer, Michael, & von Rickenbach, Remo. (2022). Isogeometric shape optimization of periodic structures in three dimensions.
Stochastics and Partial Differential Equations, 10(4), 1619–1650. https://doi.org/10.1007/s40072-021-00214-w
, & Schmidlin, Marc. (2022). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM.
Stochastics and Partial Differential Equations, 10(4), 1619–1650. https://doi.org/10.1007/s40072-021-00214-w
, & Schmidlin, Marc. (2022). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM.
Harbrecht, H., & Fallahpour, M. (2021). Shape optimization for composite materials in linear elasticity [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Harbrecht, H., & Fallahpour, M. (2021). Shape optimization for composite materials in linear elasticity [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Structural and Multidisciplinary Optimization, 64(4), 2225–2242. https://doi.org/10.1007/s00158-021-02979-z
, Tröndle, Dennis, & Zimmermann, Markus. (2021). Approximating solution spaces as a product of polygons.
Structural and Multidisciplinary Optimization, 64(4), 2225–2242. https://doi.org/10.1007/s00158-021-02979-z
, Tröndle, Dennis, & Zimmermann, Markus. (2021). Approximating solution spaces as a product of polygons.
Bader, S. B., Harbrecht, H., Krause, R., Multerer, M., Quaglino, A., & Schmidlin, M. (2021). Space-time multilevel quadrature methods and their application for cardiac electrophysiology [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Bader, S. B., Harbrecht, H., Krause, R., Multerer, M., Quaglino, A., & Schmidlin, M. (2021). Space-time multilevel quadrature methods and their application for cardiac electrophysiology [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Brügger, R., & Harbrecht, H. (2021). On the reformulation of the classical Stefan problem as a shape optimization problem [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Brügger, R., & Harbrecht, H. (2021). On the reformulation of the classical Stefan problem as a shape optimization problem [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2021). Universität Basel.
Journal of Computational Physics, 428, 110056. https://doi.org/10.1016/j.jcp.2020.110056
, & Multerer, Michael D. (2021). A fast direct solver for nonlocal operators in wavelet coordinates.
Journal of Computational Physics, 428, 110056. https://doi.org/10.1016/j.jcp.2020.110056
, & Multerer, Michael D. (2021). A fast direct solver for nonlocal operators in wavelet coordinates.
Brügger, Rahel, SIAM Journal on Control and Optimization (SICON), 59(2), 931–953. https://doi.org/10.1137/19m1268628
, & Tausch, Johannes. (2021). On the numerical solution of a time-dependent shape optimization problem for the heat equation.
Brügger, Rahel, SIAM Journal on Control and Optimization (SICON), 59(2), 931–953. https://doi.org/10.1137/19m1268628
, & Tausch, Johannes. (2021). On the numerical solution of a time-dependent shape optimization problem for the heat equation.
Oberwolfach Reports, 18(3), Article 3. https://ems.press/journals/owr
. (2021). Multilevel approximation of Gaussian random fields (Patent No. 3).
Oberwolfach Reports, 18(3), Article 3. https://ems.press/journals/owr
. (2021). Multilevel approximation of Gaussian random fields (Patent No. 3).
Communications in Computational Physics, 29(4), 1152–1185. https://doi.org/10.4208/cicp.oa-2020-0060
, Jakeman, John D., & Zaspel, Peter. (2021). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration.
Communications in Computational Physics, 29(4), 1152–1185. https://doi.org/10.4208/cicp.oa-2020-0060
, Jakeman, John D., & Zaspel, Peter. (2021). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration.
SIAM Journal on Control and Optimization (SICON), 59(6), 4538–4562. https://doi.org/10.1137/20m1370604
, & Kalmykov, Ilja. (2021). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control.
SIAM Journal on Control and Optimization (SICON), 59(6), 4538–4562. https://doi.org/10.1137/20m1370604
, & Kalmykov, Ilja. (2021). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control.
Brügger, R., Harbrecht, H., & Tausch, J. (2020). Boundary integral operators for the heat equation in time-dependent domains [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
Brügger, R., Harbrecht, H., & Tausch, J. (2020). Boundary integral operators for the heat equation in time-dependent domains [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
Dölz, J., Harbrecht, H., Jerez-Hanckes, C., & Multerer, M. (2020). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
Dölz, J., Harbrecht, H., Jerez-Hanckes, C., & Multerer, M. (2020). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
Harbrecht, H., & Multerer, M. (2020). A fast direct solver for nonlocal operators in wavelet coordinates [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
Harbrecht, H., & Multerer, M. (2020). A fast direct solver for nonlocal operators in wavelet coordinates [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
, Jakeman, J. D., & Zaspel, P. (2020). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration [Working Paper]. In
Preprints Fachbereich Mathematik (Vol. 2020). Universität Basel.
, Jakeman, J. D., & Zaspel, P. (2020). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration [Working Paper]. In
Brügger, Rahel, Croce, Roberto, & ESAIM. Control, optimisation and calculus of variations, 26(56). https://doi.org/10.1051/cocv/2019030
. (2020). Solving a Bernoulli type free boundary problem with random diffusion.
Brügger, Rahel, Croce, Roberto, & ESAIM. Control, optimisation and calculus of variations, 26(56). https://doi.org/10.1051/cocv/2019030
. (2020). Solving a Bernoulli type free boundary problem with random diffusion.
Dambrine, Marc, & Multiscale Modeling and Simulation, 18(2), 1136–1152. https://doi.org/10.1137/19m1274638
. (2020). Shape optimization for composite materials and scaffolds.
Dambrine, Marc, & Multiscale Modeling and Simulation, 18(2), 1136–1152. https://doi.org/10.1137/19m1274638
. (2020). Shape optimization for composite materials and scaffolds.
Dölz, Jürgen, SoftwareX, 11, 100476. https://doi.org/10.1016/j.softx.2020.100476
, Kurz, Stefan, Multerer, Michael D., Schöps, Sebastian, & Wolf, Felix. (2020). Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation.
Dölz, Jürgen, SoftwareX, 11, 100476. https://doi.org/10.1016/j.softx.2020.100476
, Kurz, Stefan, Multerer, Michael D., Schöps, Sebastian, & Wolf, Felix. (2020). Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation.
Griebel, Michael, SIAM Journal on Numerical Analysis, 58(1), 684–705. https://doi.org/10.1137/18m1236265
, & Multerer, Michael D. (2020). Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains.
Griebel, Michael, SIAM Journal on Numerical Analysis, 58(1), 684–705. https://doi.org/10.1137/18m1236265
, & Multerer, Michael D. (2020). Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains.
Oberwolfach Reports, 17(5), Article 5. European Mathematical Society.
. (2020). A wavelet-based approach for the optimal control of nonlocal operator equations (Patent No. 5).
Oberwolfach Reports, 17(5), Article 5. European Mathematical Society.
. (2020). A wavelet-based approach for the optimal control of nonlocal operator equations (Patent No. 5).
Stochastics and Partial Differential Equations, 8(1), 54–81. https://doi.org/10.1007/s40072-019-00142-w
, & Schmidlin, Marc. (2020). Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion.
Stochastics and Partial Differential Equations, 8(1), 54–81. https://doi.org/10.1007/s40072-019-00142-w
, & Schmidlin, Marc. (2020). Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion.
Harbrecht, H., Tröndle, D., & Zimmermann, M. (2019). Approximating solution spaces as a product of polygons [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Harbrecht, H., Tröndle, D., & Zimmermann, M. (2019). Approximating solution spaces as a product of polygons [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Bürli, C., Harbrecht, H., Odermatt, P., Sayasone, S., & Chitnis, N. (2019). Age dependency in the transmission dynamics of the liver fluke, Opisthorchis viverrini and the effectiveness of interventions [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Bürli, C., Harbrecht, H., Odermatt, P., Sayasone, S., & Chitnis, N. (2019). Age dependency in the transmission dynamics of the liver fluke, Opisthorchis viverrini and the effectiveness of interventions [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Dölz, J., Harbrecht, H., Kurz, S., Multerer, M. D., Schöps, S., & Wolf, F. (2019). Bembel: The Fast Isogeometric Boundary Element C++ Library for Laplace, Helmholtz, and Electric Wave Equation
[Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Dölz, J., Harbrecht, H., Kurz, S., Multerer, M. D., Schöps, S., & Wolf, F. (2019). Bembel: The Fast Isogeometric Boundary Element C++ Library for Laplace, Helmholtz, and Electric Wave Equation
[Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Harbrecht, H., & Kalmykov, I. (2019). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Harbrecht, H., & Kalmykov, I. (2019). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2019). Universität Basel.
Alassi, Sepideh, Schweizer, Tobias, Hawkins, Michael, Iliffe, Robert, Rosenthaler, Lukas, Mattmüller, Martin, & Newton virtually meets Euler and Bernoulli. https://doi.org/10411/eljh8x
. (2019, January 1).
Alassi, Sepideh, Schweizer, Tobias, Hawkins, Michael, Iliffe, Robert, Rosenthaler, Lukas, Mattmüller, Martin, & Newton virtually meets Euler and Bernoulli. https://doi.org/10411/eljh8x
. (2019, January 1).
Balazs, Peter, & Numerical Functional Analysis and Optimization, 40(1), 65–84. https://doi.org/10.1080/01630563.2018.1495232
. (2019). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing.
Balazs, Peter, & Numerical Functional Analysis and Optimization, 40(1), 65–84. https://doi.org/10.1080/01630563.2018.1495232
. (2019). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing.
Bugeanu, Monica, & International journal of quantum chemistry, 119(1), e25695. https://doi.org/10.1002/qua.25695
. (2019). Parametric representation of molecular surfaces.
Bugeanu, Monica, & International journal of quantum chemistry, 119(1), e25695. https://doi.org/10.1002/qua.25695
. (2019). Parametric representation of molecular surfaces.
Caubet, Fabien, Dambrine, Marc, & SIAM journal on applied mathematics, 79(1), 415–435. https://doi.org/10.1137/18m1186071
. (2019). A new method for the data completion problem and application to obstacle detection.
Caubet, Fabien, Dambrine, Marc, & SIAM journal on applied mathematics, 79(1), 415–435. https://doi.org/10.1137/18m1186071
. (2019). A new method for the data completion problem and application to obstacle detection.
Dambrine, Marc, ESAIM: Control, Optimisation and Calculus of Variations, 25, 84. https://doi.org/10.1051/cocv/2018010
, & Puig, Benedicte. (2019). Incorporating knowledge on the measurement noise in electrical impedance tomography.
Dambrine, Marc, ESAIM: Control, Optimisation and Calculus of Variations, 25, 84. https://doi.org/10.1051/cocv/2018010
, & Puig, Benedicte. (2019). Incorporating knowledge on the measurement noise in electrical impedance tomography.
Dölz, Jürgen, Gerig, Thomas, Lüthi, Marcel, Journal of Mathematical Imaging and Vision, 61(4), 443–457. https://doi.org/10.1007/s10851-018-0854-5
, & Vetter, Thomas. (2019). Error-Controlled Model Approximation for Gaussian Process Morphable Models.
Dölz, Jürgen, Gerig, Thomas, Lüthi, Marcel, Journal of Mathematical Imaging and Vision, 61(4), 443–457. https://doi.org/10.1007/s10851-018-0854-5
, & Vetter, Thomas. (2019). Error-Controlled Model Approximation for Gaussian Process Morphable Models.
Eppler, Karsten, Journal of Mathematical Study, 52(3), 227–243. https://doi.org/10.4208/jms.v52n3.19.01
, Schlenkrich, Sebastian, & Walther, Andrea. (2019). Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation.
Eppler, Karsten, Journal of Mathematical Study, 52(3), 227–243. https://doi.org/10.4208/jms.v52n3.19.01
, Schlenkrich, Sebastian, & Walther, Andrea. (2019). Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation.
Griebel, Michael, & IMA journal of numerical analysis, 39(4), 1652–1671. https://doi.org/10.1093/imanum/dry039
. (2019). Singular value decomposition versus sparse grids: Refined complexity estimates.
Griebel, Michael, & IMA journal of numerical analysis, 39(4), 1652–1671. https://doi.org/10.1093/imanum/dry039
. (2019). Singular value decomposition versus sparse grids: Refined complexity estimates.
Oberwolfach Reports, 16(33), Article 33. European Mathematical Society.
. (2019). About a fast isogeometric boundary element method (Patent No. 33).
Oberwolfach Reports, 16(33), Article 33. European Mathematical Society.
. (2019). About a fast isogeometric boundary element method (Patent No. 33).
SIAM journal on matrix analysis and applications, 40(1), 147–174. https://doi.org/10.1137/18m1189373
, Dölz, Jürgen, & Multerer, Michael D. (2019). On the Best Approximation of the Hierarchical Matrix Product.
SIAM journal on matrix analysis and applications, 40(1), 147–174. https://doi.org/10.1137/18m1189373
, Dölz, Jürgen, & Multerer, Michael D. (2019). On the Best Approximation of the Hierarchical Matrix Product.
Engineering analysis with boundary elements, 101, 243–251. https://doi.org/10.1016/j.enganabound.2018.11.005
, Ilić, Nikola, & Multerer, Michael D. (2019). Rapid computation of far-field statistics for random obstacle scattering.
Engineering analysis with boundary elements, 101, 243–251. https://doi.org/10.1016/j.enganabound.2018.11.005
, Ilić, Nikola, & Multerer, Michael D. (2019). Rapid computation of far-field statistics for random obstacle scattering.
Structural and multidisciplinary optimization, 60(2), 501–512. https://doi.org/10.1007/s00158-019-02221-x
, Tröndle, Dennis, & Zimmermann, Markus. (2019). A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables.
Structural and multidisciplinary optimization, 60(2), 501–512. https://doi.org/10.1007/s00158-019-02221-x
, Tröndle, Dennis, & Zimmermann, Markus. (2019). A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables.
Journal of scientific computing, 78(2), 1272–1290. https://doi.org/10.1007/s10915-018-0807-6
, & Zaspel, Peter. (2019). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems.
Journal of scientific computing, 78(2), 1272–1290. https://doi.org/10.1007/s10915-018-0807-6
, & Zaspel, Peter. (2019). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems.
Zaspel, Peter, Huang, Bing, Journal of Chemical Theory and Computation, 15(3), 1546–1559. https://doi.org/10.1021/acs.jctc.8b00832
, & von Lilienfeld, Anatole O. (2019). Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited.
Zaspel, Peter, Huang, Bing, Journal of Chemical Theory and Computation, 15(3), 1546–1559. https://doi.org/10.1021/acs.jctc.8b00832
, & von Lilienfeld, Anatole O. (2019). Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited.
Advanced Finite Element Methods with Applications (pp. 143–164). Springer Nature. https://doi.org/10.1007/978-3-030-14244-5_8
, & Moor, Manuela. (2019). Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation. In Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.),
Advanced Finite Element Methods with Applications (pp. 143–164). Springer Nature. https://doi.org/10.1007/978-3-030-14244-5_8
, & Moor, Manuela. (2019). Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation. In Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.),
Harbrecht, H., Ilić, N., & Multerer, M. D. (2018). Acoustic scattering in case of random obstacles [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., Ilić, N., & Multerer, M. D. (2018). Acoustic scattering in case of random obstacles [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., & Zaspel, P. (2018). A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., & Zaspel, P. (2018). A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Dölz, J., Harbrecht, H., & Multerer, M. D. (2018). On the best approximation of the hierarchical matrix product [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Dölz, J., Harbrecht, H., & Multerer, M. D. (2018). On the best approximation of the hierarchical matrix product [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Balazc, P., & Harbrecht, H. (2018). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Balazc, P., & Harbrecht, H. (2018). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Brügger, R., Croce, R., & Harbrecht, H. (2018). Solving a Bernoulli type free boundary problem with random diffusion [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Brügger, R., Croce, R., & Harbrecht, H. (2018). Solving a Bernoulli type free boundary problem with random diffusion [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., & Moor, M. (2018). Wavelet boundary element methods – Adaptivity and goal-oriented error estimation [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., & Moor, M. (2018). Wavelet boundary element methods – Adaptivity and goal-oriented error estimation [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Alassi, Sepideh, Schweizer, Tobias, Mattmüller, Martin, Rosenthaler, Lukas, & A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach. https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/
. (2018, January 1).
Alassi, Sepideh, Schweizer, Tobias, Mattmüller, Martin, Rosenthaler, Lukas, & A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach. https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/
. (2018, January 1).
Brügger, Rahel, Croce, Roberto, & Mathematical Methods in the Applied Sciences, 41(10), 3653–3671. https://doi.org/10.1002/mma.4853
. (2018). Solving a free boundary problem with non-constant coefficients.
Brügger, Rahel, Croce, Roberto, & Mathematical Methods in the Applied Sciences, 41(10), 3653–3671. https://doi.org/10.1002/mma.4853
. (2018). Solving a free boundary problem with non-constant coefficients.
Bugeanu, M., & Harbrecht, H. (2018). Parametric representation of molecular surfaces [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Bugeanu, M., & Harbrecht, H. (2018). Parametric representation of molecular surfaces [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Bürli, Christine, Mathematical biosciences : an international journal, 303, 115–125. https://doi.org/10.1016/j.mbs.2018.06.008
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Analysis of interventions against the liver fluke, Opisthorchis viverrini.
Bürli, Christine, Mathematical biosciences : an international journal, 303, 115–125. https://doi.org/10.1016/j.mbs.2018.06.008
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Analysis of interventions against the liver fluke, Opisthorchis viverrini.
Bürli, Christine, Journal of Theoretical Biology, 439, 181–194. https://doi.org/10.1016/j.jtbi.2017.11.020
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini.
Bürli, Christine, Journal of Theoretical Biology, 439, 181–194. https://doi.org/10.1016/j.jtbi.2017.11.020
, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini.
Dahlke, Stephan, Numerical Functional Analysis and Optimization, 39(2), 208–232. https://doi.org/10.1080/01630563.2017.1359623
, Utzinger, Manuela, & Weimar, Markus. (2018). Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments.
Dahlke, Stephan, Numerical Functional Analysis and Optimization, 39(2), 208–232. https://doi.org/10.1080/01630563.2017.1359623
, Utzinger, Manuela, & Weimar, Markus. (2018). Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments.
Dölz, Jürgen, & Journal of Computational Physics, 371, 506–527. https://doi.org/10.1016/j.jcp.2018.05.040
. (2018). Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains.
Dölz, Jürgen, & Journal of Computational Physics, 371, 506–527. https://doi.org/10.1016/j.jcp.2018.05.040
. (2018). Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 330, 83–101. https://doi.org/10.1016/j.cma.2017.10.020
, Kurz, Stefan, Schöps, Sebastian, & Wolf, Felix. (2018). A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems.
Dölz, Jürgen, Computer Methods in Applied Mechanics and Engineering, 330, 83–101. https://doi.org/10.1016/j.cma.2017.10.020
, Kurz, Stefan, Schöps, Sebastian, & Wolf, Felix. (2018). A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems.
Haji-Ali, Abdul-Lateef, Journal of complexity, 47, 62–85. https://doi.org/10.1016/j.jco.2018.02.003
, Peters, Michael, & Siebenmorgen, Markus. (2018). Novel results for the anisotropic sparse grid quadrature.
Haji-Ali, Abdul-Lateef, Journal of complexity, 47, 62–85. https://doi.org/10.1016/j.jco.2018.02.003
, Peters, Michael, & Siebenmorgen, Markus. (2018). Novel results for the anisotropic sparse grid quadrature.
Oberwolfach Reports, 15(3), Article 3. https://doi.org/10.4171/owr/2018/38
. (2018). Shape optimization under uncertainty (Patent No. 3).
Oberwolfach Reports, 15(3), Article 3. https://doi.org/10.4171/owr/2018/38
. (2018). Shape optimization under uncertainty (Patent No. 3).
Applied Numerical Mathematics, 125, 159–171. https://doi.org/10.1016/j.apnum.2017.11.002
, & Peters, Michael D. (2018). The second order perturbation approach for elliptic partial differential equations on random domains.
Applied Numerical Mathematics, 125, 159–171. https://doi.org/10.1016/j.apnum.2017.11.002
, & Peters, Michael D. (2018). The second order perturbation approach for elliptic partial differential equations on random domains.
Harbrecht, H., & Schmidlin, M. (2018). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., & Schmidlin, M. (2018). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Numerische Mathematik, 140(1), 239–264. https://doi.org/10.1007/s00211-018-0963-5
, & Tausch, Johannes. (2018). A fast sparse grid based space-time boundary element method for the nonstationary heat equation.
Numerische Mathematik, 140(1), 239–264. https://doi.org/10.1007/s00211-018-0963-5
, & Tausch, Johannes. (2018). A fast sparse grid based space-time boundary element method for the nonstationary heat equation.
Journal of Computational Mathematics, 36(1), 90–109. https://doi.org/10.4208/jcm.1610-m2016-0496
, & Utzinger, Manuela. (2018). On adaptive wavelet boundary element methods.
Journal of Computational Mathematics, 36(1), 90–109. https://doi.org/10.4208/jcm.1610-m2016-0496
, & Utzinger, Manuela. (2018). On adaptive wavelet boundary element methods.
Mathematical News / Mathematische Nachrichten, 291(1), 55–85. https://doi.org/10.1002/mana.201600024
, Wendland, Wolfgang L., & Zorii, Natalia. (2018). Minimal energy problems for strongly singular Riesz kernels.
Mathematical News / Mathematische Nachrichten, 291(1), 55–85. https://doi.org/10.1002/mana.201600024
, Wendland, Wolfgang L., & Zorii, Natalia. (2018). Minimal energy problems for strongly singular Riesz kernels.
Harbrecht, H., & Zaspel, P. E. (2018). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Harbrecht, H., & Zaspel, P. E. (2018). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2018). Universität Basel.
Vogt, Marc Eric, Duddeck, Fabian, Proceedings in Applied Mathematics and Mechanics, 18(1), e201800103 (2 pp.). https://doi.org/10.1002/pamm.201800103
, Stutz, Florian, Wahle, Martin, & Zimmermann, Markus. (2018). Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm.
Vogt, Marc Eric, Duddeck, Fabian, Proceedings in Applied Mathematics and Mechanics, 18(1), e201800103 (2 pp.). https://doi.org/10.1002/pamm.201800103
, Stutz, Florian, Wahle, Martin, & Zimmermann, Markus. (2018). Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm.
Brügger, R., Croce, R., & Harbrecht, H. (2017). Solving a free boundary problem with non-constant coefficients [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2017). Universität Basel.
Brügger, R., Croce, R., & Harbrecht, H. (2017). Solving a free boundary problem with non-constant coefficients [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2017). Universität Basel.
Bürli, C., Chitnis, N., Harbrecht, H., Odermatt, P., & Sayasone, S. (2017). Analysis of Interventions against the Liver Fluke, Opisthorchis viverrini [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2017). Universität Basel.
Bürli, C., Chitnis, N., Harbrecht, H., Odermatt, P., & Sayasone, S. (2017). Analysis of Interventions against the Liver Fluke, Opisthorchis viverrini [Working Paper]. In Preprints Fachbereich Mathematik (Vol. 2017). Universität Basel.