UNIverse - Public Research Portal
Profile Photo

Prof. Dr. Helmut Harbrecht

Department of Mathematics and Computer Sciences
Profiles & Affiliations

Publications

121 found
Show per page

Dölz, Jürgen, Harbrecht, Helmut, & Multerer, Michael. (2024). Solving acoustic scattering problems by the isogeometric boundary element method [Journal-article]. Engineering with Computers, 40(6), 3651–3661. https://doi.org/10.1007/s00366-024-02013-y

URLs
URLs

Harbrecht, Helmut, Herrmann, Lukas, Kirchner, Kristin, & Schwab, Christoph. (2024). Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction [Journal-article]. Advances in Computational Mathematics, 50(5). https://doi.org/10.1007/s10444-024-10187-8

URLs
URLs

Harbrecht, Helmut, & von Rickenbach, Remo. (2024). Compression of boundary integral operators discretized by anisotropic wavelet bases [Journal-article]. Numerische Mathematik, 156(3), 853–899. https://doi.org/10.1007/s00211-024-01403-0

URLs
URLs

Harbrecht, H., Multerer, M., Schenk, O., & Schwab, Ch. (2024). Multiresolution kernel matrix algebra [Journal-article]. Numerische Mathematik, 156(3), 1085–1114. https://doi.org/10.1007/s00211-024-01409-8

URLs
URLs

Harbrecht, Helmut, Schmidlin, Marc, & Schwab, Christoph. (2024). The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs [Journal-article]. Mathematical Models and Methods in Applied Sciences, 34(05), 881–917. https://doi.org/10.1142/s0218202524500179

URLs
URLs

Kamber, Lars, Bürli, Christine, Harbrecht, Helmut, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2024). Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence [Journal-article]. PLOS Neglected Tropical Diseases, 18(2), e0011362. https://doi.org/10.1371/journal.pntd.0011362

URLs
URLs

Felber, Luzia N., Harbrecht, Helmut, & Schmidlin, Marc. (2024). Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems [Journal-article]. SIAM Journal on Imaging Sciences, 17(1), 61–90. https://doi.org/10.1137/23m1565346

URLs
URLs

Hakula, Harri, Harbrecht, Helmut, Kaarnioja, Vesa, Kuo, Frances Y., & Sloan, Ian H. (2024). Uncertainty quantification for random domains using periodic random variables [Journal-article]. Numerische Mathematik, 156(1), 273–317. https://doi.org/10.1007/s00211-023-01392-6

URLs
URLs

Harbrecht, Helmut, Karnaev, Viacheslav, & Schmidlin, Marc. (2024). Quantifying Domain Uncertainty in Linear Elasticity [Journal-article]. SIAM/ASA Journal on Uncertainty Quantification, 12(2), 503–523. https://doi.org/10.1137/23m1578589

URLs
URLs

Harbrecht, Helmut, & Multerer, Michael. (2024). Samplets: Wavelet Concepts for Scattered Data. In Ron DeVore and Angea Kunoth, (ed.), Multiscale, Nonlinear and Adaptive Approximation II (pp. 299–326). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75802-7_14

URLs
URLs

Ben Bader, Seif, Harbrecht, Helmut, Krause, Rolf, Multerer, Michael D., Quaglino, Alessio, & Schmidlin, Marc. (2023). Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology [Journal-article]. SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1329–1356. https://doi.org/10.1137/21m1418320

URLs
URLs

Dambrine, Marc, Harbrecht, Helmut, & Puig, Benedicte. (2023). Bernoulli free boundary problems under uncertainty: the convex case. Computational Methods in Applied Mathematics, 23(2), 333–352. https://doi.org/10.1515/cmam-2022-0038

URLs
URLs

Fallahpour, Merlin, & Harbrecht, Helmut. (2023). Shape optimization for composite materials in linear elasticity. Optimization and Engineering, 24(3), 2115–2143. https://doi.org/10.1007/s11081-022-09768-7

URLs
URLs

Griebel, Michael, & Harbrecht, Helmut. (2023). Analysis of tensor approximation schemes for continuous functions. Foundations of Computational Mathematics, 23(1), 219–240. https://doi.org/10.1007/s10208-021-09544-6

URLs
URLs

Griebel, Michael, Harbrecht, Helmut, & Schneider, Reinhold. (2023). Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness. Mathematics of Computation, 92(342), 1729–1746. https://doi.org/10.1090/mcom/3813

URLs
URLs

Brügger, Rahel, & Harbrecht, Helmut. (2022). On the reformulation of the Classical Stefan problem as a shape optimization problem. SIAM Journal on Control and Optimization (SICON), 60(1), 310–329. https://doi.org/10.1137/21m1411007

URLs
URLs

Brügger, Rahel, Harbrecht, Helmut, & Tausch, Johannes. (2022). Boundary integral operators for the heat equation. Integral Equations and Operator Theory, 94(2), 10. https://doi.org/10.1007/s00020-022-02691-7

URLs
URLs

Dahlke, Stephan, Harbrecht, Helmut, & Surowiec, Thomas M. (2022). A wavelet-based approach for the optimal control of non-local operator equations. SIAM Journal on Scientific Computing, 44(4), A2691–A2708.

Dölz, Jürgen, Harbrecht, Helmut, Jerez-Hanckes, Carlos, & Multerer, Michael. (2022). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. Computer Methods in Applied Mechanics and Engineering, 388, 114242. https://doi.org/10.1016/j.cma.2021.114242

URLs
URLs

Harbrecht, Helmut, & Multerer, Michael. (2022). Algorithmische Mathematik: Graphen, Numerik und Probabilistik (1 ed.). Springer Spektrum. https://doi.org/10.1007/978-3-642-41952-2

URLs
URLs

Harbrecht, Helmut, & Multerer, Michael. (2022). Samplets: Construction and scattered data compression. Journal of Computational Physics, 471, 111616.

Harbrecht, Helmut, Multerer, Michael, & von Rickenbach, Remo. (2022). Isogeometric shape optimization of periodic structures in three dimensions. Computer Methods in Applied Mechanics and Engineering, 391, 114552. https://doi.org/10.1016/j.cma.2021.114552

URLs
URLs

Harbrecht, Helmut, & Schmidlin, Marc. (2022). Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM. Stochastics and Partial Differential Equations, 10(4), 1619–1650. https://doi.org/10.1007/s40072-021-00214-w

URLs
URLs

Brügger, Rahel, Harbrecht, Helmut, & Tausch, Johannes. (2021). On the numerical solution of a time-dependent shape optimization problem for the heat equation. SIAM Journal on Control and Optimization (SICON), 59(2), 931–953. https://doi.org/10.1137/19m1268628

URLs
URLs

Harbrecht, Helmut. (2021). Multilevel approximation of Gaussian random fields (Patent No. 3). Oberwolfach Reports, 18(3), Article 3. https://ems.press/journals/owr

URLs
URLs

Harbrecht, Helmut, Jakeman, John D., & Zaspel, Peter. (2021). Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration. Communications in Computational Physics, 29(4), 1152–1185. https://doi.org/10.4208/cicp.oa-2020-0060

URLs
URLs

Harbrecht, Helmut, & Kalmykov, Ilja. (2021). Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control. SIAM Journal on Control and Optimization (SICON), 59(6), 4538–4562. https://doi.org/10.1137/20m1370604

URLs
URLs

Harbrecht, Helmut, & Multerer, Michael D. (2021). A fast direct solver for nonlocal operators in wavelet coordinates. Journal of Computational Physics, 428, 110056. https://doi.org/10.1016/j.jcp.2020.110056

URLs
URLs

Harbrecht, Helmut, Tröndle, Dennis, & Zimmermann, Markus. (2021). Approximating solution spaces as a product of polygons. Structural and Multidisciplinary Optimization, 64(4), 2225–2242. https://doi.org/10.1007/s00158-021-02979-z

URLs
URLs

Brügger, Rahel, Croce, Roberto, & Harbrecht, Helmut. (2020). Solving a Bernoulli type free boundary problem with random diffusion. ESAIM. Control, optimisation and calculus of variations, 26(56). https://doi.org/10.1051/cocv/2019030

URLs
URLs

Dambrine, Marc, & Harbrecht, Helmut. (2020). Shape optimization for composite materials and scaffolds. Multiscale Modeling and Simulation, 18(2), 1136–1152. https://doi.org/10.1137/19m1274638

URLs
URLs

Dölz, Jürgen, Harbrecht, Helmut, Kurz, Stefan, Multerer, Michael D., Schöps, Sebastian, & Wolf, Felix. (2020). Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation. SoftwareX, 11, 100476. https://doi.org/10.1016/j.softx.2020.100476

URLs
URLs

Griebel, Michael, Harbrecht, Helmut, & Multerer, Michael D. (2020). Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains. SIAM Journal on Numerical Analysis, 58(1), 684–705. https://doi.org/10.1137/18m1236265

URLs
URLs

Harbrecht, Helmut. (2020). A wavelet-based approach for the optimal control of nonlocal operator equations (Patent No. 5). Oberwolfach Reports, 17(5), Article 5. European Mathematical Society.

URLs
URLs

Harbrecht, Helmut, & Schmidlin, Marc. (2020). Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion. Stochastics and Partial Differential Equations, 8(1), 54–81. https://doi.org/10.1007/s40072-019-00142-w

URLs
URLs

Alassi, Sepideh, Schweizer, Tobias, Hawkins, Michael, Iliffe, Robert, Rosenthaler, Lukas, Mattmüller, Martin, & Harbrecht, Helmut. (2019, January 1). Newton virtually meets Euler and Bernoulli. https://doi.org/10411/eljh8x

URLs
URLs

Balazs, Peter, & Harbrecht, Helmut. (2019). Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing. Numerical Functional Analysis and Optimization, 40(1), 65–84. https://doi.org/10.1080/01630563.2018.1495232

URLs
URLs

Bugeanu, Monica, & Harbrecht, Helmut. (2019). Parametric representation of molecular surfaces. International journal of quantum chemistry, 119(1), e25695. https://doi.org/10.1002/qua.25695

URLs
URLs

Caubet, Fabien, Dambrine, Marc, & Harbrecht, Helmut. (2019). A new method for the data completion problem and application to obstacle detection. SIAM journal on applied mathematics, 79(1), 415–435. https://doi.org/10.1137/18m1186071

URLs
URLs

Dambrine, Marc, Harbrecht, Helmut, & Puig, Benedicte. (2019). Incorporating knowledge on the measurement noise in electrical impedance tomography. ESAIM: Control, Optimisation and Calculus of Variations, 25, 84. https://doi.org/10.1051/cocv/2018010

URLs
URLs

Dölz, Jürgen, Gerig, Thomas, Lüthi, Marcel, Harbrecht, Helmut, & Vetter, Thomas. (2019). Error-Controlled Model Approximation for Gaussian Process Morphable Models. Journal of Mathematical Imaging and Vision, 61(4), 443–457. https://doi.org/10.1007/s10851-018-0854-5

URLs
URLs

Eppler, Karsten, Harbrecht, Helmut, Schlenkrich, Sebastian, & Walther, Andrea. (2019). Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation. Journal of Mathematical Study, 52(3), 227–243. https://doi.org/10.4208/jms.v52n3.19.01

URLs
URLs

Griebel, Michael, & Harbrecht, Helmut. (2019). Singular value decomposition versus sparse grids: Refined complexity estimates. IMA journal of numerical analysis, 39(4), 1652–1671. https://doi.org/10.1093/imanum/dry039

URLs
URLs

Harbrecht, Helmut. (2019). About a fast isogeometric boundary element method (Patent No. 33). Oberwolfach Reports, 16(33), Article 33. European Mathematical Society.

URLs
URLs

Harbrecht, Helmut, Dölz, Jürgen, & Multerer, Michael D. (2019). On the Best Approximation of the Hierarchical Matrix Product. SIAM journal on matrix analysis and applications, 40(1), 147–174. https://doi.org/10.1137/18m1189373

URLs
URLs

Harbrecht, Helmut, Ilić, Nikola, & Multerer, Michael D. (2019). Rapid computation of far-field statistics for random obstacle scattering. Engineering analysis with boundary elements, 101, 243–251. https://doi.org/10.1016/j.enganabound.2018.11.005

URLs
URLs

Harbrecht, Helmut, Tröndle, Dennis, & Zimmermann, Markus. (2019). A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables. Structural and multidisciplinary optimization, 60(2), 501–512. https://doi.org/10.1007/s00158-019-02221-x

URLs
URLs

Harbrecht, Helmut, & Zaspel, Peter. (2019). On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems. Journal of scientific computing, 78(2), 1272–1290. https://doi.org/10.1007/s10915-018-0807-6

URLs
URLs

Zaspel, Peter, Huang, Bing, Harbrecht, Helmut, & von Lilienfeld, Anatole O. (2019). Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited. Journal of Chemical Theory and Computation, 15(3), 1546–1559. https://doi.org/10.1021/acs.jctc.8b00832

URLs
URLs

Harbrecht, Helmut, & Moor, Manuela. (2019). Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation. In Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.), Advanced Finite Element Methods with Applications (pp. 143–164). Springer Nature. https://doi.org/10.1007/978-3-030-14244-5_8

URLs
URLs

Alassi, Sepideh, Schweizer, Tobias, Mattmüller, Martin, Rosenthaler, Lukas, & Harbrecht, Helmut. (2018, January 1). A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach. https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/

URLs
URLs

Brügger, Rahel, Croce, Roberto, & Harbrecht, Helmut. (2018). Solving a free boundary problem with non-constant coefficients. Mathematical Methods in the Applied Sciences, 41(10), 3653–3671. https://doi.org/10.1002/mma.4853

URLs
URLs

Bürli, Christine, Harbrecht, Helmut, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Analysis of interventions against the liver fluke, Opisthorchis viverrini. Mathematical biosciences : an international journal, 303, 115–125. https://doi.org/10.1016/j.mbs.2018.06.008

URLs
URLs

Bürli, Christine, Harbrecht, Helmut, Odermatt, Peter, Sayasone, Somphou, & Chitnis, Nakul. (2018). Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini. Journal of Theoretical Biology, 439, 181–194. https://doi.org/10.1016/j.jtbi.2017.11.020

URLs
URLs

Dahlke, Stephan, Harbrecht, Helmut, Utzinger, Manuela, & Weimar, Markus. (2018). Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments. Numerical Functional Analysis and Optimization, 39(2), 208–232. https://doi.org/10.1080/01630563.2017.1359623

URLs
URLs

Dölz, Jürgen, & Harbrecht, Helmut. (2018). Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains. Journal of Computational Physics, 371, 506–527. https://doi.org/10.1016/j.jcp.2018.05.040

URLs
URLs

Dölz, Jürgen, Harbrecht, Helmut, Kurz, Stefan, Schöps, Sebastian, & Wolf, Felix. (2018). A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. Computer Methods in Applied Mechanics and Engineering, 330, 83–101. https://doi.org/10.1016/j.cma.2017.10.020

URLs
URLs

Haji-Ali, Abdul-Lateef, Harbrecht, Helmut, Peters, Michael, & Siebenmorgen, Markus. (2018). Novel results for the anisotropic sparse grid quadrature. Journal of complexity, 47, 62–85. https://doi.org/10.1016/j.jco.2018.02.003

URLs
URLs

Harbrecht, Helmut. (2018). Shape optimization under uncertainty (Patent No. 3). Oberwolfach Reports, 15(3), Article 3. https://doi.org/10.4171/owr/2018/38

URLs
URLs

Harbrecht, Helmut, & Peters, Michael D. (2018). The second order perturbation approach for elliptic partial differential equations on random domains. Applied Numerical Mathematics, 125, 159–171. https://doi.org/10.1016/j.apnum.2017.11.002

URLs
URLs

Harbrecht, Helmut, & Tausch, Johannes. (2018). A fast sparse grid based space-time boundary element method for the nonstationary heat equation. Numerische Mathematik, 140(1), 239–264. https://doi.org/10.1007/s00211-018-0963-5

URLs
URLs

Harbrecht, Helmut, & Utzinger, Manuela. (2018). On adaptive wavelet boundary element methods. Journal of Computational Mathematics, 36(1), 90–109. https://doi.org/10.4208/jcm.1610-m2016-0496

URLs
URLs

Harbrecht, Helmut, Wendland, Wolfgang L., & Zorii, Natalia. (2018). Minimal energy problems for strongly singular Riesz kernels. Mathematical News / Mathematische Nachrichten, 291(1), 55–85. https://doi.org/10.1002/mana.201600024

URLs
URLs

Vogt, Marc Eric, Duddeck, Fabian, Harbrecht, Helmut, Stutz, Florian, Wahle, Martin, & Zimmermann, Markus. (2018). Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm. Proceedings in Applied Mathematics and Mechanics, 18(1), e201800103 (2 pp.). https://doi.org/10.1002/pamm.201800103

URLs
URLs

Dambrine, Marc, Greff, Isabelle, Harbrecht, Helmut, & Puig, Benedicte. (2017). Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness. Journal of Computational Physics, 330, 943–959. https://doi.org/10.1016/j.jcp.2016.10.044

URLs
URLs

Dambrine, Marc, Harbrecht, Helmut, Peters, Michael, & Puig, Benedicte. (2017). On Bernoulli’s free boundary problem with a random boundary. International Journal for Uncertainty Quantification, 7(4), 335–353. https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550

URLs
URLs

Dölz, Jürgen, Harbrecht, Helmut, & Peters, Michael. (2017). H-matrix based second moment analysis for rough random fields and finite element discretizations. SIAM Journal on Scientific Computing, 39(4), B618–B639. https://doi.org/10.1137/16m1074813

URLs
URLs

Dölz, Jürgen, Harbrecht, Helmut, & Schwab, Christoph. (2017). Covariance regularity and H-matrix approximation for rough random fields. Numerische Mathematik, 135(4), 1045–1071. https://doi.org/10.1007/s00211-016-0825-y

URLs
URLs

Harbrecht, Helmut. (2017). On shape optimization with parabolic state equation (Patent No. 4). Oberwolfach Reports, 2017(4), Article 4. European Mathematical Society.

URLs
URLs

Harbrecht, Helmut. (2017). Novel results for the anisotropic sparse grid quadrature (Patent No. 17). Oberwolfach Reports, 2017(17), Article 17. https://doi.org/10.4171/owr/2017/17

URLs
URLs

Harbrecht, Helmut, Peters, Michael, & Schmidlin, Marc. (2017). Uncertainty quantification for PDEs with anisotropic random diffusion. SIAM Journal on Numerical Analysis, 55(2), 1002–1023. https://doi.org/10.1137/16m1085760

URLs
URLs

Harbrecht, Helmut, Peters, Michael, & Siebenmorgen, Markus. (2017). On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion. Mathematics of Computation, 86, 771–797. https://doi.org/10.1090/mcom/3107

URLs
URLs

Schweizer, Tobias, Alassi, Sepideh, Mattmüller, Martin, Rosenthaler, Lukas, & Harbrecht, Helmut. (2017, January 1). Integrating historical scientific texts into the Bernoulli-Euler Online platform. https://dh2017.adho.org/abstracts/DH2017-abstracts.pdf

URLs
URLs

Harbrecht, Helmut, & Peters, Michael. (2017). Solution of free boundary problems in the presence of geometric uncertainties. In Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.), Topological Optimization and Optimal Transport In the Applied Sciences (pp. 20–39). De Gruyter. https://doi.org/10.1515/9783110430417-002

URLs
URLs

Dambrine, M., Greff, I., Harbrecht, H., & Puig, B. (2016). Numerical solution of the Poisson equation on domains with a thin layer of random thickness. SIAM journal on numerical analysis, 54(2), 921–941. https://doi.org/10.1137/140998652

URLs
URLs

Dölz, Jürgen, Harbrecht, Helmut, & Peters, Michael. (2016). An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces. International Journal for Numerical Methods in Engineering, 108(13), 1705–1728. https://doi.org/10.1002/nme.5274

URLs
URLs

Graff, Lavinia, Harbrecht, Helmut, & Zimmermann, Markus. (2016). On the computation of solution spaces in high dimensions. Structural and Multidisciplinary Optimization, 54(4), 811–829. https://doi.org/10.1007/s00158-016-1454-x

URLs
URLs

Harbrecht, Helmut. (2016). On fast boundary element methods for parametric surfaces (Patent No. 1). Oberwolfach Reports, 13(1), Article 1. European Mathematical Society.

URLs
URLs

Harbrecht, Helmut, & Loos, Florian. (2016). Optimization of current carrying multicables. Computational optimization and applications, 63(1), 237–271. https://doi.org/10.1007/s10589-015-9764-2

URLs
URLs

Harbrecht, Helmut, Peters, Michael, & Siebenmorgen, Markus. (2016). Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 520–551. https://doi.org/10.1137/130931953

URLs
URLs

Harbrecht, Helmut, & Schneider, Reinhold. (2016). A Note on Multilevel Based Error Estimation. Computational Methods in Applied Mathematics, 16(3), 447–458. https://doi.org/10.1515/cmam-2016-0013

URLs
URLs

Harbrecht, Helmut, Wendland, Wolfgang L., & Zorii, Natalia. (2016). Rapid Solution of Minimal Riesz Energy Problems. Numerical Methods for Partial Differential Equations, 32(6), 1535–1552. https://doi.org/10.1002/num.22060

URLs
URLs

Harbrecht, H., Peters, M., & Siebenmorgen, M. (2016). Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numerische Mathematik, 134(4), 823–856. https://doi.org/10.1007/s00211-016-0791-4

URLs
URLs

Harbrecht, Helmut, & Peters, Michael. (2016). Combination technique based second moment analysis for elliptic PDEs on random domains. In Garcke, Jochen; Pflüger, Dirk (ed.), Sparse grids and applications - Stuttgart 2014 (pp. 51–77). Springer International Publishing. https://doi.org/10.1007/978-3-319-28262-6_3

URLs
URLs

Bugeanu, Monica, Di Remigio, Roberto, Mozgawa, Krzysztof, Reine, Simen Sommerfelt, Harbrecht, Helmut, & Frediani, Luca. (2015). Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements. Physical Chemistry, Chemical Physics, 17(47), 31566–31581. https://doi.org/10.1039/c5cp03410h

URLs
URLs

Bugeanu, Monica, & Harbrecht, Helmut. (2015). A second order convergent trial method for a free boundary problem in three dimensions. Interfaces and free boundaries, 17(4), 517–537. https://doi.org/10.4171/ifb/352

URLs
URLs

Dambrine, Marc, Dapogny, Charles, & Harbrecht, Helmut. (2015). Shape optimization for quadratic functionals and states with random right-hand sides. SIAM journal on control and optimization, 53(5), 3081–3103. https://doi.org/10.1137/15m1017041

URLs
URLs

Dambrine, Marc, Harbrecht, Helmut, & Puig, Benedicte. (2015). Computing quantities of interest for random domains with second order shape sensitivity analysis. Mathematical modelling and numerical analysis, 49(5), 1285–1302. https://doi.org/10.1051/m2an/2015012

URLs
URLs

Doelz, J., Harbrecht, H., & Peters, M. (2015). H-matrix accelerated second moment analysis for potentials with rough correlation. Journal of scientific computing, 65(1), 387–410. https://doi.org/10.1007/s10915-014-9965-3

URLs
URLs

Harbrecht, Helmut. (2015). Sparse BEM for the heat equation (Patent No. 2). Oberwolfach Reports, 2015(2), Article 2. European Mathematical Society.

URLs
URLs

Harbrecht, Helmut, & Mitrou, Giannoula. (2015). Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data. Mathematical methods in the applied sciences, 38(13), 2850–2863. https://doi.org/10.1002/mma.3268

URLs
URLs

Harbrecht, Helmut, Peters, Michael, & Siebenmorgen, Markus. (2015). Efficient approximation of random fields for numerical applications. Numerical linear algebra with applications, 22(4), 596–617. https://doi.org/10.1002/nla.1976

URLs
URLs

Alm, Daniel, Harbrecht, Helmut, & Krämer, Ulf. (2014). The H2-wavelet method. Journal of Computational and Applied Mathematics, 267, 131–159. https://doi.org/10.1016/j.cam.2014.01.030

URLs
URLs

Fender, Johannes, Graff, L., Harbrecht, H., & Zimmermann, Markus. (2014). Identifying key parameters for design improvement in high-dimensional systems with uncertainty. Journal of Mechanical Design, 136(4), 41007. https://doi.org/10.1115/1.4026647

URLs
URLs

Griebel, Michael, & Harbrecht, Helmut. (2014). Approximation of bi-variate functions : singular value decomposition versus sparse grids. IMA Journal of Numerical Analysis, 34(1), 28–54. https://doi.org/10.1093/imanum/drs047

URLs
URLs

Harbrecht, Helmut, & Mitrou, Giannoula. (2014). Improved trial methods for a class of generalized Bernoulli problems. Journal of mathematical analysis and applications, 420(1), 177–194. https://doi.org/10.1016/j.jmaa.2014.05.059

URLs
URLs

Harbrecht, Helmut, Wendland, Wolfgang L., & Zorii, Natalia. (2014). Riesz minimal energy problems on Ck−1,1-manifolds. Mathematische Nachrichten, 287(1), 48–69. https://doi.org/10.1002/mana.201200053

URLs
URLs

Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., & Ulbrich, S. (2014). Trends in PDE constrained optimization. In International series of numerical mathematics (Vol. 165). Birkhäuser. https://doi.org/10.1007/978-3-319-05083-6

URLs
URLs

Griebel, Michael, & Harbrecht, Helmut. (2014). On the convergence of the combination technique. In Garcke, Jochen; Pflüger, Dirk (ed.), Sparse Grids and Applications - Munich 2012 (Lecture Notes in Computational Science and Engineering, p. S. 55–74). Springer. https://doi.org/10.1007/978-3-319-04537-5_3

URLs
URLs

Harbrecht, Helmut. (2014). Second moment analysis for Robin boundary value problems on random domains. In Singular Phenomena and Scaling in Mathematical Models (p. S. 361–382). Springer. https://doi.org/10.1007/978-3-319-00786-1_16

URLs
URLs