Publications
21 found
Show per page
Galbusera, Luca, Bellement, Gwendoline, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.28.625836
, & van Nimwegen, Erik. (2024). Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage [Posted-content]. In
Galbusera, Luca, Bellement, Gwendoline, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.28.625836
, & van Nimwegen, Erik. (2024). Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage [Posted-content]. In
Gervais, T., Kscheschinski, B., Mell, M., Goepfert, N., van Nimwegen, E., & Julou, T. (2024). E. coli leverages growth arrest to remodel its proteome upon entry into starvation [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.29.582700
Gervais, T., Kscheschinski, B., Mell, M., Goepfert, N., van Nimwegen, E., & Julou, T. (2024). E. coli leverages growth arrest to remodel its proteome upon entry into starvation [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.29.582700
Julou, T., Gervais, T., & van Nimwegen, E. (2022). Growth rate controls the sensitivity of gene regulatory circuits [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.03.486858
Julou, T., Gervais, T., & van Nimwegen, E. (2022). Growth rate controls the sensitivity of gene regulatory circuits [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.03.486858
Kolter, Roberto, Balaban, Nathalie, & Current Biology, 32(12), R599–R605. https://doi.org/10.1016/j.cub.2022.05.005
. (2022). Bacteria grow swiftly and live thriftily.
Kolter, Roberto, Balaban, Nathalie, & Current Biology, 32(12), R599–R605. https://doi.org/10.1016/j.cub.2022.05.005
. (2022). Bacteria grow swiftly and live thriftily.
Sobota, Malgorzata, Rodilla Ramirez, Pilar Natalia, Cambré, Alexander, Rocker, Andrea, Mortier, Julien, Gervais, Théo, Haas, Tiphaine, Cornillet, Delphine, Chauvin, Dany, Hug, Isabelle, PLoS Biology, 20(4), e3001608. https://doi.org/10.1371/journal.pbio.3001608
, Aertsen, Abram, & Diard, Médéric. (2022). The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium.
Sobota, Malgorzata, Rodilla Ramirez, Pilar Natalia, Cambré, Alexander, Rocker, Andrea, Mortier, Julien, Gervais, Théo, Haas, Tiphaine, Cornillet, Delphine, Chauvin, Dany, Hug, Isabelle, PLoS Biology, 20(4), e3001608. https://doi.org/10.1371/journal.pbio.3001608
, Aertsen, Abram, & Diard, Médéric. (2022). The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium.
Urchueguía, Arantxa, Galbusera, Luca, Chauvin, Dany, Bellement, Gwendoline, PLoS Biology, 19(12), e3001491. https://doi.org/10.1371/journal.pbio.3001491
, & van Nimwegen, Erik. (2021). Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network.
Urchueguía, Arantxa, Galbusera, Luca, Chauvin, Dany, Bellement, Gwendoline, PLoS Biology, 19(12), e3001491. https://doi.org/10.1371/journal.pbio.3001491
, & van Nimwegen, Erik. (2021). Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network.
Galbusera, Luca, Bellement-Theroue, Gwendoline, Urchueguia, Arantxa, PLoS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233
, & van Nimwegen, Erik. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria.
Galbusera, Luca, Bellement-Theroue, Gwendoline, Urchueguia, Arantxa, PLoS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233
, & van Nimwegen, Erik. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria.
Single-cell data on lac operon induction by lactose in E. coli ( ; vanNimwegen, Erik;, Ed.) [Data set]. https://doi.org/10.5281/zenodo.3894719
, & vanNimwegen, Erik. (2020).
Single-cell data on lac operon induction by lactose in E. coli ( ; vanNimwegen, Erik;, Ed.) [Data set]. https://doi.org/10.5281/zenodo.3894719
, & vanNimwegen, Erik. (2020).
PLoS Biology, 18(12), e3000952. https://doi.org/10.1371/journal.pbio.3000952
, Zweifel, Ludovit, Blank, Diana, Fiori, Athos, & van Nimwegen, Erik. (2020). Subpopulations of sensorless bacteria drive fitness in fluctuating environments.
PLoS Biology, 18(12), e3000952. https://doi.org/10.1371/journal.pbio.3000952
, Zweifel, Ludovit, Blank, Diana, Fiori, Athos, & van Nimwegen, Erik. (2020). Subpopulations of sensorless bacteria drive fitness in fluctuating environments.
Witz, Guillaume, Response to comment on textquoteleftInitiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanismtextquoteright. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.227694
, & an Nimwegen, Erik. (2020).
Witz, Guillaume, Response to comment on textquoteleftInitiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanismtextquoteright. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.227694
, & an Nimwegen, Erik. (2020).
Urchueguía, A., Galbusera, L., Bellement, G., Julou, T., & Nimwegen, E. v. (2019). Noise propagation shapes condition-dependent gene expression noise in Escherichia coli [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/795369
Urchueguía, A., Galbusera, L., Bellement, G., Julou, T., & Nimwegen, E. v. (2019). Noise propagation shapes condition-dependent gene expression noise in Escherichia coli [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/795369
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & Nimwegen, E. v. (2019). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/793976
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & Nimwegen, E. v. (2019). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/793976
Witz, Guillaume, van Nimwegen, Erik, & eLife, 8, e48063. https://doi.org/10.7554/elife.48063
. (2019). Initiation of chromosome replication controls both division and replication cycles in; E. coli; through a double-adder mechanism.
Witz, Guillaume, van Nimwegen, Erik, & eLife, 8, e48063. https://doi.org/10.7554/elife.48063
. (2019). Initiation of chromosome replication controls both division and replication cycles in; E. coli; through a double-adder mechanism.
Kaiser, Matthias, Jug, Florian, Nature Communications, 9(1), 212. https://doi.org/10.1038/s41467-017-02505-0
, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin K., Myers, Gene, & van Nimwegen, Erik. (2018). Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software.
Kaiser, Matthias, Jug, Florian, Nature Communications, 9(1), 212. https://doi.org/10.1038/s41467-017-02505-0
, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin K., Myers, Gene, & van Nimwegen, Erik. (2018). Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software.
Kaiser, Matthias, Jug, Florian, Analysis of lac operon induction with single cell resolution using the DIMM microfluidics chip and the MoMA software (Kaiser, Matthias; Jug, Florian; ; Deshpande, Siddharth; Pfohl, Thomas; Silander, Olin; Myers, Gene; van Nimwegen, Erik, Ed.) [Data set]. https://doi.org/10.5281/zenodo.746230
, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin, Myers, Gene, & vanNimwegen, Erik. (2017).
Kaiser, Matthias, Jug, Florian, Analysis of lac operon induction with single cell resolution using the DIMM microfluidics chip and the MoMA software (Kaiser, Matthias; Jug, Florian; ; Deshpande, Siddharth; Pfohl, Thomas; Silander, Olin; Myers, Gene; van Nimwegen, Erik, Ed.) [Data set]. https://doi.org/10.5281/zenodo.746230
, Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin, Myers, Gene, & vanNimwegen, Erik. (2017).
Denoth Lippuner, Annina, FEMS Microbiology Reviews, 38(2), 300–325. https://doi.org/10.1111/1574-6976.12060
, & Barral, Yves. (2014). Budding yeast as a model organism to study the effects of age.
Denoth Lippuner, Annina, FEMS Microbiology Reviews, 38(2), 300–325. https://doi.org/10.1111/1574-6976.12060
, & Barral, Yves. (2014). Budding yeast as a model organism to study the effects of age.
Coquel, Anne-Sophie, Jacob, Jean-Pascal, Primet, Mael, Demarez, Alice, Dimiccoli, Mariella, PLoS Computational Biology, 9(4), e1003038. https://doi.org/10.1371/journal.pcbi.1003038
, Moisan, Lionel, Lindner, Ariel B., & Berry, Hugues. (2013). Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.
Coquel, Anne-Sophie, Jacob, Jean-Pascal, Primet, Mael, Demarez, Alice, Dimiccoli, Mariella, PLoS Computational Biology, 9(4), e1003038. https://doi.org/10.1371/journal.pcbi.1003038
, Moisan, Lionel, Lindner, Ariel B., & Berry, Hugues. (2013). Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.
Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12577–12582. https://doi.org/10.1073/pnas.1301428110
, Mora, Thierry, Guillon, Laurent, Croquette, Vincent, Schalk, Isabelle J., Bensimon, David, & Desprat, Nicolas. (2013). Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies.
Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12577–12582. https://doi.org/10.1073/pnas.1301428110
, Mora, Thierry, Guillon, Laurent, Croquette, Vincent, Schalk, Isabelle J., Bensimon, David, & Desprat, Nicolas. (2013). Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies.
Review of Scientific Instruments, 83(7), 74301. https://doi.org/10.1063/1.4729796
, Desprat, Nicolas, Bensimon, David, & Croquette, Vincent. (2012). Monitoring microbial population dynamics at low densities.
Review of Scientific Instruments, 83(7), 74301. https://doi.org/10.1063/1.4729796
, Desprat, Nicolas, Bensimon, David, & Croquette, Vincent. (2012). Monitoring microbial population dynamics at low densities.
Mosconi, Francesco, Nonlinearity, 21(8), T131–T147. https://doi.org/10.1088/0951-7715/21/8/t03
, Desprat, Nicolas, Sinha, Deepak Kumar, Allemand, Jean-François, Croquette, Vincent, & Bensimon, David. (2008). Some nonlinear challenges in biology.
Mosconi, Francesco, Nonlinearity, 21(8), T131–T147. https://doi.org/10.1088/0951-7715/21/8/t03
, Desprat, Nicolas, Sinha, Deepak Kumar, Allemand, Jean-François, Croquette, Vincent, & Bensimon, David. (2008). Some nonlinear challenges in biology.
New Phytologist, 166(2), 639–653. https://doi.org/10.1111/j.1469-8137.2005.01364.x
, Burghardt, Bastian, Gebauer, Gerhard, Berveiller, Daniel, Damesin, Claire, & Selosse, Marc-André. (2005). Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium.
New Phytologist, 166(2), 639–653. https://doi.org/10.1111/j.1469-8137.2005.01364.x
, Burghardt, Bastian, Gebauer, Gerhard, Berveiller, Daniel, Damesin, Claire, & Selosse, Marc-André. (2005). Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium.