Publications
24 found
Show per page
Luca Galbusera, Gwendoline Bellement-Theroue, , & Erik van Nimwegen. (2025). Data for the figures of the article “Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage” (v1 ed.) [dataset]. https://doi.org/10.5281/zenodo.15547214
Luca Galbusera, Gwendoline Bellement-Theroue, , & Erik van Nimwegen. (2025). Data for the figures of the article “Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage” (v1 ed.) [dataset]. https://doi.org/10.5281/zenodo.15547214
Galbusera, Luca, Bellement-Theroue, Gwendoline, , & van Nimwegen, Erik. (2025). Rapid Transcription Factor Fluctuations Drive Nonequilibrium Gene Regulatory Dynamics in Bacteria [Journal-article]. PRX Life, 3(3). https://doi.org/10.1103/nvk3-jsvm
Galbusera, Luca, Bellement-Theroue, Gwendoline, , & van Nimwegen, Erik. (2025). Rapid Transcription Factor Fluctuations Drive Nonequilibrium Gene Regulatory Dynamics in Bacteria [Journal-article]. PRX Life, 3(3). https://doi.org/10.1103/nvk3-jsvm
, Gervais, Théo, de Groot, Daan, & van Nimwegen, Erik. (2025). Growth rate controls the sensitivity of gene regulatory circuits [Journal-article]. Science Advances, 11(17). https://doi.org/10.1126/sciadv.adu9279
, Gervais, Théo, de Groot, Daan, & van Nimwegen, Erik. (2025). Growth rate controls the sensitivity of gene regulatory circuits [Journal-article]. Science Advances, 11(17). https://doi.org/10.1126/sciadv.adu9279
Galbusera, Luca, Bellement, Gwendoline, , & van Nimwegen, Erik. (2024). Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.28.625836
Galbusera, Luca, Bellement, Gwendoline, , & van Nimwegen, Erik. (2024). Transient transcription factor depletions explain diverse single-cell responses of LexA target promoters to mild DNA damage [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.28.625836
Gervais, Théo, Kscheschinski, Bjoern, Mell, Michael, Goepfert, Nevil, van Nimwegen, Erik, & . (2024). E. coli prepares for starvation by dramatically remodeling its proteome in the first hours after loss of nutrients [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.29.582700
Gervais, Théo, Kscheschinski, Bjoern, Mell, Michael, Goepfert, Nevil, van Nimwegen, Erik, & . (2024). E. coli prepares for starvation by dramatically remodeling its proteome in the first hours after loss of nutrients [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.29.582700
Julou, T., Gervais, T., & van Nimwegen, E. (2022). Growth rate controls the sensitivity of gene regulatory circuits [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.03.486858
Julou, T., Gervais, T., & van Nimwegen, E. (2022). Growth rate controls the sensitivity of gene regulatory circuits [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.04.03.486858
Kolter, Roberto, Balaban, Nathalie, & . (2022). Bacteria grow swiftly and live thriftily. Current Biology, 32(12), R599–R605. https://doi.org/10.1016/j.cub.2022.05.005
Kolter, Roberto, Balaban, Nathalie, & . (2022). Bacteria grow swiftly and live thriftily. Current Biology, 32(12), R599–R605. https://doi.org/10.1016/j.cub.2022.05.005
Sobota, Malgorzata, Rodilla Ramirez, Pilar Natalia, Cambré, Alexander, Rocker, Andrea, Mortier, Julien, Gervais, Théo, Haas, Tiphaine, Cornillet, Delphine, Chauvin, Dany, Hug, Isabelle, , Aertsen, Abram, & Diard, Médéric. (2022). The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biology, 20(4), e3001608. https://doi.org/10.1371/journal.pbio.3001608
Sobota, Malgorzata, Rodilla Ramirez, Pilar Natalia, Cambré, Alexander, Rocker, Andrea, Mortier, Julien, Gervais, Théo, Haas, Tiphaine, Cornillet, Delphine, Chauvin, Dany, Hug, Isabelle, , Aertsen, Abram, & Diard, Médéric. (2022). The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biology, 20(4), e3001608. https://doi.org/10.1371/journal.pbio.3001608
Urchueguía, Arantxa, Galbusera, Luca, Chauvin, Dany, Bellement, Gwendoline, , & van Nimwegen, Erik. (2021). Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network. PLoS Biology, 19(12), e3001491. https://doi.org/10.1371/journal.pbio.3001491
Urchueguía, Arantxa, Galbusera, Luca, Chauvin, Dany, Bellement, Gwendoline, , & van Nimwegen, Erik. (2021). Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network. PLoS Biology, 19(12), e3001491. https://doi.org/10.1371/journal.pbio.3001491
Galbusera, Luca, Bellement-Theroue, Gwendoline, Urchueguia, Arantxa, , & van Nimwegen, Erik. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLoS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233
Galbusera, Luca, Bellement-Theroue, Gwendoline, Urchueguia, Arantxa, , & van Nimwegen, Erik. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLoS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233
, & vanNimwegen, Erik. (2020). Single-cell data on lac operon induction by lactose in E. coli (; vanNimwegen, Erik;, Ed.) [dataset]. https://doi.org/10.5281/zenodo.3894719
, & vanNimwegen, Erik. (2020). Single-cell data on lac operon induction by lactose in E. coli (; vanNimwegen, Erik;, Ed.) [dataset]. https://doi.org/10.5281/zenodo.3894719
, Zweifel, Ludovit, Blank, Diana, Fiori, Athos, & van Nimwegen, Erik. (2020). Subpopulations of sensorless bacteria drive fitness in fluctuating environments. PLoS Biology, 18(12), e3000952. https://doi.org/10.1371/journal.pbio.3000952
, Zweifel, Ludovit, Blank, Diana, Fiori, Athos, & van Nimwegen, Erik. (2020). Subpopulations of sensorless bacteria drive fitness in fluctuating environments. PLoS Biology, 18(12), e3000952. https://doi.org/10.1371/journal.pbio.3000952
Witz, Guillaume, , & an Nimwegen, Erik. (2020). Response to comment on textquoteleftInitiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanismtextquoteright. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.227694
Witz, Guillaume, , & an Nimwegen, Erik. (2020). Response to comment on textquoteleftInitiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanismtextquoteright. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.227694
Urchueguía, A., Galbusera, L., Bellement, G., Julou, T., & Nimwegen, E. v. (2019). Noise propagation shapes condition-dependent gene expression noise in Escherichia coli [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/795369
Urchueguía, A., Galbusera, L., Bellement, G., Julou, T., & Nimwegen, E. v. (2019). Noise propagation shapes condition-dependent gene expression noise in Escherichia coli [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/795369
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & Nimwegen, E. v. (2019). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/793976
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & Nimwegen, E. v. (2019). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/793976
Witz, Guillaume, van Nimwegen, Erik, & . (2019). Initiation of chromosome replication controls both division and replication cycles in; E. coli; through a double-adder mechanism. eLife, 8, e48063. https://doi.org/10.7554/elife.48063
Witz, Guillaume, van Nimwegen, Erik, & . (2019). Initiation of chromosome replication controls both division and replication cycles in; E. coli; through a double-adder mechanism. eLife, 8, e48063. https://doi.org/10.7554/elife.48063
Kaiser, Matthias, Jug, Florian, , Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin K., Myers, Gene, & van Nimwegen, Erik. (2018). Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nature Communications, 9(1), 212. https://doi.org/10.1038/s41467-017-02505-0
Kaiser, Matthias, Jug, Florian, , Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin K., Myers, Gene, & van Nimwegen, Erik. (2018). Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nature Communications, 9(1), 212. https://doi.org/10.1038/s41467-017-02505-0
Kaiser, Matthias, Jug, Florian, , Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin, Myers, Gene, & vanNimwegen, Erik. (2017). Analysis of lac operon induction with single cell resolution using the DIMM microfluidics chip and the MoMA software (Kaiser, Matthias; Jug, Florian; ; Deshpande, Siddharth; Pfohl, Thomas; Silander, Olin; Myers, Gene; van Nimwegen, Erik, Ed.) [dataset]. https://doi.org/10.5281/zenodo.746230
Kaiser, Matthias, Jug, Florian, , Deshpande, Siddharth, Pfohl, Thomas, Silander, Olin, Myers, Gene, & vanNimwegen, Erik. (2017). Analysis of lac operon induction with single cell resolution using the DIMM microfluidics chip and the MoMA software (Kaiser, Matthias; Jug, Florian; ; Deshpande, Siddharth; Pfohl, Thomas; Silander, Olin; Myers, Gene; van Nimwegen, Erik, Ed.) [dataset]. https://doi.org/10.5281/zenodo.746230
Denoth Lippuner, Annina, , & Barral, Yves. (2014). Budding yeast as a model organism to study the effects of age. FEMS Microbiology Reviews, 38(2), 25–300. https://doi.org/10.1111/1574-6976.12060
Denoth Lippuner, Annina, , & Barral, Yves. (2014). Budding yeast as a model organism to study the effects of age. FEMS Microbiology Reviews, 38(2), 25–300. https://doi.org/10.1111/1574-6976.12060
Coquel, Anne-Sophie, Jacob, Jean-Pascal, Primet, Mael, Demarez, Alice, Dimiccoli, Mariella, , Moisan, Lionel, Lindner, Ariel B., & Berry, Hugues. (2013). Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Computational Biology, 9(4), e1003038. https://doi.org/10.1371/journal.pcbi.1003038
Coquel, Anne-Sophie, Jacob, Jean-Pascal, Primet, Mael, Demarez, Alice, Dimiccoli, Mariella, , Moisan, Lionel, Lindner, Ariel B., & Berry, Hugues. (2013). Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Computational Biology, 9(4), e1003038. https://doi.org/10.1371/journal.pcbi.1003038
, Mora, Thierry, Guillon, Laurent, Croquette, Vincent, Schalk, Isabelle J., Bensimon, David, & Desprat, Nicolas. (2013). Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 82–12577. https://doi.org/10.1073/pnas.1301428110
, Mora, Thierry, Guillon, Laurent, Croquette, Vincent, Schalk, Isabelle J., Bensimon, David, & Desprat, Nicolas. (2013). Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 82–12577. https://doi.org/10.1073/pnas.1301428110
, Desprat, Nicolas, Bensimon, David, & Croquette, Vincent. (2012). Monitoring microbial population dynamics at low densities. Review of Scientific Instruments, 83(7), 74301. https://doi.org/10.1063/1.4729796
, Desprat, Nicolas, Bensimon, David, & Croquette, Vincent. (2012). Monitoring microbial population dynamics at low densities. Review of Scientific Instruments, 83(7), 74301. https://doi.org/10.1063/1.4729796
Mosconi, Francesco, , Desprat, Nicolas, Sinha, Deepak Kumar, Allemand, Jean-François, Croquette, Vincent, & Bensimon, David. (2008). Some nonlinear challenges in biology. Nonlinearity, 21(8), T131–T147. https://doi.org/10.1088/0951-7715/21/8/t03
Mosconi, Francesco, , Desprat, Nicolas, Sinha, Deepak Kumar, Allemand, Jean-François, Croquette, Vincent, & Bensimon, David. (2008). Some nonlinear challenges in biology. Nonlinearity, 21(8), T131–T147. https://doi.org/10.1088/0951-7715/21/8/t03
, Burghardt, Bastian, Gebauer, Gerhard, Berveiller, Daniel, Damesin, Claire, & Selosse, Marc-André. (2005). Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist, 166(2), 53–639. https://doi.org/10.1111/j.1469-8137.2005.01364.x
, Burghardt, Bastian, Gebauer, Gerhard, Berveiller, Daniel, Damesin, Claire, & Selosse, Marc-André. (2005). Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist, 166(2), 53–639. https://doi.org/10.1111/j.1469-8137.2005.01364.x