Publications
234 found
Show per page
Hamaguchi, Rei, Graf, Damian Alexander, Kinbara, Kazushi, & (2025). Programmable Artificial-Cellular Membrane Dynamics via Ring-Closing Metathesis. Journal of the American Chemical Society, 147(43), 39204–39211. https://doi.org/10.1021/jacs.5c10187
Hamaguchi, Rei, Graf, Damian Alexander, Kinbara, Kazushi, & (2025). Programmable Artificial-Cellular Membrane Dynamics via Ring-Closing Metathesis. Journal of the American Chemical Society, 147(43), 39204–39211. https://doi.org/10.1021/jacs.5c10187
Vornholt, Tobias, Stockinger, Peter, Mutný, Mojmír, Jeschek, Markus, Nestl, Bettina, Oberdorfer, Gustav, Osuna, Silvia, Pleiss, Jürgen, Welner, Ditte Hededam, Krause, Andreas, Buller, Rebecca, & (2025). Of Revolutions and Roadblocks: The Emerging Role of Machine Learning in Biocatalysis. ACS Central Science, 11(10), 1828–1838. https://doi.org/10.1021/acscentsci.5c00949
Vornholt, Tobias, Stockinger, Peter, Mutný, Mojmír, Jeschek, Markus, Nestl, Bettina, Oberdorfer, Gustav, Osuna, Silvia, Pleiss, Jürgen, Welner, Ditte Hededam, Krause, Andreas, Buller, Rebecca, & (2025). Of Revolutions and Roadblocks: The Emerging Role of Machine Learning in Biocatalysis. ACS Central Science, 11(10), 1828–1838. https://doi.org/10.1021/acscentsci.5c00949
Zhang, Xiang, Chen, Dongping, Álvarez, María, & (2025). Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer. Nature, 644(8076), 381–390. https://doi.org/10.1038/s41586-025-09308-0
Zhang, Xiang, Chen, Dongping, Álvarez, María, & (2025). Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer. Nature, 644(8076), 381–390. https://doi.org/10.1038/s41586-025-09308-0
Stuyver, Thijs, Protsenko, Olena, Avagliano, Davide, & . (2025). What Can be Learned From the Electrostatic Environments Within Nitrogenase Enzymes? Chemistry – A European Journal, 31(40). https://doi.org/10.1002/chem.202501616
Stuyver, Thijs, Protsenko, Olena, Avagliano, Davide, & . (2025). What Can be Learned From the Electrostatic Environments Within Nitrogenase Enzymes? Chemistry – A European Journal, 31(40). https://doi.org/10.1002/chem.202501616
Slanska, Michaela, Haider, Sumbul A., Kardashliev, Tsvetan, Huck, Dhanu, Liu, Chang C., & (2025). Biotin-Independent Saccharomyces cerevisiae with Enhanced Growth: Engineering an Acetyl-CoA Carboxylase Bypass. ACS Synthetic Biology, 14(6), 2162–2169. https://doi.org/10.1021/acssynbio.5c00082
Slanska, Michaela, Haider, Sumbul A., Kardashliev, Tsvetan, Huck, Dhanu, Liu, Chang C., & (2025). Biotin-Independent Saccharomyces cerevisiae with Enhanced Growth: Engineering an Acetyl-CoA Carboxylase Bypass. ACS Synthetic Biology, 14(6), 2162–2169. https://doi.org/10.1021/acssynbio.5c00082
Casas‐Rodrigo, Ivan, Vornholt, Tobias, Castiglione, Kathrin, Roberts, Tania Michelle, Jeschek, Markus, , & Panke, Sven. (2025). Permeabilisation of the Outer Membrane of Escherichia coli for Enhanced Transport of Complex Molecules. Microbial Biotechnology, 18(3). https://doi.org/10.1111/1751-7915.70122
Casas‐Rodrigo, Ivan, Vornholt, Tobias, Castiglione, Kathrin, Roberts, Tania Michelle, Jeschek, Markus, , & Panke, Sven. (2025). Permeabilisation of the Outer Membrane of Escherichia coli for Enhanced Transport of Complex Molecules. Microbial Biotechnology, 18(3). https://doi.org/10.1111/1751-7915.70122
Wang, Weijin, Tachibana, Ryo, Zhang, Kailin, Lau, Kelvin, Pojer, Florence, , & Hu, Xile. (2025). Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations. Angewandte Chemie - International Edition, 64(8). https://doi.org/10.1002/anie.202422783
Wang, Weijin, Tachibana, Ryo, Zhang, Kailin, Lau, Kelvin, Pojer, Florence, , & Hu, Xile. (2025). Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations. Angewandte Chemie - International Edition, 64(8). https://doi.org/10.1002/anie.202422783
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., Maier, Timm, & (2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article]. ACS Catalysis, 14(22), 17171–17179. https://doi.org/10.1021/acscatal.4c04163
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., Maier, Timm, & (2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article]. ACS Catalysis, 14(22), 17171–17179. https://doi.org/10.1021/acscatal.4c04163
Vornholt, Tobias, Leiss-Maier, Florian, Jeong, Woo Jae, Zeymer, Cathleen, Song, Woon Ju, Roelfes, Gerard, & (2024). Artificial metalloenzymes [Journal-article]. Nature Reviews Methods Primers, 4. https://doi.org/10.1038/s43586-024-00356-w
Vornholt, Tobias, Leiss-Maier, Florian, Jeong, Woo Jae, Zeymer, Cathleen, Song, Woon Ju, Roelfes, Gerard, & (2024). Artificial metalloenzymes [Journal-article]. Nature Reviews Methods Primers, 4. https://doi.org/10.1038/s43586-024-00356-w
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & (2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases. ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & (2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases. ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
Renno, Giacomo, Chen, Dongping, Zhang, Qing‐Xia, Gomila, Rosa M., Frontera, Antonio, Sakai, Naomi, , & Matile, Stefan. (2024). Pnictogen‐Bonding Enzymes [Journal-article]. Angewandte Chemie International Edition, 63(45). https://doi.org/10.1002/anie.202411347
Renno, Giacomo, Chen, Dongping, Zhang, Qing‐Xia, Gomila, Rosa M., Frontera, Antonio, Sakai, Naomi, , & Matile, Stefan. (2024). Pnictogen‐Bonding Enzymes [Journal-article]. Angewandte Chemie International Edition, 63(45). https://doi.org/10.1002/anie.202411347
Yu, Kun, & (2024). C–H functionalization reactions catalyzed by artificial metalloenzymes [Journal-article]. Journal of Inorganic Biochemistry, 258. https://doi.org/10.1016/j.jinorgbio.2024.112621
Yu, Kun, & (2024). C–H functionalization reactions catalyzed by artificial metalloenzymes [Journal-article]. Journal of Inorganic Biochemistry, 258. https://doi.org/10.1016/j.jinorgbio.2024.112621
Morita, Iori, & (2024). Recent advances in the design and optimization of artificial metalloenzymes [Journal-article]. Current Opinion in Chemical Biology, 81. https://doi.org/10.1016/j.cbpa.2024.102508
Morita, Iori, & (2024). Recent advances in the design and optimization of artificial metalloenzymes [Journal-article]. Current Opinion in Chemical Biology, 81. https://doi.org/10.1016/j.cbpa.2024.102508
Zhang, Xiang, Chen, Dongping, Stropp, Julian, Tachibana, Ryo, Zou, Zhi, Klose, Daniel, & (2024). Repurposing myoglobin into an abiological asymmetric ketoreductase [Journal-article]. Chem, 10(8), 2577–2589. https://doi.org/10.1016/j.chempr.2024.06.010
Zhang, Xiang, Chen, Dongping, Stropp, Julian, Tachibana, Ryo, Zou, Zhi, Klose, Daniel, & (2024). Repurposing myoglobin into an abiological asymmetric ketoreductase [Journal-article]. Chem, 10(8), 2577–2589. https://doi.org/10.1016/j.chempr.2024.06.010
Zou, Zhi, Higginson, Bradley, & (2024). Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond [Journal-article]. Chem, 10(8), 2373–2389. https://doi.org/10.1016/j.chempr.2024.07.007
Zou, Zhi, Higginson, Bradley, & (2024). Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond [Journal-article]. Chem, 10(8), 2373–2389. https://doi.org/10.1016/j.chempr.2024.07.007
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, Maier, Timm, Correia, Bruno E., & (2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article]. Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, Maier, Timm, Correia, Bruno E., & (2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article]. Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
Zou, Zhi, Wu, Shuke, Gerngross, Daniel, Lozhkin, Boris, Chen, Dongping, Tachibana, Ryo, & (2024). Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis [Journal-article]. Nature Synthesis, 3, 1113–1123. https://doi.org/10.1038/s44160-024-00575-9
Zou, Zhi, Wu, Shuke, Gerngross, Daniel, Lozhkin, Boris, Chen, Dongping, Tachibana, Ryo, & (2024). Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis [Journal-article]. Nature Synthesis, 3, 1113–1123. https://doi.org/10.1038/s44160-024-00575-9
Baiyoumy, Alain, Vinck, Robin, & (2024). The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging [Journal-article]. Helvetica Chimica Acta, 107(7). https://doi.org/10.1002/hlca.202400053
Baiyoumy, Alain, Vinck, Robin, & (2024). The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging [Journal-article]. Helvetica Chimica Acta, 107(7). https://doi.org/10.1002/hlca.202400053
Vornholt, Tobias, Mutný, Mojmír, Schmidt, Gregor W., Schellhaas, Christian, Tachibana, Ryo, Panke, Sven, , Krause, Andreas, & Jeschek, Markus. (2024). Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning [Journal-article]. ACS Central Science, 10(7), 1357–1370. https://doi.org/10.1021/acscentsci.4c00258
Vornholt, Tobias, Mutný, Mojmír, Schmidt, Gregor W., Schellhaas, Christian, Tachibana, Ryo, Panke, Sven, , Krause, Andreas, & Jeschek, Markus. (2024). Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning [Journal-article]. ACS Central Science, 10(7), 1357–1370. https://doi.org/10.1021/acscentsci.4c00258
Yu, Kun, Tachibana, Ryo, Rumo, Corentin, Igareta, Nico V., Zhang, Kailin, & (2024). Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes [Journal-article]. ChemCatChem, 16(17). https://doi.org/10.1002/cctc.202400365
Yu, Kun, Tachibana, Ryo, Rumo, Corentin, Igareta, Nico V., Zhang, Kailin, & (2024). Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes [Journal-article]. ChemCatChem, 16(17). https://doi.org/10.1002/cctc.202400365
Burgener, Simon, Zhang, Xiang, & (2024). Artificial Metalloenzymes for Enantioselective Catalysis. In Cossy, Janine (ed.), Comprehensive Chirality (pp. 71–110). Elsevier. https://doi.org/10.1016/b978-0-32-390644-9.00082-2
Burgener, Simon, Zhang, Xiang, & (2024). Artificial Metalloenzymes for Enantioselective Catalysis. In Cossy, Janine (ed.), Comprehensive Chirality (pp. 71–110). Elsevier. https://doi.org/10.1016/b978-0-32-390644-9.00082-2
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, , Mayor, Marcel, & Köhler, Valentin. (2024). NSPs: chromogenic linkers for fast, selective, and irreversible cysteine modification [Journal-article]. Chemical Science, 15(28), 10997–11004. https://doi.org/10.1039/d4sc01710b
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, , Mayor, Marcel, & Köhler, Valentin. (2024). NSPs: chromogenic linkers for fast, selective, and irreversible cysteine modification [Journal-article]. Chemical Science, 15(28), 10997–11004. https://doi.org/10.1039/d4sc01710b
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Burgener, Simon, Dačević, Bratislav, Zhang, Xiang, & (2023). Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes [Journal-article]. Biochemistry, 62(22), 3303–3311. https://doi.org/10.1021/acs.biochem.3c00376
Burgener, Simon, Dačević, Bratislav, Zhang, Xiang, & (2023). Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes [Journal-article]. Biochemistry, 62(22), 3303–3311. https://doi.org/10.1021/acs.biochem.3c00376
Vornholt, Tobias, Jončev, Zlatko, Sabatino, Valerio, Panke, Sven, , Sparr, Christof, & Jeschek, Markus. (2023). An Artificial Metalloenzyme for Atroposelective Metathesis** [Journal-article]. ChemCatChem, 15(23). https://doi.org/10.1002/cctc.202301113
Vornholt, Tobias, Jončev, Zlatko, Sabatino, Valerio, Panke, Sven, , Sparr, Christof, & Jeschek, Markus. (2023). An Artificial Metalloenzyme for Atroposelective Metathesis** [Journal-article]. ChemCatChem, 15(23). https://doi.org/10.1002/cctc.202301113
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, , Mayor, Marcel, & Köhler, Valentin. (2023). Click, Lock & Dye: a chromogenic handle for selective cysteine modification [Posted-content]. In Chemrxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-83gph
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, , Mayor, Marcel, & Köhler, Valentin. (2023). Click, Lock & Dye: a chromogenic handle for selective cysteine modification [Posted-content]. In Chemrxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-83gph
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & (2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & (2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
Tachibana, Ryo, Zhang, Kailin, Zou, Zhi, Burgener, Simon, & (2023). A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions [Journal-article]. ACS Sustainable Chemistry & Engineering, 11(33), 12336–12344. https://doi.org/10.1021/acssuschemeng.3c02402
Tachibana, Ryo, Zhang, Kailin, Zou, Zhi, Burgener, Simon, & (2023). A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions [Journal-article]. ACS Sustainable Chemistry & Engineering, 11(33), 12336–12344. https://doi.org/10.1021/acssuschemeng.3c02402
Beweries, Torsten, Buchmeiser, Michael R., Bugden, Frances E., Champness, Neil R., Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum, Goodall, Joe C., Gramage-Doria, Rafael, Greenhalgh, Mark, Gyton, Matthew, Ham, Rens, Kennepohl, Pierre, Lewandowski, Bartosz, Liu, Wei-Chun, Macgregor, Stuart A., Mahmudov, Kamran T., et al. (2023). Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion. Faraday Discussions, 244, 434–454. https://doi.org/10.1039/d3fd90012f
Beweries, Torsten, Buchmeiser, Michael R., Bugden, Frances E., Champness, Neil R., Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum, Goodall, Joe C., Gramage-Doria, Rafael, Greenhalgh, Mark, Gyton, Matthew, Ham, Rens, Kennepohl, Pierre, Lewandowski, Bartosz, Liu, Wei-Chun, Macgregor, Stuart A., Mahmudov, Kamran T., et al. (2023). Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion. Faraday Discussions, 244, 434–454. https://doi.org/10.1039/d3fd90012f
Beweries, Torsten, Buchmeiser, Michael R. R., Champness, Neil R. R., Costas, Miquel, Duhme-Klair, Anne, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum T. J., Goodall, Joe C. C., Gramage-Doria, Rafael, Gyton, Matthew, Ham, Rens, Herres-Pawlis, Sonja, Johnson, Chloe L. L., Kennepohl, Pierre, Lewandowski, Bartosz, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., et al. (2023). Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion. Faraday Discussions, 244, 96–118. https://doi.org/10.1039/d3fd90013d
Beweries, Torsten, Buchmeiser, Michael R. R., Champness, Neil R. R., Costas, Miquel, Duhme-Klair, Anne, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum T. J., Goodall, Joe C. C., Gramage-Doria, Rafael, Gyton, Matthew, Ham, Rens, Herres-Pawlis, Sonja, Johnson, Chloe L. L., Kennepohl, Pierre, Lewandowski, Bartosz, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., et al. (2023). Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion. Faraday Discussions, 244, 96–118. https://doi.org/10.1039/d3fd90013d
Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Greenhalgh, Mark, Kennepohl, Pierre, Kirrander, Adam, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., Martin-Fernandez, Carlos, Meeus, Eva, Perutz, Robin N., Poater, Albert N., Morris, Josh, Reek, Joost N. H., Rouse, Ian, Toste, Dean, Trujillo, Cristina, et al. (2023). Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion. Faraday Discussions, 244, 336–355. https://doi.org/10.1039/d3fd90015k
Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Greenhalgh, Mark, Kennepohl, Pierre, Kirrander, Adam, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., Martin-Fernandez, Carlos, Meeus, Eva, Perutz, Robin N., Poater, Albert N., Morris, Josh, Reek, Joost N. H., Rouse, Ian, Toste, Dean, Trujillo, Cristina, et al. (2023). Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion. Faraday Discussions, 244, 336–355. https://doi.org/10.1039/d3fd90015k
Igareta, Nico V., Tachibana, Ryo, Spiess, Daniel C., Peterson, Ryan L., & (2023). Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation. FARADAY DISCUSSIONS, 244, 9–20. https://doi.org/10.1039/d3fd00034f
Igareta, Nico V., Tachibana, Ryo, Spiess, Daniel C., Peterson, Ryan L., & (2023). Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation. FARADAY DISCUSSIONS, 244, 9–20. https://doi.org/10.1039/d3fd00034f
Meeus, Eva J., Igareta, Nico V., Morita, Iori, , de Bruin, Bas, & Reek, Joost N. H. (2023). A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis [Journal-article]. Chemical Communications, 59(98), 14567–14570. https://doi.org/10.1039/d3cc04723g
Meeus, Eva J., Igareta, Nico V., Morita, Iori, , de Bruin, Bas, & Reek, Joost N. H. (2023). A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis [Journal-article]. Chemical Communications, 59(98), 14567–14570. https://doi.org/10.1039/d3cc04723g
Wang, Weijin, Tachibana, Ryo, Zou, Zhi, Chen, Dongping, Zhang, Xiang, Lau, Kelvin, Pojer, Florence, , & Hu, Xile. (2023). Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology. Angewandte Chemie International Edition, e202311896. https://doi.org/10.1002/anie.202311896
Wang, Weijin, Tachibana, Ryo, Zou, Zhi, Chen, Dongping, Zhang, Xiang, Lau, Kelvin, Pojer, Florence, , & Hu, Xile. (2023). Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology. Angewandte Chemie International Edition, e202311896. https://doi.org/10.1002/anie.202311896
, & Copéret, Christophe. (2023). Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries. Chemical Reviews, 123(9), 5221–5224. https://doi.org/10.1021/acs.chemrev.3c00029
, & Copéret, Christophe. (2023). Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries. Chemical Reviews, 123(9), 5221–5224. https://doi.org/10.1021/acs.chemrev.3c00029
Waser, Valerie, Mukherjee, Manjistha, Tachibana, Ryo, Igareta, Nico V., & (2023). An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons. Journal of the American Chemical Society, 145(27), 14823–14830. https://doi.org/10.1021/jacs.3c03546
Waser, Valerie, Mukherjee, Manjistha, Tachibana, Ryo, Igareta, Nico V., & (2023). An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons. Journal of the American Chemical Society, 145(27), 14823–14830. https://doi.org/10.1021/jacs.3c03546
Waser, Valerie, & (2023). Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters. Coordination chemistry reviews, 495, 215377. https://doi.org/10.1016/j.ccr.2023.215377
Waser, Valerie, & (2023). Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters. Coordination chemistry reviews, 495, 215377. https://doi.org/10.1016/j.ccr.2023.215377
Yu, Kun, Zou, Zhi, Igareta, Nico V., Tachibana, Ryo, Bechter, Julia, Köhler, Valentin, Chen, Dongping, & (2023). Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds. Journal of the American Chemical Society, 145(30), 16621–16629. https://doi.org/10.1021/jacs.3c03969
Yu, Kun, Zou, Zhi, Igareta, Nico V., Tachibana, Ryo, Bechter, Julia, Köhler, Valentin, Chen, Dongping, & (2023). Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds. Journal of the American Chemical Society, 145(30), 16621–16629. https://doi.org/10.1021/jacs.3c03969
Burgener, Simon, & (2022). Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction. Chem Catalysis, 2(10), 2427–2429. https://doi.org/10.1016/j.checat.2022.09.031
Burgener, Simon, & (2022). Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction. Chem Catalysis, 2(10), 2427–2429. https://doi.org/10.1016/j.checat.2022.09.031
Hirschi, Stephan, , Meier, Wolfgang P., Müller, Daniel J., & Fotiadis, Dimitrios. (2022). Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chemical Reviews, 122(21), 16294–16328. https://doi.org/10.1021/acs.chemrev.2c00339
Hirschi, Stephan, , Meier, Wolfgang P., Müller, Daniel J., & Fotiadis, Dimitrios. (2022). Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chemical Reviews, 122(21), 16294–16328. https://doi.org/10.1021/acs.chemrev.2c00339
Rumo, Corentin, Stein, Alina, Klehr, Juliane, Tachibana, Ryo, Prescimone, Alessandro, Haussinger, Daniel, & (2022). An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion. Journal of the American Chemical Society, 144(26), 11676–11684. https://doi.org/10.1021/jacs.2c03311
Rumo, Corentin, Stein, Alina, Klehr, Juliane, Tachibana, Ryo, Prescimone, Alessandro, Haussinger, Daniel, & (2022). An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion. Journal of the American Chemical Society, 144(26), 11676–11684. https://doi.org/10.1021/jacs.2c03311
Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, , Kerzig, Christoph, & Wenger, Oliver S. (2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, , Kerzig, Christoph, & Wenger, Oliver S. (2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
Stein, Alina, Liang, Alexandria Deliz, Sahin, Reyhan, & (2022). Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination. Journal of Organometallic Chemistry, 962, 122272. https://doi.org/10.1016/j.jorganchem.2022.122272
Stein, Alina, Liang, Alexandria Deliz, Sahin, Reyhan, & (2022). Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination. Journal of Organometallic Chemistry, 962, 122272. https://doi.org/10.1016/j.jorganchem.2022.122272
Vallapurackal, Jaicy, Stucki, Ariane, Liang, Alexandria Deliz, Klehr, Juliane, Dittrich, Petra S., & (2022). Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions. Angewandte Chemie International Edition, 61(48), e202207328. https://doi.org/10.1002/anie.202207328
Vallapurackal, Jaicy, Stucki, Ariane, Liang, Alexandria Deliz, Klehr, Juliane, Dittrich, Petra S., & (2022). Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions. Angewandte Chemie International Edition, 61(48), e202207328. https://doi.org/10.1002/anie.202207328
Baiyoumy, Alain, Vallapurackal, Jaicy, Schwizer, Fabian, Heinisch, Tillmann, Kardashliev, Tsvetan, Held, Martin, Panke, Sven, & (2021). Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein. ACS Catalysis, 11(17), 10705–10712. https://doi.org/10.1021/acscatal.1c02405
Baiyoumy, Alain, Vallapurackal, Jaicy, Schwizer, Fabian, Heinisch, Tillmann, Kardashliev, Tsvetan, Held, Martin, Panke, Sven, & (2021). Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein. ACS Catalysis, 11(17), 10705–10712. https://doi.org/10.1021/acscatal.1c02405
Christoffel, Fadri, Igareta, Nico, Pellizzoni, Michela M., Tiessler-Sala, Laura, Lozhkin, Boris, Spiess, Daniel C., Lledos, Agusti, Marechal, Jean-Didier, Peterson, Ryan L., & (2021). Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis, 4(8), 643–+. https://doi.org/10.1038/s41929-021-00651-9
Christoffel, Fadri, Igareta, Nico, Pellizzoni, Michela M., Tiessler-Sala, Laura, Lozhkin, Boris, Spiess, Daniel C., Lledos, Agusti, Marechal, Jean-Didier, Peterson, Ryan L., & (2021). Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis, 4(8), 643–+. https://doi.org/10.1038/s41929-021-00651-9
Di Leone, Stefano, Vallapurackal, Jaicy, Yorulmaz Avsar, Saziye, Kyropolou, Myrto, , Palivan, Cornelia G., & Meier, Wolfgang. (2021). Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers. Biomacromolecules, 22(7), 3005–3016. https://doi.org/10.1021/acs.biomac.1c00424
Di Leone, Stefano, Vallapurackal, Jaicy, Yorulmaz Avsar, Saziye, Kyropolou, Myrto, , Palivan, Cornelia G., & Meier, Wolfgang. (2021). Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers. Biomacromolecules, 22(7), 3005–3016. https://doi.org/10.1021/acs.biomac.1c00424
Fischer, Sandro, , & Liang, Alexandria D. (2021). Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catalysis, 11(10), 6343–6347. https://doi.org/10.1021/acscatal.1c01470
Fischer, Sandro, , & Liang, Alexandria D. (2021). Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catalysis, 11(10), 6343–6347. https://doi.org/10.1021/acscatal.1c01470
Lozhkin, Boris, & (2021). A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis. Helvetica Chimica Acta, 104(5), e2100024. https://doi.org/10.1002/hlca.202100024
Lozhkin, Boris, & (2021). A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis. Helvetica Chimica Acta, 104(5), e2100024. https://doi.org/10.1002/hlca.202100024
Lozhkin, Boris, & (2021). Bioorthogonal strategies for the in vivo synthesis or release of drugs. Bioorganic & medicinal chemistry, 45, 116310. https://doi.org/10.1016/j.bmc.2021.116310
Lozhkin, Boris, & (2021). Bioorthogonal strategies for the in vivo synthesis or release of drugs. Bioorganic & medicinal chemistry, 45, 116310. https://doi.org/10.1016/j.bmc.2021.116310
Miró-Vinyals, Carla, Stein, Alina, Fischer, Sandro, , & Deliz Liang, Alexandria. (2021). HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye. ChemBioChem, 22(24), 3398–3401. https://doi.org/10.1002/cbic.202100424
Miró-Vinyals, Carla, Stein, Alina, Fischer, Sandro, , & Deliz Liang, Alexandria. (2021). HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye. ChemBioChem, 22(24), 3398–3401. https://doi.org/10.1002/cbic.202100424
Stein, Alina, Chen, Dongping, Igareta, Nico V., Cotelle, Yoann, Rebelein, Johannes G., & (2021). A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS Central Science, 7(11), 1874–1884. https://doi.org/10.1021/acscentsci.1c00825
Stein, Alina, Chen, Dongping, Igareta, Nico V., Cotelle, Yoann, Rebelein, Johannes G., & (2021). A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS Central Science, 7(11), 1874–1884. https://doi.org/10.1021/acscentsci.1c00825
Stucki, Ariane, Vallapurackal, Jaicy, , & Dittrich, Petra S. (2021). Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey. Angewandte Chemie International Edition, 60(46), 24368–24387. https://doi.org/10.1002/anie.202016154
Stucki, Ariane, Vallapurackal, Jaicy, , & Dittrich, Petra S. (2021). Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey. Angewandte Chemie International Edition, 60(46), 24368–24387. https://doi.org/10.1002/anie.202016154
Vornholt, Tobias, Christoffel, Fadri, Pellizzoni, Michela M., Panke, Sven, , & Jeschek, Markus. (2021). Systematic engineering of artificial metalloenzymes for new-to-nature reactions. Science Advances, 7(4), eabe4208. https://doi.org/10.1126/sciadv.abe4208
Vornholt, Tobias, Christoffel, Fadri, Pellizzoni, Michela M., Panke, Sven, , & Jeschek, Markus. (2021). Systematic engineering of artificial metalloenzymes for new-to-nature reactions. Science Advances, 7(4), eabe4208. https://doi.org/10.1126/sciadv.abe4208
Klehr, Juliane, Zhao, Jingming, Kron, Amanda Santos, , & Köhler, Valentin. (2020). Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants. In Iranzo O., Roque A. (Ed.), Peptide and Protein Engineering (pp. 213–235). Humana. https://doi.org/10.1007/978-1-0716-0720-6_12
Klehr, Juliane, Zhao, Jingming, Kron, Amanda Santos, , & Köhler, Valentin. (2020). Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants. In Iranzo O., Roque A. (Ed.), Peptide and Protein Engineering (pp. 213–235). Humana. https://doi.org/10.1007/978-1-0716-0720-6_12
Bullock, R. Morris, Chen, Jingguang G., Gagliardi, Laura, Chirik, Paul J., Farha, Omar K., Hendon, Christopher H., Jones, Christopher W., Keith, John A., Klosin, Jerzy, Minteer, Shelley D., Morris, Robert H., Radosevich, Alexander T., Rauchfuss, Thomas B., Strotman, Neil A., Vojvodic, Aleksandra, , Yang, Jenny Y., & Surendranath, Yogesh. (2020). Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science, 369(6505), 3183. https://doi.org/10.1126/science.abc3183
Bullock, R. Morris, Chen, Jingguang G., Gagliardi, Laura, Chirik, Paul J., Farha, Omar K., Hendon, Christopher H., Jones, Christopher W., Keith, John A., Klosin, Jerzy, Minteer, Shelley D., Morris, Robert H., Radosevich, Alexander T., Rauchfuss, Thomas B., Strotman, Neil A., Vojvodic, Aleksandra, , Yang, Jenny Y., & Surendranath, Yogesh. (2020). Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science, 369(6505), 3183. https://doi.org/10.1126/science.abc3183
Davis, Holly Jane, Häussinger, Daniel, , & Okamoto, Yasunori. (2020). A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex. ChemCatChem, 12(18), 4512–4516. https://doi.org/10.1002/cctc.202000488
Davis, Holly Jane, Häussinger, Daniel, , & Okamoto, Yasunori. (2020). A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex. ChemCatChem, 12(18), 4512–4516. https://doi.org/10.1002/cctc.202000488
Miller, Kelsey R., Paretsky, Jonathan D., Follmer, Alec H., Heinisch, Tillmann, Mittra, Kaustuv, Gul, Sheraz, Kim, In-Sik, Fuller, Franklin D., Batyuk, Alexander, Sutherlin, Kyle D., Brewster, Aaron S., Bhowmick, Asmit, Sauter, Nicholas K., Kern, Jan, Yano, Junko, Green, Michael T., , & Borovik, A. S. (2020). Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases. Inorganic Chemistry, 59(9), 6000–6009. https://doi.org/10.1021/acs.inorgchem.9b03791
Miller, Kelsey R., Paretsky, Jonathan D., Follmer, Alec H., Heinisch, Tillmann, Mittra, Kaustuv, Gul, Sheraz, Kim, In-Sik, Fuller, Franklin D., Batyuk, Alexander, Sutherlin, Kyle D., Brewster, Aaron S., Bhowmick, Asmit, Sauter, Nicholas K., Kern, Jan, Yano, Junko, Green, Michael T., , & Borovik, A. S. (2020). Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases. Inorganic Chemistry, 59(9), 6000–6009. https://doi.org/10.1021/acs.inorgchem.9b03791
Sabatino, Valerio, Staub, Dario, & (2020). Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis. Catalysis Letters, 151(1), 7–17. https://doi.org/10.1007/s10562-020-03271-3
Sabatino, Valerio, Staub, Dario, & (2020). Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis. Catalysis Letters, 151(1), 7–17. https://doi.org/10.1007/s10562-020-03271-3
Samanta, Avik, Sabatino, Valerio, , & Walther, Andreas. (2020). Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nature Nanotechnology, 15(11), 914–921. https://doi.org/10.1038/s41565-020-0761-y
Samanta, Avik, Sabatino, Valerio, , & Walther, Andreas. (2020). Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nature Nanotechnology, 15(11), 914–921. https://doi.org/10.1038/s41565-020-0761-y
Serrano-Plana, Joan, Rumo, Corentin, Rebelein, Johannes G., Peterson, Ryan L., Barnet, Maxime, & (2020). Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology. Journal of the American Chemical Society, 142(24), 10617–10623. https://doi.org/10.1021/jacs.0c02788
Serrano-Plana, Joan, Rumo, Corentin, Rebelein, Johannes G., Peterson, Ryan L., Barnet, Maxime, & (2020). Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology. Journal of the American Chemical Society, 142(24), 10617–10623. https://doi.org/10.1021/jacs.0c02788
Bartolami, Eline, Basagiannis, Dimitris, Zong, Lili, Martinent, Remi, Okamoto, Yasunori, Laurent, Quentin, , Gonzalez-Gaitan, Marcos, Sakai, Naomi, & Matile, Stefan. (2019). Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots. Chemistry - A European Journal, 25(16), 4047–4051. https://doi.org/10.1002/chem.201805900
Bartolami, Eline, Basagiannis, Dimitris, Zong, Lili, Martinent, Remi, Okamoto, Yasunori, Laurent, Quentin, , Gonzalez-Gaitan, Marcos, Sakai, Naomi, & Matile, Stefan. (2019). Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots. Chemistry - A European Journal, 25(16), 4047–4051. https://doi.org/10.1002/chem.201805900
Cheng, Yangyang, Zong, Lili, Lopez-Andarias, Javier, Bartolami, Eline, Okamoto, Yasunori, , Sakai, Naomi, & Matile, Stefan. (2019). Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks. Angewandte Chemie International Edition, 58(28), 9522–9526. https://doi.org/10.1002/anie.201905003
Cheng, Yangyang, Zong, Lili, Lopez-Andarias, Javier, Bartolami, Eline, Okamoto, Yasunori, , Sakai, Naomi, & Matile, Stefan. (2019). Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks. Angewandte Chemie International Edition, 58(28), 9522–9526. https://doi.org/10.1002/anie.201905003
Davis, Holly J., & (2019). Artificial Metalloenzymes: Challenges and Opportunities. ACS Central Science, 5(7), 1120–1136. https://doi.org/10.1021/acscentsci.9b00397
Davis, Holly J., & (2019). Artificial Metalloenzymes: Challenges and Opportunities. ACS Central Science, 5(7), 1120–1136. https://doi.org/10.1021/acscentsci.9b00397
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., , & Wenger, Oliver S. (2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis. European Journal of Organic Chemistry, 10, 1288–1293. https://doi.org/10.1002/ejoc.201900777
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., , & Wenger, Oliver S. (2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis. European Journal of Organic Chemistry, 10, 1288–1293. https://doi.org/10.1002/ejoc.201900777
Hartwig, John F., & (2019). New “Cats” in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes. Accounts of Chemical Research, 52(5), 1145. https://doi.org/10.1021/acs.accounts.9b00154
Hartwig, John F., & (2019). New “Cats” in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes. Accounts of Chemical Research, 52(5), 1145. https://doi.org/10.1021/acs.accounts.9b00154
Liang, Alexandria Deliz, Serrano-Plana, Joan, Peterson, Ryan L., & (2019). Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Accounts of Chemical Research, 52(3), 585–595. https://doi.org/10.1021/acs.accounts.8b00618
Liang, Alexandria Deliz, Serrano-Plana, Joan, Peterson, Ryan L., & (2019). Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Accounts of Chemical Research, 52(3), 585–595. https://doi.org/10.1021/acs.accounts.8b00618
Rebelein, Johannes G., Cotelle, Yoann, Garabedian, Brett, & (2019). Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein. ACS Catalysis, 9(5), 4173–4178. https://doi.org/10.1021/acscatal.9b01006
Rebelein, Johannes G., Cotelle, Yoann, Garabedian, Brett, & (2019). Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein. ACS Catalysis, 9(5), 4173–4178. https://doi.org/10.1021/acscatal.9b01006
Sabatino, Valerio, Rebelein, Johannes G., & (2019). “Close-to-Release”: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis. Journal of the American Chemical Society, 141(43), 17048–17052. https://doi.org/10.1021/jacs.9b07193
Sabatino, Valerio, Rebelein, Johannes G., & (2019). “Close-to-Release”: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis. Journal of the American Chemical Society, 141(43), 17048–17052. https://doi.org/10.1021/jacs.9b07193
Sabatino, Valerio, & (2019). Aqueous olefin metathesis: recent developments and applications. Beilstein Journal of Organic Chemistry, 15, 445–468. https://doi.org/10.3762/bjoc.15.39
Sabatino, Valerio, & (2019). Aqueous olefin metathesis: recent developments and applications. Beilstein Journal of Organic Chemistry, 15, 445–468. https://doi.org/10.3762/bjoc.15.39
Wu, Shuke, Zhou, Yi, Gerngross, Daniel, Jeschek, Markus, & (2019). Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nature Communications, 10(1), 5060. https://doi.org/10.1038/s41467-019-13071-y
Wu, Shuke, Zhou, Yi, Gerngross, Daniel, Jeschek, Markus, & (2019). Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nature Communications, 10(1), 5060. https://doi.org/10.1038/s41467-019-13071-y
Wu, Shuke, Zhou, Yi, Rebelein, Johannes G., Kuhn, Miriam, Mallin, Hendrik, Zhao, Jingming, Igareta, Nico V., & (2019). Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. Journal of the American Chemical Society, 141(40), 15869–15878. https://doi.org/10.1021/jacs.9b06923
Wu, Shuke, Zhou, Yi, Rebelein, Johannes G., Kuhn, Miriam, Mallin, Hendrik, Zhao, Jingming, Igareta, Nico V., & (2019). Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. Journal of the American Chemical Society, 141(40), 15869–15878. https://doi.org/10.1021/jacs.9b06923
Christoffel, Fadri, & (2018). Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review. Catalysis letters, 148(2), 489–511. https://doi.org/10.1007/s10562-017-2285-0
Christoffel, Fadri, & (2018). Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review. Catalysis letters, 148(2), 489–511. https://doi.org/10.1007/s10562-017-2285-0
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., , & Wenger, Oliver S. (2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network. Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., , & Wenger, Oliver S. (2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network. Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
Heinisch, Tillmann, Schwizer, Fabian, Garabedian, Brett, Csibra, Eszter, Jeschek, Markus, Vallapurackal, Jaicy, Pinheiro, Vitor B., Marlière, Philippe, Panke, Sven, & (2018). E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chemical Science, 9(24), 5383–5388. https://doi.org/10.1039/c8sc00484f
Heinisch, Tillmann, Schwizer, Fabian, Garabedian, Brett, Csibra, Eszter, Jeschek, Markus, Vallapurackal, Jaicy, Pinheiro, Vitor B., Marlière, Philippe, Panke, Sven, & (2018). E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chemical Science, 9(24), 5383–5388. https://doi.org/10.1039/c8sc00484f
Hestericová, Martina, Heinisch, Tillman, Alonso-Cotchico, Lur, Maréchal, Jean-Didier, Vidossich, Pietro, & (2018). Directed Evolution of an Artificial Imine Reductase. Angewandte Chemie - International Edition, 57(7), 1863–1868. https://doi.org/10.1002/anie.201711016
Hestericová, Martina, Heinisch, Tillman, Alonso-Cotchico, Lur, Maréchal, Jean-Didier, Vidossich, Pietro, & (2018). Directed Evolution of an Artificial Imine Reductase. Angewandte Chemie - International Edition, 57(7), 1863–1868. https://doi.org/10.1002/anie.201711016
Hestericova, Martina, Heinisch, Tillmann, Lenz, Markus, & (2018). Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton transactions, 47(32), 10837–10841. https://doi.org/10.1039/c8dt02224k
Hestericova, Martina, Heinisch, Tillmann, Lenz, Markus, & (2018). Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton transactions, 47(32), 10837–10841. https://doi.org/10.1039/c8dt02224k
Jeschek, Markus, Panke, Sven, & (2018). Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Trends in Biotechnology, 36(1), 60–72. https://doi.org/10.1016/j.tibtech.2017.10.003
Jeschek, Markus, Panke, Sven, & (2018). Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Trends in Biotechnology, 36(1), 60–72. https://doi.org/10.1016/j.tibtech.2017.10.003
Keller, Sascha G., Probst, Benjamin, Heinisch, Tillmann, Alberto, Roger, & (2018). Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology. Helvetica Chimica Acta, 101(4), e1800036. https://doi.org/10.1002/hlca.201800036
Keller, Sascha G., Probst, Benjamin, Heinisch, Tillmann, Alberto, Roger, & (2018). Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology. Helvetica Chimica Acta, 101(4), e1800036. https://doi.org/10.1002/hlca.201800036
Mallin, Hendrik, & (2018). Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades. ChemCatChem, 10(13), 2810–2816. https://doi.org/10.1002/cctc.201800162
Mallin, Hendrik, & (2018). Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades. ChemCatChem, 10(13), 2810–2816. https://doi.org/10.1002/cctc.201800162
Mann, Samuel, Heinisch, Tillmann, , & Borovik, A. S. (2018). Coordination chemistry within a protein host: regulation of the secondary coordination sphere. Chemical Communications, 54(35), 4413–4416. https://doi.org/10.1039/c8cc01931b
Mann, Samuel, Heinisch, Tillmann, , & Borovik, A. S. (2018). Coordination chemistry within a protein host: regulation of the secondary coordination sphere. Chemical Communications, 54(35), 4413–4416. https://doi.org/10.1039/c8cc01931b
Okamoto, Yasunori, Kojima, Ryosuke, Schwizer, Fabian, Bartolami, Eline, Heinisch, Tillmann, Matile, Stefan, Fussenegger, Martin, & (2018). A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nature Communications, 9, 1943. https://doi.org/10.1038/s41467-018-04440-0
Okamoto, Yasunori, Kojima, Ryosuke, Schwizer, Fabian, Bartolami, Eline, Heinisch, Tillmann, Matile, Stefan, Fussenegger, Martin, & (2018). A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nature Communications, 9, 1943. https://doi.org/10.1038/s41467-018-04440-0
Pellizzoni, Michela M., Schwizer, Fabian, Wood, Christopher W., Sabatino, Valerio, Cotelle, Yoann, Matile, Stefan, Woolfson , Derek N., & (2018). Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes. ACS Catalysis, 8(2), 1476–1484. https://doi.org/10.1021/acscatal.7b03773
Pellizzoni, Michela M., Schwizer, Fabian, Wood, Christopher W., Sabatino, Valerio, Cotelle, Yoann, Matile, Stefan, Woolfson , Derek N., & (2018). Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes. ACS Catalysis, 8(2), 1476–1484. https://doi.org/10.1021/acscatal.7b03773
Rebelein, Johannes G., & (2018). In vivo catalyzed new-to-nature reactions. Current Opinion in Biotechnology, 53, 106–114. https://doi.org/10.1016/j.copbio.2017.12.008
Rebelein, Johannes G., & (2018). In vivo catalyzed new-to-nature reactions. Current Opinion in Biotechnology, 53, 106–114. https://doi.org/10.1016/j.copbio.2017.12.008
Schwizer, Fabian, Okamoto, Yasunori, Heinisch, Tillmann, Gu, Yifan, Pellizzoni, Michela M., Lebrun, Vincent, Reuter, Raphael, Köhler, Valentin, Lewis, Jared C., & (2018). Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews, 118(1), 142–231. https://doi.org/10.1021/acs.chemrev.7b00014
Schwizer, Fabian, Okamoto, Yasunori, Heinisch, Tillmann, Gu, Yifan, Pellizzoni, Michela M., Lebrun, Vincent, Reuter, Raphael, Köhler, Valentin, Lewis, Jared C., & (2018). Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews, 118(1), 142–231. https://doi.org/10.1021/acs.chemrev.7b00014
Szponarski, Mathieu, Schwizer, Fabian, , & Gademann, Karl. (2018). On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Communications Chemistry, 1(84), 1–10. https://doi.org/10.1038/s42004-018-0087-y
Szponarski, Mathieu, Schwizer, Fabian, , & Gademann, Karl. (2018). On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Communications Chemistry, 1(84), 1–10. https://doi.org/10.1038/s42004-018-0087-y
Zhao, Jingming, Bachmann, Daniel G., Lenz, Markus, Gillingham, Dennis G., & (2018). An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin. Catalysis science & technology, 8(9), 2294–2298. https://doi.org/10.1039/c8cy00646f
Zhao, Jingming, Bachmann, Daniel G., Lenz, Markus, Gillingham, Dennis G., & (2018). An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin. Catalysis science & technology, 8(9), 2294–2298. https://doi.org/10.1039/c8cy00646f
Zhao, Jingming, Rebelein, Johannes G., Mallin, Hendrik, Trindler, Christian, Pellizzoni, Michela M., & (2018). Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm. Journal of American Chemical Society, 140(41), 13171–13175. https://doi.org/10.1021/jacs.8b07189
Zhao, Jingming, Rebelein, Johannes G., Mallin, Hendrik, Trindler, Christian, Pellizzoni, Michela M., & (2018). Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm. Journal of American Chemical Society, 140(41), 13171–13175. https://doi.org/10.1021/jacs.8b07189
Okamoto, Yasunori, & (2017). Supramolecular Enzyme Mimics. In Atwood Ed., J. (Ed.), Comprehensive Supramolecular Chemistry II (II, Vol. 4, pp. 459–510). Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.12551-x
Okamoto, Yasunori, & (2017). Supramolecular Enzyme Mimics. In Atwood Ed., J. (Ed.), Comprehensive Supramolecular Chemistry II (II, Vol. 4, pp. 459–510). Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.12551-x
Trindler, Christian, & (2017). Artificial Metalloenzymes. In Poli, Rinaldo (Ed.), Effects of Nanoconfinement on Catalysis: Vol. Fundamental and Applied Catalysis (pp. 49–82). Springer. https://doi.org/10.1007/978-3-319-50207-6_3
Trindler, Christian, & (2017). Artificial Metalloenzymes. In Poli, Rinaldo (Ed.), Effects of Nanoconfinement on Catalysis: Vol. Fundamental and Applied Catalysis (pp. 49–82). Springer. https://doi.org/10.1007/978-3-319-50207-6_3
Jeschek, Markus, Bahls, Maximilian O., Schneider, Veronika, Marlière, Philippe, , & Panke, Sven. (2017). Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metabolic Engineering, 40, 33–40. https://doi.org/10.1016/j.ymben.2016.12.013
Jeschek, Markus, Bahls, Maximilian O., Schneider, Veronika, Marlière, Philippe, , & Panke, Sven. (2017). Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metabolic Engineering, 40, 33–40. https://doi.org/10.1016/j.ymben.2016.12.013
Keller, Sascha G., Pannwitz, Andrea, Mallin, Hendrik, Wenger, Oliver S., & (2017). Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation. Chemistry - A European Journal, 23(71), 18019–18024. https://doi.org/10.1002/chem.201703885
Keller, Sascha G., Pannwitz, Andrea, Mallin, Hendrik, Wenger, Oliver S., & (2017). Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation. Chemistry - A European Journal, 23(71), 18019–18024. https://doi.org/10.1002/chem.201703885
Liu, Le, Cotelle, Yoann, Klehr, Juliane, Sakai, Naomi, , & Matile, Stefan. (2017). Anion-ÏEuro catalysis: Bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on ÏEuro-acidic surfaces. Chemical Science, 8(5), 3770–3774. https://doi.org/10.1039/c7sc00525c
Liu, Le, Cotelle, Yoann, Klehr, Juliane, Sakai, Naomi, , & Matile, Stefan. (2017). Anion-ÏEuro catalysis: Bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on ÏEuro-acidic surfaces. Chemical Science, 8(5), 3770–3774. https://doi.org/10.1039/c7sc00525c
Mann, Samuel, Heinisch, Tillmann, , & Borovik, A. S. (2017). Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins. Journal of the American Chemical Society, 139(48), 17289–17292. https://doi.org/10.1021/jacs.7b10452
Mann, Samuel, Heinisch, Tillmann, , & Borovik, A. S. (2017). Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins. Journal of the American Chemical Society, 139(48), 17289–17292. https://doi.org/10.1021/jacs.7b10452
Okamoto, Yasunori, & (2017). Cross-Regulation of an Artificial Metalloenzyme. Angewandte Chemie International Edition, 56(34), 10156–10160. https://doi.org/10.1002/anie.201702181
Okamoto, Yasunori, & (2017). Cross-Regulation of an Artificial Metalloenzyme. Angewandte Chemie International Edition, 56(34), 10156–10160. https://doi.org/10.1002/anie.201702181
Okamoto, Yasunori, & (2017). Transfer Hydrogenation Catalyzed by Organometallic Complexes using NADH as Reductant in a Biochemical Context. Biochemistry, 56(40), 5223–5224. https://doi.org/10.1021/acs.biochem.7b00809
Okamoto, Yasunori, & (2017). Transfer Hydrogenation Catalyzed by Organometallic Complexes using NADH as Reductant in a Biochemical Context. Biochemistry, 56(40), 5223–5224. https://doi.org/10.1021/acs.biochem.7b00809
Seck, Charlotte, Mbaye, Diagne M., Coufourier, Sébastien, Lator, Alexis, Lohier, Jean-François, Poater, Albert, , Gaillard, Sylvain, & Renaud, Jean-Luc. (2017). Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application. ChemCatChem, 9(23), 4410–4416. https://doi.org/10.1002/cctc.201701241
Seck, Charlotte, Mbaye, Diagne M., Coufourier, Sébastien, Lator, Alexis, Lohier, Jean-François, Poater, Albert, , Gaillard, Sylvain, & Renaud, Jean-Luc. (2017). Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application. ChemCatChem, 9(23), 4410–4416. https://doi.org/10.1002/cctc.201701241
Chatterjee, Anamitra, Mallin, Hendrik, Klehr, Juliane, Vallapurackal, Jaicy, Finke, Aaron D., Vera, Laura, Marsh, May, & (2016). An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology. Chemical Science, 7(1), 673–677. https://doi.org/10.1039/c5sc03116h
Chatterjee, Anamitra, Mallin, Hendrik, Klehr, Juliane, Vallapurackal, Jaicy, Finke, Aaron D., Vera, Laura, Marsh, May, & (2016). An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology. Chemical Science, 7(1), 673–677. https://doi.org/10.1039/c5sc03116h
Chatterjee, Anamitra, & (2016). Recent Advances in the Palladium Catalyzed Suzuki-Miyaura Cross-Coupling Reaction in Water. Catalysis Letters, 146(4), 820–840. https://doi.org/10.1007/s10562-016-1707-8
Chatterjee, Anamitra, & (2016). Recent Advances in the Palladium Catalyzed Suzuki-Miyaura Cross-Coupling Reaction in Water. Catalysis Letters, 146(4), 820–840. https://doi.org/10.1007/s10562-016-1707-8
Cotelle, Yoann, Benz, Sebastian, Avestro, Alyssa-Jennifer, , Sakai, Naomi, & Matile, Stefan. (2016). Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Tool to Run Reactions on Aromatic Surfaces. Angewandte Chemie International Edition, 55(13), 9–4275. https://doi.org/10.1002/ange.201600831
Cotelle, Yoann, Benz, Sebastian, Avestro, Alyssa-Jennifer, , Sakai, Naomi, & Matile, Stefan. (2016). Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Tool to Run Reactions on Aromatic Surfaces. Angewandte Chemie International Edition, 55(13), 9–4275. https://doi.org/10.1002/ange.201600831