Publications
227 found
Show per page
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., Maier, Timm, & ACS Catalysis, 14, 17171–17179. https://doi.org/10.1021/acscatal.4c04163
(2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article].
Morita, Iori, Faraone, Adriana, Salvisberg, Elias, Zhang, Kailin, Jakob, Roman P., Maier, Timm, & ACS Catalysis, 14, 17171–17179. https://doi.org/10.1021/acscatal.4c04163
(2024). Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein [Journal-article].
Vornholt, Tobias, Leiss-Maier, Florian, Jeong, Woo Jae, Zeymer, Cathleen, Song, Woon Ju, Roelfes, Gerard, & Nature Reviews Methods Primers, 4. https://doi.org/10.1038/s43586-024-00356-w
(2024). Artificial metalloenzymes [Journal-article].
Vornholt, Tobias, Leiss-Maier, Florian, Jeong, Woo Jae, Zeymer, Cathleen, Song, Woon Ju, Roelfes, Gerard, & Nature Reviews Methods Primers, 4. https://doi.org/10.1038/s43586-024-00356-w
(2024). Artificial metalloenzymes [Journal-article].
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
(2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases.
Mukherjee, Manjistha, Waser, Valerie, Morris, Elinor F., Igareta, Nico V., Follmer, Alec H., Jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & ACS Catalysis, 14(21), 16266–16276. https://doi.org/10.1021/acscatal.4c03208
(2024). Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases.
Renno, Giacomo, Chen, Dongping, Zhang, Qing‐Xia, Gomila, Rosa M., Frontera, Antonio, Sakai, Naomi, Angewandte Chemie International Edition, 63(45). https://doi.org/10.1002/anie.202411347
, & Matile, Stefan. (2024). Pnictogen‐Bonding Enzymes [Journal-article].
Renno, Giacomo, Chen, Dongping, Zhang, Qing‐Xia, Gomila, Rosa M., Frontera, Antonio, Sakai, Naomi, Angewandte Chemie International Edition, 63(45). https://doi.org/10.1002/anie.202411347
, & Matile, Stefan. (2024). Pnictogen‐Bonding Enzymes [Journal-article].
Yu, Kun, & Journal of Inorganic Biochemistry, 258. https://doi.org/10.1016/j.jinorgbio.2024.112621
(2024). C–H functionalization reactions catalyzed by artificial metalloenzymes [Journal-article].
Yu, Kun, & Journal of Inorganic Biochemistry, 258. https://doi.org/10.1016/j.jinorgbio.2024.112621
(2024). C–H functionalization reactions catalyzed by artificial metalloenzymes [Journal-article].
Morita, Iori, & Current Opinion in Chemical Biology, 81. https://doi.org/10.1016/j.cbpa.2024.102508
(2024). Recent advances in the design and optimization of artificial metalloenzymes [Journal-article].
Morita, Iori, & Current Opinion in Chemical Biology, 81. https://doi.org/10.1016/j.cbpa.2024.102508
(2024). Recent advances in the design and optimization of artificial metalloenzymes [Journal-article].
Zhang, Xiang, Chen, Dongping, Stropp, Julian, Tachibana, Ryo, Zou, Zhi, Klose, Daniel, & Chem, 10(8), 2577–2589. https://doi.org/10.1016/j.chempr.2024.06.010
(2024). Repurposing myoglobin into an abiological asymmetric ketoreductase [Journal-article].
Zhang, Xiang, Chen, Dongping, Stropp, Julian, Tachibana, Ryo, Zou, Zhi, Klose, Daniel, & Chem, 10(8), 2577–2589. https://doi.org/10.1016/j.chempr.2024.06.010
(2024). Repurposing myoglobin into an abiological asymmetric ketoreductase [Journal-article].
Zou, Zhi, Higginson, Bradley, & Chem, 10(8), 2373–2389. https://doi.org/10.1016/j.chempr.2024.07.007
(2024). Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond [Journal-article].
Zou, Zhi, Higginson, Bradley, & Chem, 10(8), 2373–2389. https://doi.org/10.1016/j.chempr.2024.07.007
(2024). Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond [Journal-article].
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, Maier, Timm, Correia, Bruno E., & Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
(2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article].
Chen, Dongping, Zhang, Xiang, Vorobieva, Anastassia Andreevna, Tachibana, Ryo, Stein, Alina, Jakob, Roman P., Zou, Zhi, Graf, Damian Alexander, Li, Ang, Maier, Timm, Correia, Bruno E., & Nature Chemistry, 16(10), 1656–1664. https://doi.org/10.1038/s41557-024-01562-5
(2024). An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway [Journal-article].
Zou, Zhi, Wu, Shuke, Gerngross, Daniel, Lozhkin, Boris, Chen, Dongping, Tachibana, Ryo, & Nature Synthesis, 3, 1113–1123. https://doi.org/10.1038/s44160-024-00575-9
(2024). Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis [Journal-article].
Zou, Zhi, Wu, Shuke, Gerngross, Daniel, Lozhkin, Boris, Chen, Dongping, Tachibana, Ryo, & Nature Synthesis, 3, 1113–1123. https://doi.org/10.1038/s44160-024-00575-9
(2024). Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis [Journal-article].
Baiyoumy, Alain, Vinck, Robin, & Helvetica Chimica Acta, 107(7). https://doi.org/10.1002/hlca.202400053
(2024). The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging [Journal-article].
Baiyoumy, Alain, Vinck, Robin, & Helvetica Chimica Acta, 107(7). https://doi.org/10.1002/hlca.202400053
(2024). The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging [Journal-article].
Vornholt, Tobias, Mutný, Mojmír, Schmidt, Gregor W., Schellhaas, Christian, Tachibana, Ryo, Panke, Sven, ACS Central Science, 10(7), 1357–1370. https://doi.org/10.1021/acscentsci.4c00258
, Krause, Andreas, & Jeschek, Markus. (2024). Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning [Journal-article].
Vornholt, Tobias, Mutný, Mojmír, Schmidt, Gregor W., Schellhaas, Christian, Tachibana, Ryo, Panke, Sven, ACS Central Science, 10(7), 1357–1370. https://doi.org/10.1021/acscentsci.4c00258
, Krause, Andreas, & Jeschek, Markus. (2024). Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning [Journal-article].
Yu, Kun, Tachibana, Ryo, Rumo, Corentin, Igareta, Nico V., Zhang, Kailin, & ChemCatChem, 16(17). https://doi.org/10.1002/cctc.202400365
(2024). Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes [Journal-article].
Yu, Kun, Tachibana, Ryo, Rumo, Corentin, Igareta, Nico V., Zhang, Kailin, & ChemCatChem, 16(17). https://doi.org/10.1002/cctc.202400365
(2024). Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes [Journal-article].
Burgener, Simon, Zhang, Xiang, & Comprehensive Chirality (pp. 71–110). Elsevier. https://doi.org/10.1016/b978-0-32-390644-9.00082-2
(2024). Artificial Metalloenzymes for Enantioselective Catalysis. In Cossy, Janine (ed.),
Burgener, Simon, Zhang, Xiang, & Comprehensive Chirality (pp. 71–110). Elsevier. https://doi.org/10.1016/b978-0-32-390644-9.00082-2
(2024). Artificial Metalloenzymes for Enantioselective Catalysis. In Cossy, Janine (ed.),
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, Chemical Science, 15(28), 10997–11004. https://doi.org/10.1039/d4sc01710b
, Mayor, Marcel, & Köhler, Valentin. (2024). NSPs: chromogenic linkers for fast, selective, and irreversible cysteine modification [Journal-article].
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, Chemical Science, 15(28), 10997–11004. https://doi.org/10.1039/d4sc01710b
, Mayor, Marcel, & Köhler, Valentin. (2024). NSPs: chromogenic linkers for fast, selective, and irreversible cysteine modification [Journal-article].
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Yu, K., Zhang, K., Jakob, R. P., Maier, T., & Ward, T. R. (2024). An artificial nickel chlorinase based on the biotin–streptavidin technology [Journal-article]. Chemical Communications, 60, 1944–1947. https://doi.org/10.1039/d3cc05847f
Burgener, Simon, Dačević, Bratislav, Zhang, Xiang, & Biochemistry, 62(22), 3303–3311. https://doi.org/10.1021/acs.biochem.3c00376
(2023). Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes [Journal-article].
Burgener, Simon, Dačević, Bratislav, Zhang, Xiang, & Biochemistry, 62(22), 3303–3311. https://doi.org/10.1021/acs.biochem.3c00376
(2023). Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes [Journal-article].
Vornholt, Tobias, Jončev, Zlatko, Sabatino, Valerio, Panke, Sven, ChemCatChem, 15(23). https://doi.org/10.1002/cctc.202301113
, Sparr, Christof, & Jeschek, Markus. (2023). An Artificial Metalloenzyme for Atroposelective Metathesis** [Journal-article].
Vornholt, Tobias, Jončev, Zlatko, Sabatino, Valerio, Panke, Sven, ChemCatChem, 15(23). https://doi.org/10.1002/cctc.202301113
, Sparr, Christof, & Jeschek, Markus. (2023). An Artificial Metalloenzyme for Atroposelective Metathesis** [Journal-article].
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, Chemrxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-83gph
, Mayor, Marcel, & Köhler, Valentin. (2023). Click, Lock & Dye: a chromogenic handle for selective cysteine modification [Posted-content]. In
Hua, Yong, Zou, Zhi, Prescimone, Alessandro, Chemrxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-83gph
, Mayor, Marcel, & Köhler, Valentin. (2023). Click, Lock & Dye: a chromogenic handle for selective cysteine modification [Posted-content]. In
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
(2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In
Mukherjee, Manjistha, Waser, Valerie, Igareta, Nico V., Follmer, Alec H., jakob, Roman P., Maier, Timm, Üzümcü, Dilbirin, & ChemRxiv. Cambridge University Press. https://doi.org/10.26434/chemrxiv-2023-s830k
(2023). An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases [Posted-content]. In
Tachibana, Ryo, Zhang, Kailin, Zou, Zhi, Burgener, Simon, & ACS Sustainable Chemistry & Engineering, 11(33), 12336–12344. https://doi.org/10.1021/acssuschemeng.3c02402
(2023). A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions [Journal-article].
Tachibana, Ryo, Zhang, Kailin, Zou, Zhi, Burgener, Simon, & ACS Sustainable Chemistry & Engineering, 11(33), 12336–12344. https://doi.org/10.1021/acssuschemeng.3c02402
(2023). A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions [Journal-article].
Beweries, Torsten, Buchmeiser, Michael R., Bugden, Frances E., Champness, Neil R., Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum, Goodall, Joe C., Gramage-Doria, Rafael, Greenhalgh, Mark, Gyton, Matthew, Ham, Rens, Kennepohl, Pierre, Lewandowski, Bartosz, Liu, Wei-Chun, Macgregor, Stuart A., Mahmudov, Kamran T., et al. (2023). Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion. Faraday Discussions, 244, 434–454. https://doi.org/10.1039/d3fd90012f
Beweries, Torsten, Buchmeiser, Michael R., Bugden, Frances E., Champness, Neil R., Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum, Goodall, Joe C., Gramage-Doria, Rafael, Greenhalgh, Mark, Gyton, Matthew, Ham, Rens, Kennepohl, Pierre, Lewandowski, Bartosz, Liu, Wei-Chun, Macgregor, Stuart A., Mahmudov, Kamran T., et al. (2023). Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion. Faraday Discussions, 244, 434–454. https://doi.org/10.1039/d3fd90012f
Beweries, Torsten, Buchmeiser, Michael R. R., Champness, Neil R. R., Costas, Miquel, Duhme-Klair, Anne, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum T. J., Goodall, Joe C. C., Gramage-Doria, Rafael, Gyton, Matthew, Ham, Rens, Herres-Pawlis, Sonja, Johnson, Chloe L. L., Kennepohl, Pierre, Lewandowski, Bartosz, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., et al. (2023). Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion. Faraday Discussions, 244, 96–118. https://doi.org/10.1039/d3fd90013d
Beweries, Torsten, Buchmeiser, Michael R. R., Champness, Neil R. R., Costas, Miquel, Duhme-Klair, Anne, Echeverria, Jorge, Eisenstein, Odile, Ferguson, Calum T. J., Goodall, Joe C. C., Gramage-Doria, Rafael, Gyton, Matthew, Ham, Rens, Herres-Pawlis, Sonja, Johnson, Chloe L. L., Kennepohl, Pierre, Lewandowski, Bartosz, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., et al. (2023). Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion. Faraday Discussions, 244, 96–118. https://doi.org/10.1039/d3fd90013d
Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Greenhalgh, Mark, Kennepohl, Pierre, Kirrander, Adam, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., Martin-Fernandez, Carlos, Meeus, Eva, Perutz, Robin N., Poater, Albert N., Morris, Josh, Reek, Joost N. H., Rouse, Ian, Toste, Dean, Trujillo, Cristina, et al. (2023). Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion. Faraday Discussions, 244, 336–355. https://doi.org/10.1039/d3fd90015k
Chanbasha, Basheer, Costas, Miquel, Echeverria, Jorge, Eisenstein, Odile, Greenhalgh, Mark, Kennepohl, Pierre, Kirrander, Adam, Linnebank, Pim R. R., Macgregor, Stuart A. A., Mahmudov, Kamran T. T., Martin-Fernandez, Carlos, Meeus, Eva, Perutz, Robin N., Poater, Albert N., Morris, Josh, Reek, Joost N. H., Rouse, Ian, Toste, Dean, Trujillo, Cristina, et al. (2023). Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion. Faraday Discussions, 244, 336–355. https://doi.org/10.1039/d3fd90015k
Igareta, Nico V., Tachibana, Ryo, Spiess, Daniel C., Peterson, Ryan L., & FARADAY DISCUSSIONS, 244, 9–20. https://doi.org/10.1039/d3fd00034f
(2023). Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation.
Igareta, Nico V., Tachibana, Ryo, Spiess, Daniel C., Peterson, Ryan L., & FARADAY DISCUSSIONS, 244, 9–20. https://doi.org/10.1039/d3fd00034f
(2023). Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation.
Meeus, Eva J., Igareta, Nico V., Morita, Iori, Chemical Communications, 59(98), 14567–14570. https://doi.org/10.1039/d3cc04723g
, de Bruin, Bas, & Reek, Joost N. H. (2023). A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis [Journal-article].
Meeus, Eva J., Igareta, Nico V., Morita, Iori, Chemical Communications, 59(98), 14567–14570. https://doi.org/10.1039/d3cc04723g
, de Bruin, Bas, & Reek, Joost N. H. (2023). A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis [Journal-article].
Wang, Weijin, Tachibana, Ryo, Zou, Zhi, Chen, Dongping, Zhang, Xiang, Lau, Kelvin, Pojer, Florence, Angewandte Chemie International Edition, e202311896. https://doi.org/10.1002/anie.202311896
, & Hu, Xile. (2023). Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
Wang, Weijin, Tachibana, Ryo, Zou, Zhi, Chen, Dongping, Zhang, Xiang, Lau, Kelvin, Pojer, Florence, Angewandte Chemie International Edition, e202311896. https://doi.org/10.1002/anie.202311896
, & Hu, Xile. (2023). Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
Chemical Reviews, 123(9), 5221–5224. https://doi.org/10.1021/acs.chemrev.3c00029
, & Copéret, Christophe. (2023). Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries.
Chemical Reviews, 123(9), 5221–5224. https://doi.org/10.1021/acs.chemrev.3c00029
, & Copéret, Christophe. (2023). Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries.
Waser, Valerie, Mukherjee, Manjistha, Tachibana, Ryo, Igareta, Nico V., & Journal of the American Chemical Society, 145(27), 14823–14830. https://doi.org/10.1021/jacs.3c03546
(2023). An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons.
Waser, Valerie, Mukherjee, Manjistha, Tachibana, Ryo, Igareta, Nico V., & Journal of the American Chemical Society, 145(27), 14823–14830. https://doi.org/10.1021/jacs.3c03546
(2023). An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons.
Waser, Valerie, & Coordination chemistry reviews, 495, 215377. https://doi.org/10.1016/j.ccr.2023.215377
(2023). Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters.
Waser, Valerie, & Coordination chemistry reviews, 495, 215377. https://doi.org/10.1016/j.ccr.2023.215377
(2023). Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters.
Yu, Kun, Zou, Zhi, Igareta, Nico V., Tachibana, Ryo, Bechter, Julia, Köhler, Valentin, Chen, Dongping, & Journal of the American Chemical Society, 145(30), 16621–16629. https://doi.org/10.1021/jacs.3c03969
(2023). Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds.
Yu, Kun, Zou, Zhi, Igareta, Nico V., Tachibana, Ryo, Bechter, Julia, Köhler, Valentin, Chen, Dongping, & Journal of the American Chemical Society, 145(30), 16621–16629. https://doi.org/10.1021/jacs.3c03969
(2023). Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds.
Burgener, Simon, & Chem Catalysis, 2(10), 2427–2429. https://doi.org/10.1016/j.checat.2022.09.031
(2022). Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction.
Burgener, Simon, & Chem Catalysis, 2(10), 2427–2429. https://doi.org/10.1016/j.checat.2022.09.031
(2022). Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction.
Hirschi, Stephan, Chemical Reviews, 122(21), 16294–16328. https://doi.org/10.1021/acs.chemrev.2c00339
, Meier, Wolfgang P., Müller, Daniel J., & Fotiadis, Dimitrios. (2022). Synthetic Biology: Bottom-Up Assembly of Molecular Systems.
Hirschi, Stephan, Chemical Reviews, 122(21), 16294–16328. https://doi.org/10.1021/acs.chemrev.2c00339
, Meier, Wolfgang P., Müller, Daniel J., & Fotiadis, Dimitrios. (2022). Synthetic Biology: Bottom-Up Assembly of Molecular Systems.
Rumo, Corentin, Stein, Alina, Klehr, Juliane, Tachibana, Ryo, Prescimone, Alessandro, Haussinger, Daniel, & Journal of the American Chemical Society, 144(26), 11676–11684. https://doi.org/10.1021/jacs.2c03311
(2022). An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion.
Rumo, Corentin, Stein, Alina, Klehr, Juliane, Tachibana, Ryo, Prescimone, Alessandro, Haussinger, Daniel, & Journal of the American Chemical Society, 144(26), 11676–11684. https://doi.org/10.1021/jacs.2c03311
(2022). An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion.
Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
, Kerzig, Christoph, & Wenger, Oliver S. (2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
, Kerzig, Christoph, & Wenger, Oliver S. (2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
Stein, Alina, Liang, Alexandria Deliz, Sahin, Reyhan, & Journal of Organometallic Chemistry, 962, 122272. https://doi.org/10.1016/j.jorganchem.2022.122272
(2022). Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination.
Stein, Alina, Liang, Alexandria Deliz, Sahin, Reyhan, & Journal of Organometallic Chemistry, 962, 122272. https://doi.org/10.1016/j.jorganchem.2022.122272
(2022). Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination.
Vallapurackal, Jaicy, Stucki, Ariane, Liang, Alexandria Deliz, Klehr, Juliane, Dittrich, Petra S., & Angewandte Chemie International Edition, 61(48), e202207328. https://doi.org/10.1002/anie.202207328
(2022). Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions.
Vallapurackal, Jaicy, Stucki, Ariane, Liang, Alexandria Deliz, Klehr, Juliane, Dittrich, Petra S., & Angewandte Chemie International Edition, 61(48), e202207328. https://doi.org/10.1002/anie.202207328
(2022). Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions.
Baiyoumy, Alain, Vallapurackal, Jaicy, Schwizer, Fabian, Heinisch, Tillmann, Kardashliev, Tsvetan, Held, Martin, Panke, Sven, & ACS Catalysis, 11(17), 10705–10712. https://doi.org/10.1021/acscatal.1c02405
(2021). Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein.
Baiyoumy, Alain, Vallapurackal, Jaicy, Schwizer, Fabian, Heinisch, Tillmann, Kardashliev, Tsvetan, Held, Martin, Panke, Sven, & ACS Catalysis, 11(17), 10705–10712. https://doi.org/10.1021/acscatal.1c02405
(2021). Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein.
Christoffel, Fadri, Igareta, Nico, Pellizzoni, Michela M., Tiessler-Sala, Laura, Lozhkin, Boris, Spiess, Daniel C., Lledos, Agusti, Marechal, Jean-Didier, Peterson, Ryan L., & Nature Catalysis, 4(8), 643–+. https://doi.org/10.1038/s41929-021-00651-9
(2021). Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis.
Christoffel, Fadri, Igareta, Nico, Pellizzoni, Michela M., Tiessler-Sala, Laura, Lozhkin, Boris, Spiess, Daniel C., Lledos, Agusti, Marechal, Jean-Didier, Peterson, Ryan L., & Nature Catalysis, 4(8), 643–+. https://doi.org/10.1038/s41929-021-00651-9
(2021). Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis.
Di Leone, Stefano, Vallapurackal, Jaicy, Yorulmaz Avsar, Saziye, Kyropolou, Myrto, Biomacromolecules, 22(7), 3005–3016. https://doi.org/10.1021/acs.biomac.1c00424
, Palivan, Cornelia G., & Meier, Wolfgang. (2021). Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers.
Di Leone, Stefano, Vallapurackal, Jaicy, Yorulmaz Avsar, Saziye, Kyropolou, Myrto, Biomacromolecules, 22(7), 3005–3016. https://doi.org/10.1021/acs.biomac.1c00424
, Palivan, Cornelia G., & Meier, Wolfgang. (2021). Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers.
Fischer, Sandro, ACS Catalysis, 11(10), 6343–6347. https://doi.org/10.1021/acscatal.1c01470
, & Liang, Alexandria D. (2021). Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag.
Fischer, Sandro, ACS Catalysis, 11(10), 6343–6347. https://doi.org/10.1021/acscatal.1c01470
, & Liang, Alexandria D. (2021). Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag.
Lozhkin, Boris, & Helvetica Chimica Acta, 104(5), e2100024. https://doi.org/10.1002/hlca.202100024
(2021). A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis.
Lozhkin, Boris, & Helvetica Chimica Acta, 104(5), e2100024. https://doi.org/10.1002/hlca.202100024
(2021). A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis.
Lozhkin, Boris, & Bioorganic & medicinal chemistry, 45, 116310. https://doi.org/10.1016/j.bmc.2021.116310
(2021). Bioorthogonal strategies for the in vivo synthesis or release of drugs.
Lozhkin, Boris, & Bioorganic & medicinal chemistry, 45, 116310. https://doi.org/10.1016/j.bmc.2021.116310
(2021). Bioorthogonal strategies for the in vivo synthesis or release of drugs.
Miró-Vinyals, Carla, Stein, Alina, Fischer, Sandro, ChemBioChem, 22(24), 3398–3401. https://doi.org/10.1002/cbic.202100424
, & Deliz Liang, Alexandria. (2021). HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye.
Miró-Vinyals, Carla, Stein, Alina, Fischer, Sandro, ChemBioChem, 22(24), 3398–3401. https://doi.org/10.1002/cbic.202100424
, & Deliz Liang, Alexandria. (2021). HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye.
Stein, Alina, Chen, Dongping, Igareta, Nico V., Cotelle, Yoann, Rebelein, Johannes G., & ACS Central Science, 7(11), 1874–1884. https://doi.org/10.1021/acscentsci.1c00825
(2021). A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase.
Stein, Alina, Chen, Dongping, Igareta, Nico V., Cotelle, Yoann, Rebelein, Johannes G., & ACS Central Science, 7(11), 1874–1884. https://doi.org/10.1021/acscentsci.1c00825
(2021). A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase.
Stucki, Ariane, Vallapurackal, Jaicy, Angewandte Chemie International Edition, 60(46), 24368–24387. https://doi.org/10.1002/anie.202016154
, & Dittrich, Petra S. (2021). Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey.
Stucki, Ariane, Vallapurackal, Jaicy, Angewandte Chemie International Edition, 60(46), 24368–24387. https://doi.org/10.1002/anie.202016154
, & Dittrich, Petra S. (2021). Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey.
Vornholt, Tobias, Christoffel, Fadri, Pellizzoni, Michela M., Panke, Sven, Science Advances, 7(4), eabe4208. https://doi.org/10.1126/sciadv.abe4208
, & Jeschek, Markus. (2021). Systematic engineering of artificial metalloenzymes for new-to-nature reactions.
Vornholt, Tobias, Christoffel, Fadri, Pellizzoni, Michela M., Panke, Sven, Science Advances, 7(4), eabe4208. https://doi.org/10.1126/sciadv.abe4208
, & Jeschek, Markus. (2021). Systematic engineering of artificial metalloenzymes for new-to-nature reactions.
Bullock, R. Morris, Chen, Jingguang G., Gagliardi, Laura, Chirik, Paul J., Farha, Omar K., Hendon, Christopher H., Jones, Christopher W., Keith, John A., Klosin, Jerzy, Minteer, Shelley D., Morris, Robert H., Radosevich, Alexander T., Rauchfuss, Thomas B., Strotman, Neil A., Vojvodic, Aleksandra, Science, 369(6505), 3183. https://doi.org/10.1126/science.abc3183
, Yang, Jenny Y., & Surendranath, Yogesh. (2020). Using nature’s blueprint to expand catalysis with Earth-abundant metals.
Bullock, R. Morris, Chen, Jingguang G., Gagliardi, Laura, Chirik, Paul J., Farha, Omar K., Hendon, Christopher H., Jones, Christopher W., Keith, John A., Klosin, Jerzy, Minteer, Shelley D., Morris, Robert H., Radosevich, Alexander T., Rauchfuss, Thomas B., Strotman, Neil A., Vojvodic, Aleksandra, Science, 369(6505), 3183. https://doi.org/10.1126/science.abc3183
, Yang, Jenny Y., & Surendranath, Yogesh. (2020). Using nature’s blueprint to expand catalysis with Earth-abundant metals.
Davis, Holly Jane, Häussinger, Daniel, ChemCatChem, 12(18), 4512–4516. https://doi.org/10.1002/cctc.202000488
, & Okamoto, Yasunori. (2020). A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex.
Davis, Holly Jane, Häussinger, Daniel, ChemCatChem, 12(18), 4512–4516. https://doi.org/10.1002/cctc.202000488
, & Okamoto, Yasunori. (2020). A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex.
Miller, Kelsey R., Paretsky, Jonathan D., Follmer, Alec H., Heinisch, Tillmann, Mittra, Kaustuv, Gul, Sheraz, Kim, In-Sik, Fuller, Franklin D., Batyuk, Alexander, Sutherlin, Kyle D., Brewster, Aaron S., Bhowmick, Asmit, Sauter, Nicholas K., Kern, Jan, Yano, Junko, Green, Michael T., Inorganic Chemistry, 59(9), 6000–6009. https://doi.org/10.1021/acs.inorgchem.9b03791
, & Borovik, A. S. (2020). Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases.
Miller, Kelsey R., Paretsky, Jonathan D., Follmer, Alec H., Heinisch, Tillmann, Mittra, Kaustuv, Gul, Sheraz, Kim, In-Sik, Fuller, Franklin D., Batyuk, Alexander, Sutherlin, Kyle D., Brewster, Aaron S., Bhowmick, Asmit, Sauter, Nicholas K., Kern, Jan, Yano, Junko, Green, Michael T., Inorganic Chemistry, 59(9), 6000–6009. https://doi.org/10.1021/acs.inorgchem.9b03791
, & Borovik, A. S. (2020). Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases.
Sabatino, Valerio, Staub, Dario, & Catalysis Letters, 151(1), 17–17. https://doi.org/10.1007/s10562-020-03271-3
(2020). Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis.
Sabatino, Valerio, Staub, Dario, & Catalysis Letters, 151(1), 17–17. https://doi.org/10.1007/s10562-020-03271-3
(2020). Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis.
Samanta, Avik, Sabatino, Valerio, Nature Nanotechnology, 15(11), 914–921. https://doi.org/10.1038/s41565-020-0761-y
, & Walther, Andreas. (2020). Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes.
Samanta, Avik, Sabatino, Valerio, Nature Nanotechnology, 15(11), 914–921. https://doi.org/10.1038/s41565-020-0761-y
, & Walther, Andreas. (2020). Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes.
Serrano-Plana, Joan, Rumo, Corentin, Rebelein, Johannes G., Peterson, Ryan L., Barnet, Maxime, & Journal of the American Chemical Society, 142(24), 10617–10623. https://doi.org/10.1021/jacs.0c02788
(2020). Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology.
Serrano-Plana, Joan, Rumo, Corentin, Rebelein, Johannes G., Peterson, Ryan L., Barnet, Maxime, & Journal of the American Chemical Society, 142(24), 10617–10623. https://doi.org/10.1021/jacs.0c02788
(2020). Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology.
Klehr, Juliane, Zhao, Jingming, Kron, Amanda Santos, Peptide and Protein Engineering (pp. 213–235). Humana. https://doi.org/10.1007/978-1-0716-0720-6_12
, & Köhler, Valentin. (2020). Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants. In Iranzo O., Roque A. (Ed.),
Klehr, Juliane, Zhao, Jingming, Kron, Amanda Santos, Peptide and Protein Engineering (pp. 213–235). Humana. https://doi.org/10.1007/978-1-0716-0720-6_12
, & Köhler, Valentin. (2020). Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants. In Iranzo O., Roque A. (Ed.),
Bartolami, Eline, Basagiannis, Dimitris, Zong, Lili, Martinent, Remi, Okamoto, Yasunori, Laurent, Quentin, Chemistry - A European Journal, 25(16), 4047–4051. https://doi.org/10.1002/chem.201805900
, Gonzalez-Gaitan, Marcos, Sakai, Naomi, & Matile, Stefan. (2019). Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots.
Bartolami, Eline, Basagiannis, Dimitris, Zong, Lili, Martinent, Remi, Okamoto, Yasunori, Laurent, Quentin, Chemistry - A European Journal, 25(16), 4047–4051. https://doi.org/10.1002/chem.201805900
, Gonzalez-Gaitan, Marcos, Sakai, Naomi, & Matile, Stefan. (2019). Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots.
Cheng, Yangyang, Zong, Lili, Lopez-Andarias, Javier, Bartolami, Eline, Okamoto, Yasunori, Angewandte Chemie International Edition, 58(28), 9522–9526. https://doi.org/10.1002/anie.201905003
, Sakai, Naomi, & Matile, Stefan. (2019). Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks.
Cheng, Yangyang, Zong, Lili, Lopez-Andarias, Javier, Bartolami, Eline, Okamoto, Yasunori, Angewandte Chemie International Edition, 58(28), 9522–9526. https://doi.org/10.1002/anie.201905003
, Sakai, Naomi, & Matile, Stefan. (2019). Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks.
Davis, Holly J., & ACS Central Science, 5(7), 1120–1136. https://doi.org/10.1021/acscentsci.9b00397
(2019). Artificial Metalloenzymes: Challenges and Opportunities.
Davis, Holly J., & ACS Central Science, 5(7), 1120–1136. https://doi.org/10.1021/acscentsci.9b00397
(2019). Artificial Metalloenzymes: Challenges and Opportunities.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., European Journal of Organic Chemistry, 10, 1288–1293. https://doi.org/10.1002/ejoc.201900777
, & Wenger, Oliver S. (2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., European Journal of Organic Chemistry, 10, 1288–1293. https://doi.org/10.1002/ejoc.201900777
, & Wenger, Oliver S. (2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis.
Hartwig, John F., & Accounts of Chemical Research, 52(5), 1145. https://doi.org/10.1021/acs.accounts.9b00154
(2019). New “Cats” in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes.
Hartwig, John F., & Accounts of Chemical Research, 52(5), 1145. https://doi.org/10.1021/acs.accounts.9b00154
(2019). New “Cats” in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes.
Liang, Alexandria Deliz, Serrano-Plana, Joan, Peterson, Ryan L., & Accounts of Chemical Research, 52(3), 585–595. https://doi.org/10.1021/acs.accounts.8b00618
(2019). Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
Liang, Alexandria Deliz, Serrano-Plana, Joan, Peterson, Ryan L., & Accounts of Chemical Research, 52(3), 585–595. https://doi.org/10.1021/acs.accounts.8b00618
(2019). Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
Rebelein, Johannes G., Cotelle, Yoann, Garabedian, Brett, & ACS Catalysis, 9(5), 4173–4178. https://doi.org/10.1021/acscatal.9b01006
(2019). Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein.
Rebelein, Johannes G., Cotelle, Yoann, Garabedian, Brett, & ACS Catalysis, 9(5), 4173–4178. https://doi.org/10.1021/acscatal.9b01006
(2019). Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein.
Sabatino, Valerio, Rebelein, Johannes G., & Journal of the American Chemical Society, 141(43), 17048–17052. https://doi.org/10.1021/jacs.9b07193
(2019). “Close-to-Release”: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis.
Sabatino, Valerio, Rebelein, Johannes G., & Journal of the American Chemical Society, 141(43), 17048–17052. https://doi.org/10.1021/jacs.9b07193
(2019). “Close-to-Release”: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis.
Sabatino, Valerio, & Beilstein Journal of Organic Chemistry, 15, 445–468. https://doi.org/10.3762/bjoc.15.39
(2019). Aqueous olefin metathesis: recent developments and applications.
Sabatino, Valerio, & Beilstein Journal of Organic Chemistry, 15, 445–468. https://doi.org/10.3762/bjoc.15.39
(2019). Aqueous olefin metathesis: recent developments and applications.
Wu, Shuke, Zhou, Yi, Gerngross, Daniel, Jeschek, Markus, & Nature Communications, 10(1), 5060. https://doi.org/10.1038/s41467-019-13071-y
(2019). Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources.
Wu, Shuke, Zhou, Yi, Gerngross, Daniel, Jeschek, Markus, & Nature Communications, 10(1), 5060. https://doi.org/10.1038/s41467-019-13071-y
(2019). Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources.
Wu, Shuke, Zhou, Yi, Rebelein, Johannes G., Kuhn, Miriam, Mallin, Hendrik, Zhao, Jingming, Igareta, Nico V., & Journal of the American Chemical Society, 141(40), 15869–15878. https://doi.org/10.1021/jacs.9b06923
(2019). Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
Wu, Shuke, Zhou, Yi, Rebelein, Johannes G., Kuhn, Miriam, Mallin, Hendrik, Zhao, Jingming, Igareta, Nico V., & Journal of the American Chemical Society, 141(40), 15869–15878. https://doi.org/10.1021/jacs.9b06923
(2019). Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
Christoffel, Fadri, & Catalysis letters, 148(2), 489–511. https://doi.org/10.1007/s10562-017-2285-0
(2018). Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review.
Christoffel, Fadri, & Catalysis letters, 148(2), 489–511. https://doi.org/10.1007/s10562-017-2285-0
(2018). Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
, & Wenger, Oliver S. (2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
, & Wenger, Oliver S. (2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network.
Heinisch, Tillmann, Schwizer, Fabian, Garabedian, Brett, Csibra, Eszter, Jeschek, Markus, Vallapurackal, Jaicy, Pinheiro, Vitor B., Marlière, Philippe, Panke, Sven, & Chemical Science, 9(24), 5383–5388. https://doi.org/10.1039/c8sc00484f
(2018). E. coli surface display of streptavidin for directed evolution of an allylic deallylase.
Heinisch, Tillmann, Schwizer, Fabian, Garabedian, Brett, Csibra, Eszter, Jeschek, Markus, Vallapurackal, Jaicy, Pinheiro, Vitor B., Marlière, Philippe, Panke, Sven, & Chemical Science, 9(24), 5383–5388. https://doi.org/10.1039/c8sc00484f
(2018). E. coli surface display of streptavidin for directed evolution of an allylic deallylase.
Hestericová, Martina, Heinisch, Tillman, Alonso-Cotchico, Lur, Maréchal, Jean-Didier, Vidossich, Pietro, & Angewandte Chemie - International Edition, 57(7), 1863–1868. https://doi.org/10.1002/anie.201711016
(2018). Directed Evolution of an Artificial Imine Reductase.
Hestericová, Martina, Heinisch, Tillman, Alonso-Cotchico, Lur, Maréchal, Jean-Didier, Vidossich, Pietro, & Angewandte Chemie - International Edition, 57(7), 1863–1868. https://doi.org/10.1002/anie.201711016
(2018). Directed Evolution of an Artificial Imine Reductase.
Hestericova, Martina, Heinisch, Tillmann, Lenz, Markus, & Dalton transactions, 47(32), 10837–10841. https://doi.org/10.1039/c8dt02224k
(2018). Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase.
Hestericova, Martina, Heinisch, Tillmann, Lenz, Markus, & Dalton transactions, 47(32), 10837–10841. https://doi.org/10.1039/c8dt02224k
(2018). Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase.
Jeschek, Markus, Panke, Sven, & Trends in Biotechnology, 36(1), 60–72. https://doi.org/10.1016/j.tibtech.2017.10.003
(2018). Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism.
Jeschek, Markus, Panke, Sven, & Trends in Biotechnology, 36(1), 60–72. https://doi.org/10.1016/j.tibtech.2017.10.003
(2018). Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism.
Keller, Sascha G., Probst, Benjamin, Heinisch, Tillmann, Alberto, Roger, & Helvetica Chimica Acta, 101(4), e1800036. https://doi.org/10.1002/hlca.201800036
(2018). Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology.
Keller, Sascha G., Probst, Benjamin, Heinisch, Tillmann, Alberto, Roger, & Helvetica Chimica Acta, 101(4), e1800036. https://doi.org/10.1002/hlca.201800036
(2018). Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology.
Mallin, Hendrik, & ChemCatChem, 10(13), 2810–2816. https://doi.org/10.1002/cctc.201800162
(2018). Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades.
Mallin, Hendrik, & ChemCatChem, 10(13), 2810–2816. https://doi.org/10.1002/cctc.201800162
(2018). Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades.
Mann, Samuel, Heinisch, Tillmann, Chemical Communications, 54(35), 4413–4416. https://doi.org/10.1039/c8cc01931b
, & Borovik, A. S. (2018). Coordination chemistry within a protein host: regulation of the secondary coordination sphere.
Mann, Samuel, Heinisch, Tillmann, Chemical Communications, 54(35), 4413–4416. https://doi.org/10.1039/c8cc01931b
, & Borovik, A. S. (2018). Coordination chemistry within a protein host: regulation of the secondary coordination sphere.
Okamoto, Yasunori, Kojima, Ryosuke, Schwizer, Fabian, Bartolami, Eline, Heinisch, Tillmann, Matile, Stefan, Fussenegger, Martin, & Nature Communications, 9, 1943. https://doi.org/10.1038/s41467-018-04440-0
(2018). A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell.
Okamoto, Yasunori, Kojima, Ryosuke, Schwizer, Fabian, Bartolami, Eline, Heinisch, Tillmann, Matile, Stefan, Fussenegger, Martin, & Nature Communications, 9, 1943. https://doi.org/10.1038/s41467-018-04440-0
(2018). A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell.
Pellizzoni, Michela M., Schwizer, Fabian, Wood, Christopher W., Sabatino, Valerio, Cotelle, Yoann, Matile, Stefan, Woolfson , Derek N., & ACS Catalysis, 8(2), 1476–1484. https://doi.org/10.1021/acscatal.7b03773
(2018). Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes.
Pellizzoni, Michela M., Schwizer, Fabian, Wood, Christopher W., Sabatino, Valerio, Cotelle, Yoann, Matile, Stefan, Woolfson , Derek N., & ACS Catalysis, 8(2), 1476–1484. https://doi.org/10.1021/acscatal.7b03773
(2018). Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes.
Rebelein, Johannes G., & Current Opinion in Biotechnology, 53, 106–114. https://doi.org/10.1016/j.copbio.2017.12.008
(2018). In vivo catalyzed new-to-nature reactions.
Rebelein, Johannes G., & Current Opinion in Biotechnology, 53, 106–114. https://doi.org/10.1016/j.copbio.2017.12.008
(2018). In vivo catalyzed new-to-nature reactions.
Schwizer, Fabian, Okamoto, Yasunori, Heinisch, Tillmann, Gu, Yifan, Pellizzoni, Michela M., Lebrun, Vincent, Reuter, Raphael, Köhler, Valentin, Lewis, Jared C., & Chemical Reviews, 118(1), 142–231. https://doi.org/10.1021/acs.chemrev.7b00014
(2018). Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
Schwizer, Fabian, Okamoto, Yasunori, Heinisch, Tillmann, Gu, Yifan, Pellizzoni, Michela M., Lebrun, Vincent, Reuter, Raphael, Köhler, Valentin, Lewis, Jared C., & Chemical Reviews, 118(1), 142–231. https://doi.org/10.1021/acs.chemrev.7b00014
(2018). Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
Szponarski, Mathieu, Schwizer, Fabian, Communications Chemistry, 1(84), 1–10. https://doi.org/10.1038/s42004-018-0087-y
, & Gademann, Karl. (2018). On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme.
Szponarski, Mathieu, Schwizer, Fabian, Communications Chemistry, 1(84), 1–10. https://doi.org/10.1038/s42004-018-0087-y
, & Gademann, Karl. (2018). On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme.
Zhao, Jingming, Bachmann, Daniel G., Lenz, Markus, Gillingham, Dennis G., & Catalysis science & technology, 8(9), 2294–2298. https://doi.org/10.1039/c8cy00646f
(2018). An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin.
Zhao, Jingming, Bachmann, Daniel G., Lenz, Markus, Gillingham, Dennis G., & Catalysis science & technology, 8(9), 2294–2298. https://doi.org/10.1039/c8cy00646f
(2018). An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin.
Zhao, Jingming, Rebelein, Johannes G., Mallin, Hendrik, Trindler, Christian, Pellizzoni, Michela M., & Journal of American Chemical Society, 140(41), 13171–13175. https://doi.org/10.1021/jacs.8b07189
(2018). Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm.
Zhao, Jingming, Rebelein, Johannes G., Mallin, Hendrik, Trindler, Christian, Pellizzoni, Michela M., & Journal of American Chemical Society, 140(41), 13171–13175. https://doi.org/10.1021/jacs.8b07189
(2018). Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm.
Jeschek, Markus, Bahls, Maximilian O., Schneider, Veronika, Marlière, Philippe, Metabolic Engineering, 40, 33–40. https://doi.org/10.1016/j.ymben.2016.12.013
, & Panke, Sven. (2017). Biotin-independent strains of Escherichia coli for enhanced streptavidin production.
Jeschek, Markus, Bahls, Maximilian O., Schneider, Veronika, Marlière, Philippe, Metabolic Engineering, 40, 33–40. https://doi.org/10.1016/j.ymben.2016.12.013
, & Panke, Sven. (2017). Biotin-independent strains of Escherichia coli for enhanced streptavidin production.
Keller, Sascha G., Pannwitz, Andrea, Mallin, Hendrik, Wenger, Oliver S., & Chemistry - A European Journal, 23(71), 18019–18024. https://doi.org/10.1002/chem.201703885
(2017). Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation.
Keller, Sascha G., Pannwitz, Andrea, Mallin, Hendrik, Wenger, Oliver S., & Chemistry - A European Journal, 23(71), 18019–18024. https://doi.org/10.1002/chem.201703885
(2017). Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation.
Liu, Le, Cotelle, Yoann, Klehr, Juliane, Sakai, Naomi, Chemical Science, 8(5), 3770–3774. https://doi.org/10.1039/c7sc00525c
, & Matile, Stefan. (2017). Anion-ÏEuro catalysis: Bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on ÏEuro-acidic surfaces.
Liu, Le, Cotelle, Yoann, Klehr, Juliane, Sakai, Naomi, Chemical Science, 8(5), 3770–3774. https://doi.org/10.1039/c7sc00525c
, & Matile, Stefan. (2017). Anion-ÏEuro catalysis: Bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on ÏEuro-acidic surfaces.
Mann, Samuel, Heinisch, Tillmann, Journal of the American Chemical Society, 139(48), 17289–17292. https://doi.org/10.1021/jacs.7b10452
, & Borovik, A. S. (2017). Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins.
Mann, Samuel, Heinisch, Tillmann, Journal of the American Chemical Society, 139(48), 17289–17292. https://doi.org/10.1021/jacs.7b10452
, & Borovik, A. S. (2017). Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins.
Okamoto, Yasunori, & Angewandte Chemie International Edition, 56(34), 10156–10160. https://doi.org/10.1002/anie.201702181
(2017). Cross-Regulation of an Artificial Metalloenzyme.
Okamoto, Yasunori, & Angewandte Chemie International Edition, 56(34), 10156–10160. https://doi.org/10.1002/anie.201702181
(2017). Cross-Regulation of an Artificial Metalloenzyme.
Okamoto, Yasunori, & Biochemistry, 56(40), 5223–5224. https://doi.org/10.1021/acs.biochem.7b00809
(2017). Transfer Hydrogenation Catalyzed by Organometallic Complexes using NADH as Reductant in a Biochemical Context.
Okamoto, Yasunori, & Biochemistry, 56(40), 5223–5224. https://doi.org/10.1021/acs.biochem.7b00809
(2017). Transfer Hydrogenation Catalyzed by Organometallic Complexes using NADH as Reductant in a Biochemical Context.
Seck, Charlotte, Mbaye, Diagne M., Coufourier, Sébastien, Lator, Alexis, Lohier, Jean-François, Poater, Albert, ChemCatChem, 9(23), 4410–4416. https://doi.org/10.1002/cctc.201701241
, Gaillard, Sylvain, & Renaud, Jean-Luc. (2017). Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application.
Seck, Charlotte, Mbaye, Diagne M., Coufourier, Sébastien, Lator, Alexis, Lohier, Jean-François, Poater, Albert, ChemCatChem, 9(23), 4410–4416. https://doi.org/10.1002/cctc.201701241
, Gaillard, Sylvain, & Renaud, Jean-Luc. (2017). Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application.
Okamoto, Yasunori, & Comprehensive Supramolecular Chemistry II (II, Vol. 4, pp. 459–510). Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.12551-x
(2017). Supramolecular Enzyme Mimics. In Atwood Ed., J. (Ed.),
Okamoto, Yasunori, & Comprehensive Supramolecular Chemistry II (II, Vol. 4, pp. 459–510). Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.12551-x
(2017). Supramolecular Enzyme Mimics. In Atwood Ed., J. (Ed.),
Trindler, Christian, & Effects of Nanoconfinement on Catalysis: Vol. Fundamental and Applied Catalysis (pp. 49–82). Springer. https://doi.org/10.1007/978-3-319-50207-6_3
(2017). Artificial Metalloenzymes. In Poli, Rinaldo (Ed.),
Trindler, Christian, & Effects of Nanoconfinement on Catalysis: Vol. Fundamental and Applied Catalysis (pp. 49–82). Springer. https://doi.org/10.1007/978-3-319-50207-6_3
(2017). Artificial Metalloenzymes. In Poli, Rinaldo (Ed.),
Chatterjee, Anamitra, Mallin, Hendrik, Klehr, Juliane, Vallapurackal, Jaicy, Finke, Aaron D., Vera, Laura, Marsh, May, & Chemical Science, 7(1), 673–677. https://doi.org/10.1039/c5sc03116h
(2016). An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology.
Chatterjee, Anamitra, Mallin, Hendrik, Klehr, Juliane, Vallapurackal, Jaicy, Finke, Aaron D., Vera, Laura, Marsh, May, & Chemical Science, 7(1), 673–677. https://doi.org/10.1039/c5sc03116h
(2016). An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology.
Chatterjee, Anamitra, & Catalysis Letters, 146(4), 820–840. https://doi.org/10.1007/s10562-016-1707-8
(2016). Recent Advances in the Palladium Catalyzed Suzuki-Miyaura Cross-Coupling Reaction in Water.
Chatterjee, Anamitra, & Catalysis Letters, 146(4), 820–840. https://doi.org/10.1007/s10562-016-1707-8
(2016). Recent Advances in the Palladium Catalyzed Suzuki-Miyaura Cross-Coupling Reaction in Water.
Cotelle, Yoann, Benz, Sebastian, Avestro, Alyssa-Jennifer, Angewandte Chemie International Edition, 55(13), 4275–4279. https://doi.org/10.1002/ange.201600831
, Sakai, Naomi, & Matile, Stefan. (2016). Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Tool to Run Reactions on Aromatic Surfaces.
Cotelle, Yoann, Benz, Sebastian, Avestro, Alyssa-Jennifer, Angewandte Chemie International Edition, 55(13), 4275–4279. https://doi.org/10.1002/ange.201600831
, Sakai, Naomi, & Matile, Stefan. (2016). Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Tool to Run Reactions on Aromatic Surfaces.
Cotelle, Yoann, Chuard, Nicolas, Lascano, Santiago, Lebrun, Vincent, Wehlauch, Robin, Bohni, Nadine, Loercher, Samuel, Postupalenko, Viktoriia, Reddy, Sai T., Meier, Wolfgang, Palivan, Cornelia G., Gademann, Karl, Chimia, 70(6), 418–423. https://doi.org/10.2533/chimia.2016.418
, & Matile, Stefan. (2016). Interfacing Functional Systems.
Cotelle, Yoann, Chuard, Nicolas, Lascano, Santiago, Lebrun, Vincent, Wehlauch, Robin, Bohni, Nadine, Loercher, Samuel, Postupalenko, Viktoriia, Reddy, Sai T., Meier, Wolfgang, Palivan, Cornelia G., Gademann, Karl, Chimia, 70(6), 418–423. https://doi.org/10.2533/chimia.2016.418
, & Matile, Stefan. (2016). Interfacing Functional Systems.
Cotelle, Yoann, Lebrun, Vincent, Sakai, Naomi, ACS Central Science, 2(6), 388–393. https://doi.org/10.1021/acscentsci.6b00097
, & Matile, Stefan. (2016). Anion-π Enzymes.
Cotelle, Yoann, Lebrun, Vincent, Sakai, Naomi, ACS Central Science, 2(6), 388–393. https://doi.org/10.1021/acscentsci.6b00097
, & Matile, Stefan. (2016). Anion-π Enzymes.
Heinisch, Tillmann, & Accounts of Chemical Research, 49(9), 1711–1721. https://doi.org/10.1021/acs.accounts.6b00235
(2016). Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
Heinisch, Tillmann, & Accounts of Chemical Research, 49(9), 1711–1721. https://doi.org/10.1021/acs.accounts.6b00235
(2016). Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
Hestericová, Martina, Correro, M Rita, Lenz, Markus, Corvini, Philippe F-X, Shahgaldian, Patrick, & Chemical Communications, 52(60), 9462–9465. https://doi.org/10.1039/c6cc04604e
. (2016). Immobilization of an Artificial Imine Reductase within Silica Nanoparticles Improves its Performance.
Hestericová, Martina, Correro, M Rita, Lenz, Markus, Corvini, Philippe F-X, Shahgaldian, Patrick, & Chemical Communications, 52(60), 9462–9465. https://doi.org/10.1039/c6cc04604e
. (2016). Immobilization of an Artificial Imine Reductase within Silica Nanoparticles Improves its Performance.
Hyster, Todd K., & Angewandte Chemie International Edition, 55(26), 7344–7357. https://doi.org/10.1002/anie.201508816
(2016). Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions.
Hyster, Todd K., & Angewandte Chemie International Edition, 55(26), 7344–7357. https://doi.org/10.1002/anie.201508816
(2016). Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions.
Jeschek, Markus, Panke, Sven, & Methods in enzymology, 580, 539–556. https://doi.org/10.1016/bs.mie.2016.05.037
(2016). Periplasmic Screening for Artificial Metalloenzymes.
Jeschek, Markus, Panke, Sven, & Methods in enzymology, 580, 539–556. https://doi.org/10.1016/bs.mie.2016.05.037
(2016). Periplasmic Screening for Artificial Metalloenzymes.
Jeschek, Markus, Reuter, Raphael, Heinisch, Tillmann, Trindler, Christian, Klehr, Juliane, Panke, Sven, & Nature, 537(7622), 661–665. https://doi.org/10.1038/nature19114
(2016). Directed evolution of artificial metalloenzymes for in vivo metathesis.
Jeschek, Markus, Reuter, Raphael, Heinisch, Tillmann, Trindler, Christian, Klehr, Juliane, Panke, Sven, & Nature, 537(7622), 661–665. https://doi.org/10.1038/nature19114
(2016). Directed evolution of artificial metalloenzymes for in vivo metathesis.