Publications
128 found
Show per page
Yoshikawa, O., Basoli, V., Boschetto, F., Rondinella, A., Zhu, W., Thieringer, F. M., Xu, H., & Marin, E. (2025). Electrospun Polycaprolactone-Curcumin Scaffolds: Optimization of fiber production for enhanced Nanotopography and improved biological cell adhesion. European Polymer Journal, 222. https://doi.org/10.1016/j.eurpolymj.2024.113616
Yoshikawa, O., Basoli, V., Boschetto, F., Rondinella, A., Zhu, W., Thieringer, F. M., Xu, H., & Marin, E. (2025). Electrospun Polycaprolactone-Curcumin Scaffolds: Optimization of fiber production for enhanced Nanotopography and improved biological cell adhesion. European Polymer Journal, 222. https://doi.org/10.1016/j.eurpolymj.2024.113616
Leung, Y. Y., Fan, K., & Thieringer, F. M. (2025). Craniomaxillofacial Trauma and Reconstruction: A New Era in Open Access Publishing [Journal-article]. Craniomaxillofacial Trauma &Amp; Reconstruction, 18(1), 1. https://doi.org/10.3390/cmtr18010001
Leung, Y. Y., Fan, K., & Thieringer, F. M. (2025). Craniomaxillofacial Trauma and Reconstruction: A New Era in Open Access Publishing [Journal-article]. Craniomaxillofacial Trauma &Amp; Reconstruction, 18(1), 1. https://doi.org/10.3390/cmtr18010001
Jakimiuk, Adam, Maintz, Michaela, Müller-Gerbl, Magdalena, 3D Printing in Medicine, 10. https://doi.org/10.1186/s41205-024-00240-z
, Keller, Marco, Guebeli, Alissa, & Honigmann, Philipp. (2024). 3D-printed patient-specific implants made of polylactide (PLDLLA) and β-tricalcium phosphate (β-TCP) for corrective osteotomies of the distal radius.
Jakimiuk, Adam, Maintz, Michaela, Müller-Gerbl, Magdalena, 3D Printing in Medicine, 10. https://doi.org/10.1186/s41205-024-00240-z
, Keller, Marco, Guebeli, Alissa, & Honigmann, Philipp. (2024). 3D-printed patient-specific implants made of polylactide (PLDLLA) and β-tricalcium phosphate (β-TCP) for corrective osteotomies of the distal radius.
Seifert, L. B., Beyer, M., Czok, V., Aigner, A., Abazi, S., Thieringer, F. M., & Sader, R. (2024). Comparative Accuracy of Stationary and Smartphone-Based Photogrammetry in Oral and Maxillofacial Surgery: A Clinical Study [Journal-article]. Journal of Clinical Medicine, 13(22), 6678. https://doi.org/10.3390/jcm13226678
Seifert, L. B., Beyer, M., Czok, V., Aigner, A., Abazi, S., Thieringer, F. M., & Sader, R. (2024). Comparative Accuracy of Stationary and Smartphone-Based Photogrammetry in Oral and Maxillofacial Surgery: A Clinical Study [Journal-article]. Journal of Clinical Medicine, 13(22), 6678. https://doi.org/10.3390/jcm13226678
Msallem, B., Vavrina, J. J., Beyer, M., Halbeisen, F. S., Lauer, G., Dragu, A., & Thieringer, F. M. (2024). Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology [Journal-article]. Journal of Clinical Medicine, 13(19), 5848. https://doi.org/10.3390/jcm13195848
Msallem, B., Vavrina, J. J., Beyer, M., Halbeisen, F. S., Lauer, G., Dragu, A., & Thieringer, F. M. (2024). Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology [Journal-article]. Journal of Clinical Medicine, 13(19), 5848. https://doi.org/10.3390/jcm13195848
Msallem, B., Veronesi, L., Beyer, M., Halbeisen, F. S., Maintz, M., Franke, A., Korn, P., Dragu, A., & Thieringer, F. M. (2024). Evaluation of the Dimensional Accuracy of Robot-Guided Laser Osteotomy in Reconstruction with Patient-Specific Implants—An Accuracy Study of Digital High-Tech Procedures [Journal-article]. Journal of Clinical Medicine, 13(12), 3594. https://doi.org/10.3390/jcm13123594
Msallem, B., Veronesi, L., Beyer, M., Halbeisen, F. S., Maintz, M., Franke, A., Korn, P., Dragu, A., & Thieringer, F. M. (2024). Evaluation of the Dimensional Accuracy of Robot-Guided Laser Osteotomy in Reconstruction with Patient-Specific Implants—An Accuracy Study of Digital High-Tech Procedures [Journal-article]. Journal of Clinical Medicine, 13(12), 3594. https://doi.org/10.3390/jcm13123594
Guerra RC, de Fátima Borim Pulino B, Salomão Júnior VF, Dos Santos Pereira R, Oral and Maxillofacial Surgery, 28(2), 595–603. https://doi.org/10.1007/s10006-023-01173-3
, Sacco R, Sader R, & Vieira EH. (2024). Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs.
Guerra RC, de Fátima Borim Pulino B, Salomão Júnior VF, Dos Santos Pereira R, Oral and Maxillofacial Surgery, 28(2), 595–603. https://doi.org/10.1007/s10006-023-01173-3
, Sacco R, Sader R, & Vieira EH. (2024). Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs.
Jakimiuk, Adam, Maintz, Michaela, Müller-Gerbl, Magdalena, 3D-printed Patient-Specific Implants made of Polylactide (PLDLLA) and β-Tricalcium Phosphate (β-TCP) for Corrective Osteotomies of The Distal Radius [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-4145453/v1
, Keller, Marco, Guebeli, Alissa, & Honigmann, Philipp. (2024).
Jakimiuk, Adam, Maintz, Michaela, Müller-Gerbl, Magdalena, 3D-printed Patient-Specific Implants made of Polylactide (PLDLLA) and β-Tricalcium Phosphate (β-TCP) for Corrective Osteotomies of The Distal Radius [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-4145453/v1
, Keller, Marco, Guebeli, Alissa, & Honigmann, Philipp. (2024).
Guebeli A, Journal of Hand Surgery: European Volume, 49(3), 350–358. https://doi.org/10.1177/17531934231187554
, Honigmann P, & Keller M. (2024). In-house 3D-printed custom splints for non-operative treatment of distal radial fractures: a randomized controlled trial.
Guebeli A, Journal of Hand Surgery: European Volume, 49(3), 350–358. https://doi.org/10.1177/17531934231187554
, Honigmann P, & Keller M. (2024). In-house 3D-printed custom splints for non-operative treatment of distal radial fractures: a randomized controlled trial.
Miazza, Jules, Winkel, David, European Journal of Cardio-Thoracic Surgery , 65(3). https://doi.org/10.1093/ejcts/ezae040
, Reuthebuch, Oliver, Eckstein, Friedrich, Gahl, Brigitta, & Berdajs, Denis. (2024). Aortic root rotation: morphological analysis of the aortic root with three-dimensional computed tomography.
Miazza, Jules, Winkel, David, European Journal of Cardio-Thoracic Surgery , 65(3). https://doi.org/10.1093/ejcts/ezae040
, Reuthebuch, Oliver, Eckstein, Friedrich, Gahl, Brigitta, & Berdajs, Denis. (2024). Aortic root rotation: morphological analysis of the aortic root with three-dimensional computed tomography.
Sabev, Bogomil, Abazi, Sead, Patcas, Raphael, Hertig, Gabriel, Meyer, Simon, Rommers, Nikki, Journal of Cranio-Maxillofacial Surgery. https://doi.org/10.1016/j.jcms.2024.03.007
, & Metzler, Philipp. (2024). Fully digital occlusion planning in orthognathic surgery – A crossover study [Journal-article].
Sabev, Bogomil, Abazi, Sead, Patcas, Raphael, Hertig, Gabriel, Meyer, Simon, Rommers, Nikki, Journal of Cranio-Maxillofacial Surgery. https://doi.org/10.1016/j.jcms.2024.03.007
, & Metzler, Philipp. (2024). Fully digital occlusion planning in orthognathic surgery – A crossover study [Journal-article].
Meyer S, Benitez BK, Plastic and Reconstructive Surgery, 153(2), 462–465. https://doi.org/10.1097/PRS.0000000000010684
, & Mueller AA. (2024). Three-Dimensional Printable Open-Source Cleft Lip and Palate Impression Trays: A Single-Impression Workflow.
Meyer S, Benitez BK, Plastic and Reconstructive Surgery, 153(2), 462–465. https://doi.org/10.1097/PRS.0000000000010684
, & Mueller AA. (2024). Three-Dimensional Printable Open-Source Cleft Lip and Palate Impression Trays: A Single-Impression Workflow.
Sigron, G. R., Britschgi, C. L., Gahl, B., & Thieringer, F. M. (2024). Insights into Orbital Symmetry: A Comprehensive Retrospective Study of 372 Computed Tomography Scans [Journal-article]. Journal of Clinical Medicine, 13(4), 1041. https://doi.org/10.3390/jcm13041041
Sigron, G. R., Britschgi, C. L., Gahl, B., & Thieringer, F. M. (2024). Insights into Orbital Symmetry: A Comprehensive Retrospective Study of 372 Computed Tomography Scans [Journal-article]. Journal of Clinical Medicine, 13(4), 1041. https://doi.org/10.3390/jcm13041041
de Macêdo Santos, José Wittor, Benitez, Benito K., Baumhoer, Daniel, Schönegg, Daphne, Schrepfer, Thomas, Mueller, Andreas. A., & World Journal of Surgical Oncology, 22. https://doi.org/10.1186/s12957-024-03520-4
(2024). Intraosseous myofibroma mimicking an odontogenic lesion: case report, literature review, and differential diagnosis.
de Macêdo Santos, José Wittor, Benitez, Benito K., Baumhoer, Daniel, Schönegg, Daphne, Schrepfer, Thomas, Mueller, Andreas. A., & World Journal of Surgical Oncology, 22. https://doi.org/10.1186/s12957-024-03520-4
(2024). Intraosseous myofibroma mimicking an odontogenic lesion: case report, literature review, and differential diagnosis.
Hobert, Marc, Sharma, Neha, Benzimra, Caroline, Hinden, Sandro, Oevermann, Anna, Maintz, Michaela, Beyer, Michel, Frontiers in Veterinary Science, 11. https://doi.org/10.3389/fvets.2024.1459272
, & Guevar, Julien. (2024). Case report: One-stage craniectomy and cranioplasty digital workflow for three-dimensional printed polyetheretherketone implant for an extensive skull multilobular osteochondosarcoma in a dog.
Hobert, Marc, Sharma, Neha, Benzimra, Caroline, Hinden, Sandro, Oevermann, Anna, Maintz, Michaela, Beyer, Michel, Frontiers in Veterinary Science, 11. https://doi.org/10.3389/fvets.2024.1459272
, & Guevar, Julien. (2024). Case report: One-stage craniectomy and cranioplasty digital workflow for three-dimensional printed polyetheretherketone implant for an extensive skull multilobular osteochondosarcoma in a dog.
Honigmann, Philipp, Patient-Specific Treatment in Hand Surgery: Smart Innovations and Rapid Translation into the Point of Care: Vol. Part F2525 (pp. 97–121). https://doi.org/10.1007/978-3-031-47768-3_7
, Sharma, Neha, & Keller, Marco. (2024).
Honigmann, Philipp, Patient-Specific Treatment in Hand Surgery: Smart Innovations and Rapid Translation into the Point of Care: Vol. Part F2525 (pp. 97–121). https://doi.org/10.1007/978-3-031-47768-3_7
, Sharma, Neha, & Keller, Marco. (2024).
Keller, Marco, Artificial Intelligence in Musculoskeletal Medical Imaging: Vol. Part F2525 (pp. 149–168). https://doi.org/10.1007/978-3-031-47768-3_9
, & Honigmann, Philipp. (2024).
Keller, Marco, Artificial Intelligence in Musculoskeletal Medical Imaging: Vol. Part F2525 (pp. 149–168). https://doi.org/10.1007/978-3-031-47768-3_9
, & Honigmann, Philipp. (2024).
Maintz, Michaela, Desan, Nora, Sharma, Neha, Beinemann, Jörg, Beyer, Michel, Seiler, Daniel, Honigmann, Philipp, Soleman, Jehuda, Guzman, Raphael, Cattin, Philippe C., & International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/s11548-024-03298-6
(2024). Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment [Journal-article].
Maintz, Michaela, Desan, Nora, Sharma, Neha, Beinemann, Jörg, Beyer, Michel, Seiler, Daniel, Honigmann, Philipp, Soleman, Jehuda, Guzman, Raphael, Cattin, Philippe C., & International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/s11548-024-03298-6
(2024). Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment [Journal-article].
Maintz, Michaela, Tomooka, Yukiko, Eugster, Manuela, Gerig, Nicolas, Sharma, Neha, In situ minimally invasive 3D printing for bone and cartilage regeneration - A scoping review. 10, 66–70. https://doi.org/10.1515/cdbme-2024-1069
, & Rauter, Georg. (2024).
Maintz, Michaela, Tomooka, Yukiko, Eugster, Manuela, Gerig, Nicolas, Sharma, Neha, In situ minimally invasive 3D printing for bone and cartilage regeneration - A scoping review. 10, 66–70. https://doi.org/10.1515/cdbme-2024-1069
, & Rauter, Georg. (2024).
Maintz, Michaela, Tourbier, Céline, de Wild, Michael, Cattin, Philippe C., Beyer, Michel, Seiler, Daniel, Honigmann, Philipp, Sharma, Neha, & 3D Printing in Medicine, 10(1). https://doi.org/10.1186/s41205-024-00207-0
(2024). Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application [Journal-article].
Maintz, Michaela, Tourbier, Céline, de Wild, Michael, Cattin, Philippe C., Beyer, Michel, Seiler, Daniel, Honigmann, Philipp, Sharma, Neha, & 3D Printing in Medicine, 10(1). https://doi.org/10.1186/s41205-024-00207-0
(2024). Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application [Journal-article].
Saemann, A., De Rosa, A., Zubizarreta Oteiza, J., Sharma, N., Thieringer, F. M., Soleman, J., & Guzman, R. (2024). Innovating neurosurgical training: a comprehensive evaluation of a 3D-printed intraventricular neuroendoscopy simulator and systematic review of the literature. Frontiers in Surgery, 11. https://doi.org/10.3389/fsurg.2024.1446067
Saemann, A., De Rosa, A., Zubizarreta Oteiza, J., Sharma, N., Thieringer, F. M., Soleman, J., & Guzman, R. (2024). Innovating neurosurgical training: a comprehensive evaluation of a 3D-printed intraventricular neuroendoscopy simulator and systematic review of the literature. Frontiers in Surgery, 11. https://doi.org/10.3389/fsurg.2024.1446067
Teuber Lobos, Cristian, Benitez, Benito K., Lill, Yoriko, Kiser, Laura E., Tache, Ana, Fernandez-Pose, Maria, Campolo Gonzalez, Andres, Nalabothu, Prasad, Sharma, Neha, Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e29185
, Vargas Díaz, Alex, & Mueller, Andreas A. (2024). Cleft lip and palate surgery simulator: Open source simulation model.
Teuber Lobos, Cristian, Benitez, Benito K., Lill, Yoriko, Kiser, Laura E., Tache, Ana, Fernandez-Pose, Maria, Campolo Gonzalez, Andres, Nalabothu, Prasad, Sharma, Neha, Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e29185
, Vargas Díaz, Alex, & Mueller, Andreas A. (2024). Cleft lip and palate surgery simulator: Open source simulation model.
Wang, Kenneth C., Ryan, Justin R., Chepelev, Leonid, Wake, Nicole, Quigley, Edward P., Santiago, Lumarie, Wentworth, Adam, Alexander, Amy, Morris, Jonathan M., Fleischmann, Dominik, Ballard, David H., Ravi, Prashanth, Hirsch, Jeffrey D., Sturgeon, Gregory M., Huang, Yu-Hui, Decker, Summer J., von Windheim, Natalia, Pugliese, Robert S., Hidalgo, Ronald V., et al. (2024). Demographics, Utilization, Workflow, and Outcomes Based on Observational Data From the RSNA-ACR 3D Printing Registry. Journal of the American College of Radiology. https://doi.org/10.1016/j.jacr.2024.07.019
Wang, Kenneth C., Ryan, Justin R., Chepelev, Leonid, Wake, Nicole, Quigley, Edward P., Santiago, Lumarie, Wentworth, Adam, Alexander, Amy, Morris, Jonathan M., Fleischmann, Dominik, Ballard, David H., Ravi, Prashanth, Hirsch, Jeffrey D., Sturgeon, Gregory M., Huang, Yu-Hui, Decker, Summer J., von Windheim, Natalia, Pugliese, Robert S., Hidalgo, Ronald V., et al. (2024). Demographics, Utilization, Workflow, and Outcomes Based on Observational Data From the RSNA-ACR 3D Printing Registry. Journal of the American College of Radiology. https://doi.org/10.1016/j.jacr.2024.07.019
Westarp, Emilia, Journal of Craniofacial Surgery, 35, 220–222. https://doi.org/10.1097/scs.0000000000009640
, & Roethlisberger, Michel. (2024). Precision Surgery for Orbital Cavernous Hemangiomas: The Role of Three-Dimensional Printing in Individualized Resection - An Educational Experience.
Westarp, Emilia, Journal of Craniofacial Surgery, 35, 220–222. https://doi.org/10.1097/scs.0000000000009640
, & Roethlisberger, Michel. (2024). Precision Surgery for Orbital Cavernous Hemangiomas: The Role of Three-Dimensional Printing in Individualized Resection - An Educational Experience.
Westarp, Emilia, Journal of Craniofacial Surgery, 35, E307–E309. https://doi.org/10.1097/scs.0000000000010095
, & Roethlisberger, Michel. (2024). Virtual Surgical Planning and Customized CAD/CAM Cranial Implants: Preoperative and Intraoperative Strategies for Temporal Intraosseous Meningioma Resection.
Westarp, Emilia, Journal of Craniofacial Surgery, 35, E307–E309. https://doi.org/10.1097/scs.0000000000010095
, & Roethlisberger, Michel. (2024). Virtual Surgical Planning and Customized CAD/CAM Cranial Implants: Preoperative and Intraoperative Strategies for Temporal Intraosseous Meningioma Resection.
Xingting Han, Neha Sharma, Zeqian Xu, Stefanie Krajewski, Ping Li, Sebastian Spintzyk, Longwei Lv, Yongsheng Zhou, Dental Materials. https://doi.org/10.1016/j.dental.2024.02.011
, & Frank Rupp. (2024). A balance of biocompatibility and antibacterial capability of 3D printed PEEK implants with natural totarol coating.
Xingting Han, Neha Sharma, Zeqian Xu, Stefanie Krajewski, Ping Li, Sebastian Spintzyk, Longwei Lv, Yongsheng Zhou, Dental Materials. https://doi.org/10.1016/j.dental.2024.02.011
, & Frank Rupp. (2024). A balance of biocompatibility and antibacterial capability of 3D printed PEEK implants with natural totarol coating.
Żelechowski, M., Zubizarreta-Oteiza, J., Karnam, M., Faludi, B., Zentai, N., Gerig, N., Rauter, G., Thieringer, F. M., & Cattin, P. C. (2024). Augmented reality navigation in orthognathic surgery: Comparative analysis and a paradigm shift. Healthcare Technology Letters. https://doi.org/10.1049/htl2.12109
Żelechowski, M., Zubizarreta-Oteiza, J., Karnam, M., Faludi, B., Zentai, N., Gerig, N., Rauter, G., Thieringer, F. M., & Cattin, P. C. (2024). Augmented reality navigation in orthognathic surgery: Comparative analysis and a paradigm shift. Healthcare Technology Letters. https://doi.org/10.1049/htl2.12109
Keller M., Guebeli A., International Journal of Computer Assisted Radiology and Surgery, 18(8), 1393–1403. https://doi.org/10.1007/s11548-023-02831-3
, & Honigmann P. (2023). Artificial intelligence in patient-specific hand surgery: a scoping review of literature.
Keller M., Guebeli A., International Journal of Computer Assisted Radiology and Surgery, 18(8), 1393–1403. https://doi.org/10.1007/s11548-023-02831-3
, & Honigmann P. (2023). Artificial intelligence in patient-specific hand surgery: a scoping review of literature.
Maintz, Michaela, Msallem, Bilal, de Wild, Michael, Seiler, Daniel, Herrmann, Sven, Feiler, Stefanie, Sharma, Neha, Dalcanale, Federico, Journal of the Mechanical Behavior of Biomedical Materials, 144. https://doi.org/10.1016/j.jmbbm.2023.105948
, , & Thieringer, Florian Markus. (2023). Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach.
Maintz, Michaela, Msallem, Bilal, de Wild, Michael, Seiler, Daniel, Herrmann, Sven, Feiler, Stefanie, Sharma, Neha, Dalcanale, Federico, Journal of the Mechanical Behavior of Biomedical Materials, 144. https://doi.org/10.1016/j.jmbbm.2023.105948
, , & Thieringer, Florian Markus. (2023). Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach.
Bieger V, Journal of Prosthetic Dentistry, 129(6), 939–945. https://doi.org/10.1016/j.prosdent.2021.08.015
, Fischer J, & Rohr N. (2023). Fibroblast behavior on conventionally processed, milled, and printed occlusal device materials with different surface treatments.
Bieger V, Journal of Prosthetic Dentistry, 129(6), 939–945. https://doi.org/10.1016/j.prosdent.2021.08.015
, Fischer J, & Rohr N. (2023). Fibroblast behavior on conventionally processed, milled, and printed occlusal device materials with different surface treatments.
Ilesan R.R., Beyer M., Kunz C., & Bioengineering, 10(5). https://doi.org/10.3390/bioengineering10050604
(2023). Comparison of Artificial Intelligence-Based Applications for Mandible Segmentation: From Established Platforms to In-House-Developed Software.
Ilesan R.R., Beyer M., Kunz C., & Bioengineering, 10(5). https://doi.org/10.3390/bioengineering10050604
(2023). Comparison of Artificial Intelligence-Based Applications for Mandible Segmentation: From Established Platforms to In-House-Developed Software.
Singh A.K., Khanal N., Chaulagain R., Sharma N, & Journal of Clinical Medicine, 12(10). https://doi.org/10.3390/jcm12103426
(2023). Is the Pre-Shaping of an Orbital Implant on a Patient-Specific 3D-Printed Model Advantageous Compared to Conventional Free-Hand Shaping? A Systematic Review and Meta-Analysis.
Singh A.K., Khanal N., Chaulagain R., Sharma N, & Journal of Clinical Medicine, 12(10). https://doi.org/10.3390/jcm12103426
(2023). Is the Pre-Shaping of an Orbital Implant on a Patient-Specific 3D-Printed Model Advantageous Compared to Conventional Free-Hand Shaping? A Systematic Review and Meta-Analysis.
Taheri Otaghsara Seyedeh Sahar, Joda, Tim, Journal of Dentistry, 132. https://doi.org/10.1016/j.jdent.2023.104487
, & . (2023). Accuracy of dental implant placement using static versus dynamic computer-assisted implant surgery: An in vitro study.
Taheri Otaghsara Seyedeh Sahar, Joda, Tim, Journal of Dentistry, 132. https://doi.org/10.1016/j.jdent.2023.104487
, & . (2023). Accuracy of dental implant placement using static versus dynamic computer-assisted implant surgery: An in vitro study.
Sommacal, Adelita, Bingisser, Roland, Filippi, Andreas, Bethke, Mascha, Journal of Clinical Medicine, 12(8), 2952. https://doi.org/10.3390/jcm12082952
, Jaquiéry, Claude, & Berg, Britt-Isabelle. (2023). Dental and Maxillofacial Emergency Algorithms in Swiss Emergency Departments [Journal-article].
Sommacal, Adelita, Bingisser, Roland, Filippi, Andreas, Bethke, Mascha, Journal of Clinical Medicine, 12(8), 2952. https://doi.org/10.3390/jcm12082952
, Jaquiéry, Claude, & Berg, Britt-Isabelle. (2023). Dental and Maxillofacial Emergency Algorithms in Swiss Emergency Departments [Journal-article].
Sharma N, Zubizarreta-Oteiza J, Tourbier C, & Journal of Clinical Medicine, 12(7). https://doi.org/10.3390/jcm12072495
. (2023). Can Steam Sterilization Affect the Accuracy of Point-of-Care 3D Printed Polyetheretherketone (PEEK) Customized Cranial Implants? An Investigative Analysis.
Sharma N, Zubizarreta-Oteiza J, Tourbier C, & Journal of Clinical Medicine, 12(7). https://doi.org/10.3390/jcm12072495
. (2023). Can Steam Sterilization Affect the Accuracy of Point-of-Care 3D Printed Polyetheretherketone (PEEK) Customized Cranial Implants? An Investigative Analysis.
Sommacal A, Bingisser R, Filippi A, Bethke M, Journal of Clinical Medicine, 12(8). https://doi.org/10.3390/jcm12082952
, Jaquiéry C, & Berg BI. (2023). Dental and Maxillofacial Emergency Algorithms in Swiss Emergency Departments.
Sommacal A, Bingisser R, Filippi A, Bethke M, Journal of Clinical Medicine, 12(8). https://doi.org/10.3390/jcm12082952
, Jaquiéry C, & Berg BI. (2023). Dental and Maxillofacial Emergency Algorithms in Swiss Emergency Departments.
Honigmann P, Keller M., Devaux-Voumard N., International Journal of Computer Assisted Radiology and Surgery, 18(3), 565–574. https://doi.org/10.1007/s11548-022-02779-w
, & Sutter D. (2023). Distance mapping in three-dimensional virtual surgical planning in hand, wrist and forearm surgery: a tool to avoid mistakes.
Honigmann P, Keller M., Devaux-Voumard N., International Journal of Computer Assisted Radiology and Surgery, 18(3), 565–574. https://doi.org/10.1007/s11548-022-02779-w
, & Sutter D. (2023). Distance mapping in three-dimensional virtual surgical planning in hand, wrist and forearm surgery: a tool to avoid mistakes.
Zarean P., Malgaroli P., Zarean P., Seiler D., de Wild M., Applied Sciences (Switzerland), 13(3). https://doi.org/10.3390/app13031230
, & Sharma N. (2023). Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care.
Zarean P., Malgaroli P., Zarean P., Seiler D., de Wild M., Applied Sciences (Switzerland), 13(3). https://doi.org/10.3390/app13031230
, & Sharma N. (2023). Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care.
Guerra, R. C., Pulino, B. d. F. B., Salomão, V., Pereira, R. d. S., Thieringer, F., Sacco, R., Sader, R., & Vieira, E. H. (2023). Finite Element Analysis of Low Profile Reconstruction Plates for Atrophic Mandibles: A Comparison of Novel 3D Grid and Conventional Plate Designs [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-2448008/v1
Guerra, R. C., Pulino, B. d. F. B., Salomão, V., Pereira, R. d. S., Thieringer, F., Sacco, R., Sader, R., & Vieira, E. H. (2023). Finite Element Analysis of Low Profile Reconstruction Plates for Atrophic Mandibles: A Comparison of Novel 3D Grid and Conventional Plate Designs [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-2448008/v1
Reid G, Gehweiler J, Frontiers in Cardiovascular Medicine, 9, 1064617. https://doi.org/10.3389/fcvm.2022.1064617
, Eckstein F, Ferrari E, Gahl B, & Berdajs DA. (2023). Planning of graft size and 3D reconstruction using virtual reality technique in aortic valve reimplantation.
Reid G, Gehweiler J, Frontiers in Cardiovascular Medicine, 9, 1064617. https://doi.org/10.3389/fcvm.2022.1064617
, Eckstein F, Ferrari E, Gahl B, & Berdajs DA. (2023). Planning of graft size and 3D reconstruction using virtual reality technique in aortic valve reimplantation.
Calderaro S, Bausch K, Tourbier C, Wetterauer C, Journal of Clinical Medicine, 12(2). https://doi.org/10.3390/jcm12020638
, & Berg BI. (2023). Medication-Related Osteonecrosis of the Jaw: A Cross-Sectional Survey among Urologists in Switzerland, Germany, and Austria.
Calderaro S, Bausch K, Tourbier C, Wetterauer C, Journal of Clinical Medicine, 12(2). https://doi.org/10.3390/jcm12020638
, & Berg BI. (2023). Medication-Related Osteonecrosis of the Jaw: A Cross-Sectional Survey among Urologists in Switzerland, Germany, and Austria.
Ebel, Florian, Schön, Stephan, Sharma, Neha, Guzman, Raphael, Mariani, Luigi, Neurosurgical Review, 46. https://doi.org/10.1007/s10143-023-02000-9
, & Soleman, Jehuda. (2023). Clinical and patient-reported outcome after patient-specific 3D printer-assisted cranioplasty.
Ebel, Florian, Schön, Stephan, Sharma, Neha, Guzman, Raphael, Mariani, Luigi, Neurosurgical Review, 46. https://doi.org/10.1007/s10143-023-02000-9
, & Soleman, Jehuda. (2023). Clinical and patient-reported outcome after patient-specific 3D printer-assisted cranioplasty.
Friedrich, P., Wolleb, J., Bieder, F., Thieringer, F. M., & Cattin, P. C. (2023). Point Cloud Diffusion Models for Automatic Implant Generation. 26th International Conference on Medical Image Computing and Computer Assisted Interventions, 14228 LNCS, 112–122. https://doi.org/10.1007/978-3-031-43996-4_11
Friedrich, P., Wolleb, J., Bieder, F., Thieringer, F. M., & Cattin, P. C. (2023). Point Cloud Diffusion Models for Automatic Implant Generation. 26th International Conference on Medical Image Computing and Computer Assisted Interventions, 14228 LNCS, 112–122. https://doi.org/10.1007/978-3-031-43996-4_11
Li, Na, Cui, Junkui, Chi, Minghan, Materials and Design, 234. https://doi.org/10.1016/j.matdes.2023.112362
, & Sharma, Neha. (2023). Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering.
Li, Na, Cui, Junkui, Chi, Minghan, Materials and Design, 234. https://doi.org/10.1016/j.matdes.2023.112362
, & Sharma, Neha. (2023). Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering.
Modgill, Vikas, Balas, Bogdan, Chi, Minghan, Honigmann, Philipp, Craniomaxillofacial Research and Innovation, 8. https://doi.org/10.1177/27528464231170964
, & Sharma, Neha. (2023). Knowledge Domain and Innovation Trends Concerning Medical 3D Printing for Craniomaxillofacial Surgery Applications: A 30-Year Bibliometric and Visualized Analysis.
Modgill, Vikas, Balas, Bogdan, Chi, Minghan, Honigmann, Philipp, Craniomaxillofacial Research and Innovation, 8. https://doi.org/10.1177/27528464231170964
, & Sharma, Neha. (2023). Knowledge Domain and Innovation Trends Concerning Medical 3D Printing for Craniomaxillofacial Surgery Applications: A 30-Year Bibliometric and Visualized Analysis.
Tomooka, Yukiko, Spothelfer, Dominic, Puiggali-Jou, Anna, Tourbier, Céline, At-Automatisierungstechnik, 71, 562–571. https://doi.org/10.1515/auto-2023-0060
, Thieringer, Florian M., Cattin, Philippe C., Rauter, Georg, & Eugster, Manuela. (2023). Minimal invasives in-situ Bioprinting mittels schlauchbasiertem Materialtransport.
Tomooka, Yukiko, Spothelfer, Dominic, Puiggali-Jou, Anna, Tourbier, Céline, At-Automatisierungstechnik, 71, 562–571. https://doi.org/10.1515/auto-2023-0060
, Thieringer, Florian M., Cattin, Philippe C., Rauter, Georg, & Eugster, Manuela. (2023). Minimal invasives in-situ Bioprinting mittels schlauchbasiertem Materialtransport.
Chi M., Li N., Sharma N., Li W., Chen C., Dong B., Cheng L., Wang L., & Materials Today Communications, 33. https://doi.org/10.1016/j.mtcomm.2022.104874
(2022). Positive regulation of osteogenesis on titanium surface by modification of nanosized Ca2+-exchanged EMT zeolites.
Chi M., Li N., Sharma N., Li W., Chen C., Dong B., Cheng L., Wang L., & Materials Today Communications, 33. https://doi.org/10.1016/j.mtcomm.2022.104874
(2022). Positive regulation of osteogenesis on titanium surface by modification of nanosized Ca2+-exchanged EMT zeolites.
Muff JL, Heye T, 3D Printing in Medicine, 8(1), 5. https://doi.org/10.1186/s41205-022-00133-z
, & Brantner P. (2022). Clinical acceptance of advanced visualization methods: a comparison study of 3D-print, virtual reality glasses, and 3D-display.
Muff JL, Heye T, 3D Printing in Medicine, 8(1), 5. https://doi.org/10.1186/s41205-022-00133-z
, & Brantner P. (2022). Clinical acceptance of advanced visualization methods: a comparison study of 3D-print, virtual reality glasses, and 3D-display.
Wang D, Han X, Luo F, Journal of Functional Biomaterials, 13(4). https://doi.org/10.3390/jfb13040288
, Xu Y, Ou G, & Spintzyk S. (2022). Adhesive Property of 3D-Printed PEEK Abutments: Effects of Surface Treatment and Temporary Crown Material on Shear Bond Strength.
Wang D, Han X, Luo F, Journal of Functional Biomaterials, 13(4). https://doi.org/10.3390/jfb13040288
, Xu Y, Ou G, & Spintzyk S. (2022). Adhesive Property of 3D-Printed PEEK Abutments: Effects of Surface Treatment and Temporary Crown Material on Shear Bond Strength.
Wang F, Wen J, Cao S, Yang X, Yang Z, Li H, Meng H, BMC Oral Health, 22(1), 138. https://doi.org/10.1186/s12903-022-02147-9
, & Wei J. (2022). Nomogram predicting long-term overall and cancer-specific survival of patients with buccal mucosa cancer.
Wang F, Wen J, Cao S, Yang X, Yang Z, Li H, Meng H, BMC Oral Health, 22(1), 138. https://doi.org/10.1186/s12903-022-02147-9
, & Wei J. (2022). Nomogram predicting long-term overall and cancer-specific survival of patients with buccal mucosa cancer.
Ostaș D, Almășan O, Ileșan RR, Andrei V, Journal of Clinical Medicine, 11(22). https://doi.org/10.3390/jcm11226625
, Hedeșiu M, & Rotar H. (2022). Point-of-Care Virtual Surgical Planning and 3D Printing in Oral and Cranio-Maxillofacial Surgery: A Narrative Review.
Ostaș D, Almășan O, Ileșan RR, Andrei V, Journal of Clinical Medicine, 11(22). https://doi.org/10.3390/jcm11226625
, Hedeșiu M, & Rotar H. (2022). Point-of-Care Virtual Surgical Planning and 3D Printing in Oral and Cranio-Maxillofacial Surgery: A Narrative Review.
Honigmann P, Hofer M, Hirsch S, Morawska M, Müller-Gerbl M, International Journal of Medical Robotics and Computer Assisted Surgery, 18(5), e2438. https://doi.org/10.1002/rcs.2438
, & Coppo E. (2022). Cold ablation robot-guided laser osteotomy in hand, wrist and forearm surgery—A feasibility study.
Honigmann P, Hofer M, Hirsch S, Morawska M, Müller-Gerbl M, International Journal of Medical Robotics and Computer Assisted Surgery, 18(5), e2438. https://doi.org/10.1002/rcs.2438
, & Coppo E. (2022). Cold ablation robot-guided laser osteotomy in hand, wrist and forearm surgery—A feasibility study.
Chi M, Li N, Cui J, Karlin S, Rohr N, Sharma N., & Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.989729
. (2022). Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering.
Chi M, Li N, Cui J, Karlin S, Rohr N, Sharma N., & Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.989729
. (2022). Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering.
Su YX, Editorial: Virtual surgical planning and 3d printing in head and neck tumor resection and reconstruction. 12, 960545. https://doi.org/10.3389/fonc.2022.960545
, Fernandes R, & Parmar S. (2022).
Su YX, Editorial: Virtual surgical planning and 3d printing in head and neck tumor resection and reconstruction. 12, 960545. https://doi.org/10.3389/fonc.2022.960545
, Fernandes R, & Parmar S. (2022).
Maintz, Michaela, Seiler, Daniel, Current Directions in Biomedical Engineering, 8(2), 177–180. https://doi.org/10.1515/cdbme-2022-1046
, & de Wild, Michael. (2022). Topology-optimized patient-specific osteosynthesis plates.
Maintz, Michaela, Seiler, Daniel, Current Directions in Biomedical Engineering, 8(2), 177–180. https://doi.org/10.1515/cdbme-2022-1046
, & de Wild, Michael. (2022). Topology-optimized patient-specific osteosynthesis plates.
Zarean P, Zarean P, Children, 9(8). https://doi.org/10.3390/children9081261
, Mueller A.A., Kressmann S, Erismann M, Sharma N, & Benitez BK. (2022). A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care.
Zarean P, Zarean P, Children, 9(8). https://doi.org/10.3390/children9081261
, Mueller A.A., Kressmann S, Erismann M, Sharma N, & Benitez BK. (2022). A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care.
Han X, Sharma N, Spintzyk S, Zhou Y, Xu Z, Dental Materials, 38(7), 1083–1098. https://doi.org/10.1016/j.dental.2022.04.026
, & Rupp F. (2022). Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization.
Han X, Sharma N, Spintzyk S, Zhou Y, Xu Z, Dental Materials, 38(7), 1083–1098. https://doi.org/10.1016/j.dental.2022.04.026
, & Rupp F. (2022). Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization.
Murtezani I., Sharma N., & Annals of 3D Printed Medicine, 6. https://doi.org/10.1016/j.stlm.2022.100059
(2022). Medical 3D printing with a focus on Point-of-Care in Cranio- and Maxillofacial Surgery. A systematic review of literature.
Murtezani I., Sharma N., & Annals of 3D Printed Medicine, 6. https://doi.org/10.1016/j.stlm.2022.100059
(2022). Medical 3D printing with a focus on Point-of-Care in Cranio- and Maxillofacial Surgery. A systematic review of literature.
Baumhoer D, Berthold R, Isfort I, Heinst L, Ameline B, Grünewald I, Modern Pathology, 35(4), 489–494. https://doi.org/10.1038/s41379-021-00956-x
, Rudack C, Wardelmann E, Vieth V, Sperveslage J, Trautmann M, & Hartmann W. (2022). Recurrent CTNNB1 mutations in craniofacial osteomas.
Baumhoer D, Berthold R, Isfort I, Heinst L, Ameline B, Grünewald I, Modern Pathology, 35(4), 489–494. https://doi.org/10.1038/s41379-021-00956-x
, Rudack C, Wardelmann E, Vieth V, Sperveslage J, Trautmann M, & Hartmann W. (2022). Recurrent CTNNB1 mutations in craniofacial osteomas.
Msallem, Bilal, Maintz, Michaela, Halbeisen, Florian S., Meyer, Simon, Sigron, Guido R., Sharma, Neha, Cao, Shuaishuai, & Materials, 15(5), 1970. https://doi.org/10.3390/ma15051970
(2022). Biomechanical Evaluation of Patient-Specific Polymethylmethacrylate Cranial Implants for Virtual Surgical Planning: An In-Vitro Study [Journal-article].
Msallem, Bilal, Maintz, Michaela, Halbeisen, Florian S., Meyer, Simon, Sigron, Guido R., Sharma, Neha, Cao, Shuaishuai, & Materials, 15(5), 1970. https://doi.org/10.3390/ma15051970
(2022). Biomechanical Evaluation of Patient-Specific Polymethylmethacrylate Cranial Implants for Virtual Surgical Planning: An In-Vitro Study [Journal-article].
Msallem, Bilal, Maintz, Michaela, Halbeisen, Florian S., Meyer, Simon, Sigron, Guido R., Sharma, Neha, Materials, 15(5). https://doi.org/10.3390/ma15051970
, & Thieringer, Florian M. (2022). Biomechanical Evaluation of Patient-Specific Polymethylmethacrylate Cranial Implants for Virtual Surgical Planning: An In-Vitro Study.
Msallem, Bilal, Maintz, Michaela, Halbeisen, Florian S., Meyer, Simon, Sigron, Guido R., Sharma, Neha, Materials, 15(5). https://doi.org/10.3390/ma15051970
, & Thieringer, Florian M. (2022). Biomechanical Evaluation of Patient-Specific Polymethylmethacrylate Cranial Implants for Virtual Surgical Planning: An In-Vitro Study.
Kaufmann R, Zech CJ, Takes M, Brantner P, Journal of Digital Imaging, 35(1), 9–20. https://doi.org/10.1007/s10278-021-00553-z
, Deutschmann M, Hergan K, Scharinger B, Hecht S, Rezar R, Wernly B, & Meissnitzer M. (2022). Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study.
Kaufmann R, Zech CJ, Takes M, Brantner P, Journal of Digital Imaging, 35(1), 9–20. https://doi.org/10.1007/s10278-021-00553-z
, Deutschmann M, Hergan K, Scharinger B, Hecht S, Rezar R, Wernly B, & Meissnitzer M. (2022). Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study.
Wang, Fengze, Tankus, Esma Bahar, Santarella, Francesco, Rohr, Nadja, Sharma, Neha, Märtin, Sabrina, Michalscheck, Mirja, Maintz, Michaela, Cao, Shuaishuai, & Polymers, 14(4). https://doi.org/10.3390/polym14040669
(2022). Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering.
Wang, Fengze, Tankus, Esma Bahar, Santarella, Francesco, Rohr, Nadja, Sharma, Neha, Märtin, Sabrina, Michalscheck, Mirja, Maintz, Michaela, Cao, Shuaishuai, & Polymers, 14(4). https://doi.org/10.3390/polym14040669
(2022). Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering.
Ha TT, Frontiers in Oncology, 11, 690374. https://doi.org/10.3389/fonc.2021.690374
, Bammerlin M, & Cordier D. (2022). High Precision Bone Cutting by Er: YAG Lasers Might Minimize the Invasiveness of Navigated Brain Biopsies.
Ha TT, Frontiers in Oncology, 11, 690374. https://doi.org/10.3389/fonc.2021.690374
, Bammerlin M, & Cordier D. (2022). High Precision Bone Cutting by Er: YAG Lasers Might Minimize the Invasiveness of Navigated Brain Biopsies.
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft [Frontiers Media S.A.]. 11, 775136. https://doi.org/10.3389/fonc.2021.775136
, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, & Martin I. (2021).
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft [Frontiers Media S.A.]. 11, 775136. https://doi.org/10.3389/fonc.2021.775136
, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, & Martin I. (2021).
Basgul C, Spece H, Sharma N, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), 1924–1941. https://doi.org/10.1002/jbm.b.34845
, & Kurtz SM. (2021). Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review.
Basgul C, Spece H, Sharma N, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), 1924–1941. https://doi.org/10.1002/jbm.b.34845
, & Kurtz SM. (2021). Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review.
Wegmüller L, Halbeisen F., Sharma N, Kühl S, & Journal of Clinical Medicine, 10(21). https://doi.org/10.3390/jcm10214894
(2021). Consumer vs. High-end 3D printers for guided implant surgery—An in vitro accuracy assessment study of different 3D printing technologies.
Wegmüller L, Halbeisen F., Sharma N, Kühl S, & Journal of Clinical Medicine, 10(21). https://doi.org/10.3390/jcm10214894
(2021). Consumer vs. High-end 3D printers for guided implant surgery—An in vitro accuracy assessment study of different 3D printing technologies.
Basgul C., Additive Manufacturing, 46. https://doi.org/10.1016/j.addma.2021.102097
, & Kurtz S.M. (2021). Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone.
Basgul C., Additive Manufacturing, 46. https://doi.org/10.1016/j.addma.2021.102097
, & Kurtz S.M. (2021). Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone.
Sharma N, Aghlmandi S, Dalcanale F, Seiler D, Zeilhofer HF, Honigmann P, & International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168521
. (2021). Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants.
Sharma N, Aghlmandi S, Dalcanale F, Seiler D, Zeilhofer HF, Honigmann P, & International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168521
. (2021). Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants.
Sharma, Neha, Welker, Dennis, Aghlmandi, Soheila, Maintz, Michaela, Zeilhofer, Hans-Florian, Honigmann, Philipp, Journal of Clinical Medicine, 10(16). https://doi.org/10.3390/jcm10163563
, & Thieringer, Florian M. (2021). A multi‐criteria assessment strategy for 3d printed porous polyetheretherketone (Peek) patient‐specific implants for orbital wall reconstruction.
Sharma, Neha, Welker, Dennis, Aghlmandi, Soheila, Maintz, Michaela, Zeilhofer, Hans-Florian, Honigmann, Philipp, Journal of Clinical Medicine, 10(16). https://doi.org/10.3390/jcm10163563
, & Thieringer, Florian M. (2021). A multi‐criteria assessment strategy for 3d printed porous polyetheretherketone (Peek) patient‐specific implants for orbital wall reconstruction.
Sigron G.R., Barba M, Chammartin F., Msallem B, Berg BI, & Journal of Clinical Medicine, 10(16). https://doi.org/10.3390/jcm10163509
(2021). Functional and cosmetic outcome after reconstruction of isolated, unilateral orbital floor fractures (Blow-out fractures) with and without the support of 3D-printed orbital anatomical models.
Sigron G.R., Barba M, Chammartin F., Msallem B, Berg BI, & Journal of Clinical Medicine, 10(16). https://doi.org/10.3390/jcm10163509
(2021). Functional and cosmetic outcome after reconstruction of isolated, unilateral orbital floor fractures (Blow-out fractures) with and without the support of 3D-printed orbital anatomical models.
Sharma, N., Welker, D., Aghlmandi, S., Maintz, M., Zeilhofer, H.-F., Honigmann, P., Seifert, T., & Thieringer, F. M. (2021, July 5). A Multi-Criteria Assessment Strategy for 3d Printed Porous Polyetheretherketone (Peek) Patient-Specific Implants for Orbital Wall Reconstruction [Posted-content]. MDPI AG. https://doi.org/10.20944/preprints202107.0110.v1
Sharma, N., Welker, D., Aghlmandi, S., Maintz, M., Zeilhofer, H.-F., Honigmann, P., Seifert, T., & Thieringer, F. M. (2021, July 5). A Multi-Criteria Assessment Strategy for 3d Printed Porous Polyetheretherketone (Peek) Patient-Specific Implants for Orbital Wall Reconstruction [Posted-content]. MDPI AG. https://doi.org/10.20944/preprints202107.0110.v1
Zhao DW, Ren B, Wang HW, Zhang X, Yu MZ, Cheng L, Sang YH, Cao SS, Bone and Joint Research, 10(7), 411–424. https://doi.org/10.1302/2046-3758.107.BJR-2020-0334.R4
, Zhang D, Wan Y, & Liu C. (2021). 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis.
Zhao DW, Ren B, Wang HW, Zhang X, Yu MZ, Cheng L, Sang YH, Cao SS, Bone and Joint Research, 10(7), 411–424. https://doi.org/10.1302/2046-3758.107.BJR-2020-0334.R4
, Zhang D, Wan Y, & Liu C. (2021). 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis.
Sharma N, Ostas D, Rotar H, Brantner P, & Frontiers in Physiology, 12, 647923. https://doi.org/10.3389/fphys.2021.647923
. (2021). Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram.
Sharma N, Ostas D, Rotar H, Brantner P, & Frontiers in Physiology, 12, 647923. https://doi.org/10.3389/fphys.2021.647923
. (2021). Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram.
Frank N, Beinemann J, Neurosurgical Focus, 50(4), 1–9. https://doi.org/10.3171/2021.1.FOCUS201026
, Benitez BK, Kunz C, Guzman R, & Soleman J. (2021). The need for overcorrection: evaluation of computer-assisted, virtually planned, fronto-orbital advancement using postoperative 3D photography.
Frank N, Beinemann J, Neurosurgical Focus, 50(4), 1–9. https://doi.org/10.3171/2021.1.FOCUS201026
, Benitez BK, Kunz C, Guzman R, & Soleman J. (2021). The need for overcorrection: evaluation of computer-assisted, virtually planned, fronto-orbital advancement using postoperative 3D photography.
Schön SN, Skalicky N, Sharma N, Zumofen DW, & World Neurosurgery, 148, e356–e362. https://doi.org/10.1016/j.wneu.2020.12.138
. (2021). 3D-Printer-Assisted Patient-Specific Polymethyl Methacrylate Cranioplasty: A Case Series of 16 Consecutive Patients.
Schön SN, Skalicky N, Sharma N, Zumofen DW, & World Neurosurgery, 148, e356–e362. https://doi.org/10.1016/j.wneu.2020.12.138
. (2021). 3D-Printer-Assisted Patient-Specific Polymethyl Methacrylate Cranioplasty: A Case Series of 16 Consecutive Patients.
Honigmann P, Honigmann P, Sharma N, Schumacher R, Rueegg J, Haefeli M, & BioMed Research International, 2021, 1301028. https://doi.org/10.1155/2021/1301028
. (2021). In-Hospital 3D Printed Scaphoid Prosthesis Using Medical-Grade Polyetheretherketone (PEEK) Biomaterial.
Honigmann P, Honigmann P, Sharma N, Schumacher R, Rueegg J, Haefeli M, & BioMed Research International, 2021, 1301028. https://doi.org/10.1155/2021/1301028
. (2021). In-Hospital 3D Printed Scaphoid Prosthesis Using Medical-Grade Polyetheretherketone (PEEK) Biomaterial.
Keller M., Guebeli A., BioMed Research International, 2021, 4650245. https://doi.org/10.1155/2021/4650245
, & Honigmann P. (2021). Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery.
Keller M., Guebeli A., BioMed Research International, 2021, 4650245. https://doi.org/10.1155/2021/4650245
, & Honigmann P. (2021). Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery.
O’Connor, R. C., Abazi, S., Soleman, J., & Thieringer, F. M. (2021). Reconstruction of a Combined Frontal Bone and Orbital Roof Defect With Associated Meningoencephalocele Using 3D Modeling and 3D Navigation [Journal-article]. Craniomaxillofacial Trauma & Reconstruction Open, 6, 247275122110233. https://doi.org/10.1177/24727512211023340
O’Connor, R. C., Abazi, S., Soleman, J., & Thieringer, F. M. (2021). Reconstruction of a Combined Frontal Bone and Orbital Roof Defect With Associated Meningoencephalocele Using 3D Modeling and 3D Navigation [Journal-article]. Craniomaxillofacial Trauma & Reconstruction Open, 6, 247275122110233. https://doi.org/10.1177/24727512211023340
Thieringer, F. M., Cede, J., Glatz, K., Roehling, S., Stoeckle, M., & Leiggener, C. S. (2021). Oral Kaposi’s Sarcoma: A Case Report and Literature Review on Treatment Management [Journal-article]. Craniomaxillofacial Trauma & Reconstruction Open, 6, 247275122110363. https://doi.org/10.1177/24727512211036328
Thieringer, F. M., Cede, J., Glatz, K., Roehling, S., Stoeckle, M., & Leiggener, C. S. (2021). Oral Kaposi’s Sarcoma: A Case Report and Literature Review on Treatment Management [Journal-article]. Craniomaxillofacial Trauma & Reconstruction Open, 6, 247275122110363. https://doi.org/10.1177/24727512211036328
Implantologie, 29, 269–284.
, Zarean, Paridokht, Zarean, Parichehr, Abazi, Sead, & Joda, Tim. (2021). Navigated digital implantology Possibilities and limitations of innovative technologies.
Implantologie, 29, 269–284.
, Zarean, Paridokht, Zarean, Parichehr, Abazi, Sead, & Joda, Tim. (2021). Navigated digital implantology Possibilities and limitations of innovative technologies.
Basgul Cemile, Additive Manufacturing, 46(102097), 11. https://doi.org/10.1016/j.addma.2021.102097
, & Kurtz Steven M. (2021). Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone.
Basgul Cemile, Additive Manufacturing, 46(102097), 11. https://doi.org/10.1016/j.addma.2021.102097
, & Kurtz Steven M. (2021). Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone.
Keller M., Guebeli A., Hand Surgery and Rehabilitation, 40, 126–133. https://doi.org/10.1016/j.hansur.2020.10.016
, & Honigmann P. (2021). In-hospital professional production of patient-specific 3D-printed devices for hand and wrist rehabilitation.
Keller M., Guebeli A., Hand Surgery and Rehabilitation, 40, 126–133. https://doi.org/10.1016/j.hansur.2020.10.016
, & Honigmann P. (2021). In-hospital professional production of patient-specific 3D-printed devices for hand and wrist rehabilitation.
Berli C, Journal of Prosthetic Dentistry, 124(6), 780–786. https://doi.org/10.1016/j.prosdent.2019.10.024
, , Sharma N., Muller J.A., Dedem P., Fischer J, & Rohr N. (2020). Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices.
Berli C, Journal of Prosthetic Dentistry, 124(6), 780–786. https://doi.org/10.1016/j.prosdent.2019.10.024
, , Sharma N., Muller J.A., Dedem P., Fischer J, & Rohr N. (2020). Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices.
Meyer S, Hirsch JM, Leiggener CS, Msallem B, Sigron GR, Kunz C, & Journal of Clinical Medicine, 9(12), 1–14. https://doi.org/10.3390/jcm9124119
. (2020). Fibula graft cutting devices: Are 3D-printed cutting guides more precise than a universal, reusable osteotomy JIG?
Meyer S, Hirsch JM, Leiggener CS, Msallem B, Sigron GR, Kunz C, & Journal of Clinical Medicine, 9(12), 1–14. https://doi.org/10.3390/jcm9124119
. (2020). Fibula graft cutting devices: Are 3D-printed cutting guides more precise than a universal, reusable osteotomy JIG?
Seifert LB, Schnurr B, Herrera-Vizcaino C, Begic A, European Journal of Dental Education, 24(4), 799–806. https://doi.org/10.1111/eje.12522
, Schwarz F, & Sader R. (2020). 3D-printed patient individualised models vs cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of student’s perceptions.
Seifert LB, Schnurr B, Herrera-Vizcaino C, Begic A, European Journal of Dental Education, 24(4), 799–806. https://doi.org/10.1111/eje.12522
, Schwarz F, & Sader R. (2020). 3D-printed patient individualised models vs cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of student’s perceptions.
Seifert LB, Schnurr B, Herrera-Vizcaino C, Begic A, European Journal of Dental Education, 24(4), 809–810. https://doi.org/10.1111/eje.12550
, Schwarz F, & Sader R. (2020). 3D printed patient individualised models versus cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of students’ perceptions.
Seifert LB, Schnurr B, Herrera-Vizcaino C, Begic A, European Journal of Dental Education, 24(4), 809–810. https://doi.org/10.1111/eje.12550
, Schwarz F, & Sader R. (2020). 3D printed patient individualised models versus cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of students’ perceptions.
Sharma N, Aghlmandi S, Cao S, Kunz C, Honigmann P, & Journal of Clinical Medicine, 9(9), 1–17. https://doi.org/10.3390/jcm9092818
. (2020). Quality characteristics and clinical relevance of in-house 3D-printed customized polyetheretherketone (PEEK) implants for craniofacial reconstruction.
Sharma N, Aghlmandi S, Cao S, Kunz C, Honigmann P, & Journal of Clinical Medicine, 9(9), 1–17. https://doi.org/10.3390/jcm9092818
. (2020). Quality characteristics and clinical relevance of in-house 3D-printed customized polyetheretherketone (PEEK) implants for craniofacial reconstruction.
Sharma, N., Welker, D., Cao, S., von Netzer, B., Honigmann, P., & Thieringer, F. (2020). An Interactive, Fully Digital Design Workflow for a Custom 3D Printed Facial Protection Orthosis (Face Mask) (pp. 26–36). Springer International Publishing. https://doi.org/10.1007/978-3-030-54334-1_3
Sharma, N., Welker, D., Cao, S., von Netzer, B., Honigmann, P., & Thieringer, F. (2020). An Interactive, Fully Digital Design Workflow for a Custom 3D Printed Facial Protection Orthosis (Face Mask) (pp. 26–36). Springer International Publishing. https://doi.org/10.1007/978-3-030-54334-1_3
Sharma N, Cao S, Msallem B, Kunz C, Brantner P, Honigmann P, & Journal of Clinical Medicine, 9(5). https://doi.org/10.3390/jcm9051506
. (2020). Effects of steam sterilization on 3D printed biocompatible resin materials for surgical guides— an accuracy assessment study.
Sharma N, Cao S, Msallem B, Kunz C, Brantner P, Honigmann P, & Journal of Clinical Medicine, 9(5). https://doi.org/10.3390/jcm9051506
. (2020). Effects of steam sterilization on 3D printed biocompatible resin materials for surgical guides— an accuracy assessment study.
Sigron GR, Rüedi N, Chammartin F., Meyer S, Msallem B, Kunz C., & Journal of Clinical Medicine, 9(5). https://doi.org/10.3390/jcm9051579
. (2020). Three-dimensional analysis of isolated orbital floor fractures pre-and post-reconstruction with standard titanium meshes and “hybrid” patient-specific implants.
Sigron GR, Rüedi N, Chammartin F., Meyer S, Msallem B, Kunz C., & Journal of Clinical Medicine, 9(5). https://doi.org/10.3390/jcm9051579
. (2020). Three-dimensional analysis of isolated orbital floor fractures pre-and post-reconstruction with standard titanium meshes and “hybrid” patient-specific implants.
Ebel F, Child’s Nervous System, 36(4), 679–688. https://doi.org/10.1007/s00381-020-04509-6
, Kunz C, Klein-Franke A, Scheinemann K, Guzman R, & Soleman J. (2020). Melanotic neuroectodermal tumor of infancy to the skull: case-based review.
Ebel F, Child’s Nervous System, 36(4), 679–688. https://doi.org/10.1007/s00381-020-04509-6
, Kunz C, Klein-Franke A, Scheinemann K, Guzman R, & Soleman J. (2020). Melanotic neuroectodermal tumor of infancy to the skull: case-based review.
Hirsch J.-M., Palmquist A., Rannar L.-E., & Additive manufacturing and 3D printing (pp. 227–237). Springer International Publishing. https://doi.org/10.1007/978-3-030-29604-9_17
(2020).
Hirsch J.-M., Palmquist A., Rannar L.-E., & Additive manufacturing and 3D printing (pp. 227–237). Springer International Publishing. https://doi.org/10.1007/978-3-030-29604-9_17
(2020).
Chamo D, Msallem B, Msallem B, Sharma N, Aghlmandi S, Kunz C, & Journal of Clinical Medicine, 9(3). https://doi.org/10.3390/jcm9030832
. (2020). Accuracy assessment of molded, patient-specific polymethylmethacrylate craniofacial implants compared to their 3D printed originals.
Chamo D, Msallem B, Msallem B, Sharma N, Aghlmandi S, Kunz C, & Journal of Clinical Medicine, 9(3). https://doi.org/10.3390/jcm9030832
. (2020). Accuracy assessment of molded, patient-specific polymethylmethacrylate craniofacial implants compared to their 3D printed originals.
Licci M., Neurosurgical Focus, 48(3). https://doi.org/10.3171/2019.12.focus19841
, Guzman R., & Soleman J. (2020). Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal.
Licci M., Neurosurgical Focus, 48(3). https://doi.org/10.3171/2019.12.focus19841
, Guzman R., & Soleman J. (2020). Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal.
Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer HF, & Journal of Clinical Medicine, 9(3). https://doi.org/10.3390/jcm9030817
. (2020). Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology.
Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer HF, & Journal of Clinical Medicine, 9(3). https://doi.org/10.3390/jcm9030817
. (2020). Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology.
Alt, Kurt W., Tejedor Rodríguez, Cristina, Nicklisch, Nicole, Roth, David, Szécsényi Nagy, Anna, Knipper, Corina, Lindauer, Susanne, Held, Petra, de Lagrán, Íñigo García Martínez, Schulz, Georg, Schuerch, Thomas, Scientific Reports, 10(1), 2131. https://doi.org/10.1038/s41598-020-58483-9
, Brantner, Philipp, Brandt, Guido, Israel, Nicole, Arcusa Magallón, Héctor, Meyer, Christian, Mende, Balazs G., Enzmann, Frieder, et al. (2020). A massacre of early Neolithic farmers in the high Pyrenees at Els Trocs, Spain.
Alt, Kurt W., Tejedor Rodríguez, Cristina, Nicklisch, Nicole, Roth, David, Szécsényi Nagy, Anna, Knipper, Corina, Lindauer, Susanne, Held, Petra, de Lagrán, Íñigo García Martínez, Schulz, Georg, Schuerch, Thomas, Scientific Reports, 10(1), 2131. https://doi.org/10.1038/s41598-020-58483-9
, Brantner, Philipp, Brandt, Guido, Israel, Nicole, Arcusa Magallón, Héctor, Meyer, Christian, Mende, Balazs G., Enzmann, Frieder, et al. (2020). A massacre of early Neolithic farmers in the high Pyrenees at Els Trocs, Spain.
Cao, Shuaishuai, Han, Jonghyeuk, Sharma, Neha, Msallem, Bilal, Jeong, Wonwoo, Son, Jeonghyun, Kunz, Christoph, Kang, Hyun-Wook, & Materials, 13(14), 3057. https://doi.org/10.3390/ma13143057
(2020). In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells.
Cao, Shuaishuai, Han, Jonghyeuk, Sharma, Neha, Msallem, Bilal, Jeong, Wonwoo, Son, Jeonghyun, Kunz, Christoph, Kang, Hyun-Wook, & Materials, 13(14), 3057. https://doi.org/10.3390/ma13143057
(2020). In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells.
Emara A, Sharma N, Halbeisen FS, Msallem B, & Dentistry Journal, 8(3). https://doi.org/10.3390/DJ8030079
. (2020). Comparative evaluation of digitization of diagnostic dental cast (plaster) models using different scanning technologies.
Emara A, Sharma N, Halbeisen FS, Msallem B, & Dentistry Journal, 8(3). https://doi.org/10.3390/DJ8030079
. (2020). Comparative evaluation of digitization of diagnostic dental cast (plaster) models using different scanning technologies.
Guerra, R. C., Carvalho, P. H. d. A., Thieringer, F. M., Pereira, R. S., & Hochuli-Vieira, E. (2020). Recurrence of Ameloblastic Fibro-Odontoma in a Child: A Case Report [Journal-article]. Craniomaxillofacial Trauma & Reconstruction Open, 5, 247275122090484. https://doi.org/10.1177/2472751220904846
Guerra, R. C., Carvalho, P. H. d. A., Thieringer, F. M., Pereira, R. S., & Hochuli-Vieira, E. (2020). Recurrence of Ameloblastic Fibro-Odontoma in a Child: A Case Report [Journal-article]. Craniomaxillofacial Trauma & Reconstruction Open, 5, 247275122090484. https://doi.org/10.1177/2472751220904846