Publications
175 found
Show per page
de Smalen, Laura M., & Cold Spring Harbor Perspectives in Biology, Online ahead of print. https://doi.org/10.1101/cshperspect.a041514
. (2024). Mitochondrial Maintenance in Skeletal Muscle [Journal-article].
de Smalen, Laura M., & Cold Spring Harbor Perspectives in Biology, Online ahead of print. https://doi.org/10.1101/cshperspect.a041514
. (2024). Mitochondrial Maintenance in Skeletal Muscle [Journal-article].
Ruiz, Alexis, Benucci, Sofia, Meier, Herve, Schultz, Georg, Buczak, Katarzyna, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.09.607317
, Pena, Rodrigo C. G., Treves, Susan, & Zorzato, Francesco. (2024). Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis [Posted-content]. In
Ruiz, Alexis, Benucci, Sofia, Meier, Herve, Schultz, Georg, Buczak, Katarzyna, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.09.607317
, Pena, Rodrigo C. G., Treves, Susan, & Zorzato, Francesco. (2024). Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis [Posted-content]. In
Furrer, Regula, & Free Radical Biology and Medicine, 223, 53–68. https://doi.org/10.1016/j.freeradbiomed.2024.07.026
. (2024). Molecular aspects of the exercise response and training adaptation in skeletal muscle [Journal-article].
Furrer, Regula, & Free Radical Biology and Medicine, 223, 53–68. https://doi.org/10.1016/j.freeradbiomed.2024.07.026
. (2024). Molecular aspects of the exercise response and training adaptation in skeletal muscle [Journal-article].
Mansingh, Shivani, Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Ritz, Danilo, Duchemin, Wandrille, Santos, Gesa, Karrer-Cardel, Bettina, Steurer, Stefan A., Albrecht, Urs, & The Journal of Physiology, 602(23), 6373–6402. https://doi.org/10.1113/jp285585
. (2024). More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα.
Mansingh, Shivani, Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Ritz, Danilo, Duchemin, Wandrille, Santos, Gesa, Karrer-Cardel, Bettina, Steurer, Stefan A., Albrecht, Urs, & The Journal of Physiology, 602(23), 6373–6402. https://doi.org/10.1113/jp285585
. (2024). More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα.
Lenardič, Ajda, Domenig, Seraina A., Zvick, Joel, Bundschuh, Nicola, Tarnowska-Sengül, Monika, Furrer, Regula, Noé, Falko J., Trautmann, Christine Ling Li, Ghosh, Adhideb, Bacchin, Giada, Gjonlleshaj, Pjeter, Qabrati, Xhem, Masschelein, Evi, De Bock, Katrien, Journal of Clinical Investigation, 134(12). https://doi.org/10.1172/jci166998
, & Bar-Nur, Ori. (2024). Generation of allogenic and xenogeneic functional muscle stem cells for intramuscular transplantation [Journal-article].
Lenardič, Ajda, Domenig, Seraina A., Zvick, Joel, Bundschuh, Nicola, Tarnowska-Sengül, Monika, Furrer, Regula, Noé, Falko J., Trautmann, Christine Ling Li, Ghosh, Adhideb, Bacchin, Giada, Gjonlleshaj, Pjeter, Qabrati, Xhem, Masschelein, Evi, De Bock, Katrien, Journal of Clinical Investigation, 134(12). https://doi.org/10.1172/jci166998
, & Bar-Nur, Ori. (2024). Generation of allogenic and xenogeneic functional muscle stem cells for intramuscular transplantation [Journal-article].
Fröhlich, K., Furrer, R., Schori, C., Handschin, C., & Schmidt, A. (2024). Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme [Journal-article]. Journal of Proteome Research, 23(3), 1028–1038. https://doi.org/10.1021/acs.jproteome.3c00736
Fröhlich, K., Furrer, R., Schori, C., Handschin, C., & Schmidt, A. (2024). Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme [Journal-article]. Journal of Proteome Research, 23(3), 1028–1038. https://doi.org/10.1021/acs.jproteome.3c00736
Furrer, Regula, & Nature Metabolism, 5(11), 1856–1857. https://doi.org/10.1038/s42255-023-00894-9
. (2023). Complex regulatory processes control exercise adaptations of skeletal muscle.
Furrer, Regula, & Nature Metabolism, 5(11), 1856–1857. https://doi.org/10.1038/s42255-023-00894-9
. (2023). Complex regulatory processes control exercise adaptations of skeletal muscle.
de Smalen, Laura M., Börsch, Anastasiya, Leuchtmann, Aurel B., Gill, Jonathan F., Ritz, Danilo, Zavolan, Mihaela, & Proceedings of the National Academy of Sciences (PNAS), 120(36), e2302360120. https://doi.org/10.1073/pnas.2302360120
. (2023). Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α.
de Smalen, Laura M., Börsch, Anastasiya, Leuchtmann, Aurel B., Gill, Jonathan F., Ritz, Danilo, Zavolan, Mihaela, & Proceedings of the National Academy of Sciences (PNAS), 120(36), e2302360120. https://doi.org/10.1073/pnas.2302360120
. (2023). Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α.
Furrer, Regula, Hawley, John A., & Physiological Reviews, 103(3), 1693–1787. https://doi.org/10.1152/physrev.00017.2022
. (2023). The molecular athlete: exercise physiology from mechanisms to medals.
Furrer, Regula, Hawley, John A., & Physiological Reviews, 103(3), 1693–1787. https://doi.org/10.1152/physrev.00017.2022
. (2023). The molecular athlete: exercise physiology from mechanisms to medals.
Furrer, Regula, Heim, Barbara, Schmid, Svenia, Dilbaz, Sedat, Adak, Volkan, Nordström, Karl J V, Ritz, Danilo, Steurer, Stefan A, Walter, Jörn, & Nature metabolism, 5(11), 2020–2035. https://doi.org/10.1038/s42255-023-00891-y
. (2023). Molecular control of endurance training adaptation in male mouse skeletal muscle.
Furrer, Regula, Heim, Barbara, Schmid, Svenia, Dilbaz, Sedat, Adak, Volkan, Nordström, Karl J V, Ritz, Danilo, Steurer, Stefan A, Walter, Jörn, & Nature metabolism, 5(11), 2020–2035. https://doi.org/10.1038/s42255-023-00891-y
. (2023). Molecular control of endurance training adaptation in male mouse skeletal muscle.
Swiss Medical Forum, 23(26), 1175. https://doi.org/10.4414/smf.2023.09452
. (2023). Churchill was wrong - do sports!
Swiss Medical Forum, 23(26), 1175. https://doi.org/10.4414/smf.2023.09452
. (2023). Churchill was wrong - do sports!
Leuchtmann, Aurel B., Afifi, Yasmine, Ritz, Danilo, & Physiological Reports, 11(11), e15701. https://doi.org/10.14814/phy2.15701
. (2023). Effects of high-resistance wheel running on hallmarks of endurance and resistance training adaptations in mice.
Leuchtmann, Aurel B., Afifi, Yasmine, Ritz, Danilo, & Physiological Reports, 11(11), e15701. https://doi.org/10.14814/phy2.15701
. (2023). Effects of high-resistance wheel running on hallmarks of endurance and resistance training adaptations in mice.
Furrer, Regula, Hawley, John A., & Endurance Training - Science and practice (2nd edition, pp. 149–159). Iñigo Mujika S.L.U.
. (2023). The molecular bases of endurance training adaptation. In Mujika, Iñigo (Ed.), & Mujika, Iñigo (Trans.),
Furrer, Regula, Hawley, John A., & Endurance Training - Science and practice (2nd edition, pp. 149–159). Iñigo Mujika S.L.U.
. (2023). The molecular bases of endurance training adaptation. In Mujika, Iñigo (Ed.), & Mujika, Iñigo (Trans.),
Novakova K, Török M, Panajatovic M, Bouitbir J, Duong FHT, International Journal of Molecular Sciences, 23(20). https://doi.org/10.3390/ijms232012304
, & Krähenbühl S. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle.
Novakova K, Török M, Panajatovic M, Bouitbir J, Duong FHT, International Journal of Molecular Sciences, 23(20). https://doi.org/10.3390/ijms232012304
, & Krähenbühl S. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle.
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
, Tintignac LA, Zavolan M, Mittal N, & Rüegg MA. (2022).
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
, Tintignac LA, Zavolan M, Mittal N, & Rüegg MA. (2022).
Furrer, Regula, & Journal of Physiology, 601(11), 2057–2068. https://doi.org/10.1113/jp282887
. (2022). Drugs, clocks and exercise in ageing: hype and hope, fact and fiction.
Furrer, Regula, & Journal of Physiology, 601(11), 2057–2068. https://doi.org/10.1113/jp282887
. (2022). Drugs, clocks and exercise in ageing: hype and hope, fact and fiction.
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Leuchtmann, Aurel B., Furrer, Regula, Steurer, Stefan A., Schneider-Heieck, Konstantin, Karrer-Cardel, Bettina, Sagot, Yves, & Journal of Cachexia, Sarcopenia and Muscle, 13(2), 1164–1176. https://doi.org/10.1002/jcsm.12949
. (2022). Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice.
Leuchtmann, Aurel B., Furrer, Regula, Steurer, Stefan A., Schneider-Heieck, Konstantin, Karrer-Cardel, Bettina, Sagot, Yves, & Journal of Cachexia, Sarcopenia and Muscle, 13(2), 1164–1176. https://doi.org/10.1002/jcsm.12949
. (2022). Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice.
Mansingh, Shivani, & Frontiers in Physiology, 13, 902031. https://doi.org/10.3389/fphys.2022.902031
. (2022). Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle.
Mansingh, Shivani, & Frontiers in Physiology, 13, 902031. https://doi.org/10.3389/fphys.2022.902031
. (2022). Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle.
Novakova, Katerina, Török, Michael, Panajatovic, Miljenko, Bouitbir, Jamal, Duong, François H T, International Journal of Molecular Sciences, 23(20), 12304. https://doi.org/10.3390/ijms232012304
, & Krähenbühl, Stephan. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle.
Novakova, Katerina, Török, Michael, Panajatovic, Miljenko, Bouitbir, Jamal, Duong, François H T, International Journal of Molecular Sciences, 23(20), 12304. https://doi.org/10.3390/ijms232012304
, & Krähenbühl, Stephan. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle.
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & Scientific Reports, 12(1), 11477. https://doi.org/10.1038/s41598-022-15731-4
. (2022). Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity.
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & Scientific Reports, 12(1), 11477. https://doi.org/10.1038/s41598-022-15731-4
. (2022). Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity.
Schmid, Svenia, Heim-Kupr, Barbara, Pérez-Schindler, Joaquín, Mansingh, Shivani, Beer, Markus, Mittal, Nitish, Ehrenfeuchter, Nikolaus, & Molecular metabolism, 66, 101643. https://doi.org/10.1016/j.molmet.2022.101643
. (2022). PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds.
Schmid, Svenia, Heim-Kupr, Barbara, Pérez-Schindler, Joaquín, Mansingh, Shivani, Beer, Markus, Mittal, Nitish, Ehrenfeuchter, Nikolaus, & Molecular metabolism, 66, 101643. https://doi.org/10.1016/j.molmet.2022.101643
. (2022). PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds.
Streese, Lukas, Liffert, Jeannine, Vilser, Walthard, PloS One, 17(7), e0271815. https://doi.org/10.1371/journal.pone.0271815
, & Hanssen, Henner. (2022). In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach.
Streese, Lukas, Liffert, Jeannine, Vilser, Walthard, PloS One, 17(7), e0271815. https://doi.org/10.1371/journal.pone.0271815
, & Hanssen, Henner. (2022). In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach.
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.03.24.436772
. (2021).
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.03.24.436772
. (2021).
Battey, Edmund, Furrer, Regula, Ross, Jacob, Journal of Cellular Physiology, Jul 28. https://doi.org/10.1002/jcp.30539
, Ochala, Julien, & Stroud, Matthew J. (2021). PGC-1α regulates myonuclear accretion after moderate endurance training.
Battey, Edmund, Furrer, Regula, Ross, Jacob, Journal of Cellular Physiology, Jul 28. https://doi.org/10.1002/jcp.30539
, Ochala, Julien, & Stroud, Matthew J. (2021). PGC-1α regulates myonuclear accretion after moderate endurance training.
Furrer, Regula, Jauch, Annaïse J., Rao, Tata Nageswara, Dilbaz, Sedat, Rhein, Peter, Steurer, Stefan A., Recher, Mike, Skoda, Radek C., & Science Advances, 7(37), eabi4852. https://doi.org/10.1126/sciadv.abi4852
. (2021). Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia.
Furrer, Regula, Jauch, Annaïse J., Rao, Tata Nageswara, Dilbaz, Sedat, Rhein, Peter, Steurer, Stefan A., Recher, Mike, Skoda, Radek C., & Science Advances, 7(37), eabi4852. https://doi.org/10.1126/sciadv.abi4852
. (2021). Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia.
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2021).
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2021).
Leuchtmann, Aurel B., Adak, Volkan, Dilbaz, Sedat, & Frontiers in Physiology, 12, 709807. https://doi.org/10.3389/fphys.2021.709807
. (2021). The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations.
Leuchtmann, Aurel B., Adak, Volkan, Dilbaz, Sedat, & Frontiers in Physiology, 12, 709807. https://doi.org/10.3389/fphys.2021.709807
. (2021). The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations.
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & Journal of Physiology, Jun 18, epub ahead of print. https://doi.org/10.1113/jp281535
. (2021). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle.
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & Journal of Physiology, Jun 18, epub ahead of print. https://doi.org/10.1113/jp281535
. (2021). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle.
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Leuchtmann, Aurel B., Henríquez-Olguín, Carlos, Adak, Volkan, Maier, Geraldine, Delezie, Julien, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Jensen, Thomas E., Hiller, Sebastian, & Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2105951118. https://doi.org/10.1073/pnas.2105951118
. (2021). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates.
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Leuchtmann, Aurel B., Henríquez-Olguín, Carlos, Adak, Volkan, Maier, Geraldine, Delezie, Julien, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Jensen, Thomas E., Hiller, Sebastian, & Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2105951118. https://doi.org/10.1073/pnas.2105951118
. (2021). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates.
Sjögren, Rasmus J. O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K. R., Diabetologia, 64(9), 2077–2091. https://doi.org/10.1007/s00125-021-05481-9
, Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2021). Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes.
Sjögren, Rasmus J. O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K. R., Diabetologia, 64(9), 2077–2091. https://doi.org/10.1007/s00125-021-05481-9
, Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2021). Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes.
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of endurance training [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.10.19.345686
. (2020).
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of endurance training [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.10.19.345686
. (2020).
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Adak, Volkan, Delezie, Julien, Maier, Geraldine, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Hiller, Sebastian, & RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.09.23.310623
. (2020).
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Adak, Volkan, Delezie, Julien, Maier, Geraldine, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Hiller, Sebastian, & RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.09.23.310623
. (2020).
Sjögren, Rasmus J.O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K.R., Branched-Chain Amino Acid Metabolism is Regulated by ERRα in Primary Human Myotubes and is Further Impaired by Glucose Loading in Type 2 Diabetes [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.07.24.218099
, Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2020).
Sjögren, Rasmus J.O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K.R., Branched-Chain Amino Acid Metabolism is Regulated by ERRα in Primary Human Myotubes and is Further Impaired by Glucose Loading in Type 2 Diabetes [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.07.24.218099
, Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2020).
Battilana, Fabienne, Steurer, Stefan, Rizzi, Giorgio, Delgado, Ana C., Tan, Kelly R., & Aging Cell, 19(12), e13274. https://doi.org/10.1111/acel.13274
. (2020). Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons.
Battilana, Fabienne, Steurer, Stefan, Rizzi, Giorgio, Delgado, Ana C., Tan, Kelly R., & Aging Cell, 19(12), e13274. https://doi.org/10.1111/acel.13274
. (2020). Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons.
Delezie, Julien, Gill, Jonathan F., Santos, Gesa, Karrer-Cardel, Bettina, & Scientific Reports, 10(1), 16888. https://doi.org/10.1038/s41598-020-73794-7
. (2020). PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse.
Delezie, Julien, Gill, Jonathan F., Santos, Gesa, Karrer-Cardel, Bettina, & Scientific Reports, 10(1), 16888. https://doi.org/10.1038/s41598-020-73794-7
. (2020). PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse.
Furrer, Regula, & Aging, 12(1), 5–7. https://doi.org/10.18632/aging.102741
. (2020). Lifestyle vs. pharmacological interventions for healthy aging.
Furrer, Regula, & Aging, 12(1), 5–7. https://doi.org/10.18632/aging.102741
. (2020). Lifestyle vs. pharmacological interventions for healthy aging.
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
, Zavolan, Mihaela, & Rüegg, Markus A. (2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
, Zavolan, Mihaela, & Rüegg, Markus A. (2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.
Leuchtmann, Aurel B., & Pharmacological Research, 154, 104191. https://doi.org/10.1016/j.phrs.2019.02.030
. (2020). Pharmacological targeting of age-related changes in skeletal muscle tissue.
Leuchtmann, Aurel B., & Pharmacological Research, 154, 104191. https://doi.org/10.1016/j.phrs.2019.02.030
. (2020). Pharmacological targeting of age-related changes in skeletal muscle tissue.
Panajatovic, Miljenko Valentin, Singh, François, Roos, Noëmi Johanna, Duthaler, Urs, Acta physiologica (Oxford, England), 228(4), e13402. https://doi.org/10.1111/apha.13402
, Krähenbühl, Stephan, & Bouitbir, Jamal. (2020). PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice.
Panajatovic, Miljenko Valentin, Singh, François, Roos, Noëmi Johanna, Duthaler, Urs, Acta physiologica (Oxford, England), 228(4), e13402. https://doi.org/10.1111/apha.13402
, Krähenbühl, Stephan, & Bouitbir, Jamal. (2020). PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice.
Rao TN, Hansen N, Hilfiker J, Rai S, Majewska JM, Leković D, Gezer D, Andina N, Galli S, Cassel T, Geier F, Delezie J, Nienhold R, Hao-Shen H, Beisel C, Di Palma S, Dimeloe S, Trebicka J, Wolf D, et al. (2019). JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Rao TN, Hansen N, Hilfiker J, Rai S, Majewska JM, Leković D, Gezer D, Andina N, Galli S, Cassel T, Geier F, Delezie J, Nienhold R, Hao-Shen H, Beisel C, Di Palma S, Dimeloe S, Trebicka J, Wolf D, et al. (2019). JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Krämer, A. I., & Handschin, C. (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1<em>&alpha;</em> In the Regulation of Metabolism [Posted-content]. MDPI AG. https://doi.org/10.20944/preprints201910.0021.v1
Krämer, A. I., & Handschin, C. (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1<em>&alpha;</em> In the Regulation of Metabolism [Posted-content]. MDPI AG. https://doi.org/10.20944/preprints201910.0021.v1
Agudelo, Leandro Z., Ferreira, Duarte M. S., Dadvar, Shamim, Cervenka, Igor, Ketscher, Lars, Izadi, Manizheh, Zhengye, Liu, Furrer, Regula, Nature Communications, 10(1), 2767. https://doi.org/10.1038/s41467-019-10712-0
, Venckunas, Tomas, Brazaitis, Marius, Kamandulis, Sigitas, Lanner, Johanna T., & Ruas, Jorge L. (2019). Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance.
Agudelo, Leandro Z., Ferreira, Duarte M. S., Dadvar, Shamim, Cervenka, Igor, Ketscher, Lars, Izadi, Manizheh, Zhengye, Liu, Furrer, Regula, Nature Communications, 10(1), 2767. https://doi.org/10.1038/s41467-019-10712-0
, Venckunas, Tomas, Brazaitis, Marius, Kamandulis, Sigitas, Lanner, Johanna T., & Ruas, Jorge L. (2019). Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance.
Brinkkoetter, Paul T., Bork, Tillmann, Salou, Sarah, Liang, Wei, Mizi, Athanasia, Özel, Cem, Koehler, Sybille, Hagmann, H. Henning, Ising, Christina, Kuczkowski, Alexander, Schnyder, Svenia, Abed, Ahmed, Schermer, Bernhard, Benzing, Thomas, Kretz, Oliver, Puelles, Victor G., Lagies, Simon, Schlimpert, Manuel, Kammerer, Bernd, et al. (2019). Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 27(5), 1551–1566. https://doi.org/10.1016/j.celrep.2019.04.012
Brinkkoetter, Paul T., Bork, Tillmann, Salou, Sarah, Liang, Wei, Mizi, Athanasia, Özel, Cem, Koehler, Sybille, Hagmann, H. Henning, Ising, Christina, Kuczkowski, Alexander, Schnyder, Svenia, Abed, Ahmed, Schermer, Bernhard, Benzing, Thomas, Kretz, Oliver, Puelles, Victor G., Lagies, Simon, Schlimpert, Manuel, Kammerer, Bernd, et al. (2019). Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 27(5), 1551–1566. https://doi.org/10.1016/j.celrep.2019.04.012
Delezie, Julien, Weihrauch, Martin, Maier, Geraldine, Tejero, Rocío, Ham, Daniel J., Gill, Jonathan F., Karrer-Cardel, Bettina, Rüegg, Markus A., Tabares, Lucía, & Proceedings of the National Academy of Sciences (PNAS), 116(32), 16111–16120. https://doi.org/10.1073/pnas.1900544116
. (2019). BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle.
Delezie, Julien, Weihrauch, Martin, Maier, Geraldine, Tejero, Rocío, Ham, Daniel J., Gill, Jonathan F., Karrer-Cardel, Bettina, Rüegg, Markus A., Tabares, Lucía, & Proceedings of the National Academy of Sciences (PNAS), 116(32), 16111–16120. https://doi.org/10.1073/pnas.1900544116
. (2019). BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle.
Furrer, Regula, & Annual review of pharmacology and toxicology, 59, 315–339. https://doi.org/10.1146/annurev-pharmtox-010818-021041
. (2019). Muscle Wasting Diseases: Novel Targets and Treatments.
Furrer, Regula, & Annual review of pharmacology and toxicology, 59, 315–339. https://doi.org/10.1146/annurev-pharmtox-010818-021041
. (2019). Muscle Wasting Diseases: Novel Targets and Treatments.
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & Aging cell, 18(5), e12993. https://doi.org/10.1111/acel.12993
. (2019). Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging.
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & Aging cell, 18(5), e12993. https://doi.org/10.1111/acel.12993
. (2019). Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging.
Krämer, Anne I., & International Journal of Molecular Sciences, 20(21), E5449. https://doi.org/10.3390/ijms20215449
. (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism.
Krämer, Anne I., & International Journal of Molecular Sciences, 20(21), E5449. https://doi.org/10.3390/ijms20215449
. (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism.
Nageswara Rao, Tata, Hansen, Nils, Hilfiker, Julian, Rai, Shivam, Majewska, Julia-Magdalena, Lekovic, Danijela, Gezer, Deniz, Andina, Nicola, Galli, Serena, Cassel, Teresa, Geier, Florian, Delezie, Julien, Nienhold, Ronny, Hao-Shen, Hui, Beisel, Christian, Di Palma, Serena, Dimeloe, Sarah, Trebicka, Jonel, Wolf, Dominik, et al. (2019). JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Nageswara Rao, Tata, Hansen, Nils, Hilfiker, Julian, Rai, Shivam, Majewska, Julia-Magdalena, Lekovic, Danijela, Gezer, Deniz, Andina, Nicola, Galli, Serena, Cassel, Teresa, Geier, Florian, Delezie, Julien, Nienhold, Ronny, Hao-Shen, Hui, Beisel, Christian, Di Palma, Serena, Dimeloe, Sarah, Trebicka, Jonel, Wolf, Dominik, et al. (2019). JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Furrer, Regula, & Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
. (2019). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In
Furrer, Regula, & Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
. (2019). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging [Posted-content]. bioRxiv. https://doi.org/10.1101/451229
. (2018).
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging [Posted-content]. bioRxiv. https://doi.org/10.1101/451229
. (2018).
Salatino S., Kupr B., Baresic M., Omidi S., Van Nimwegen E., & Endocrinology, 159(7), 2703. https://doi.org/10.1210/en.2018-00545
(2018). Corrigendum: The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells (Endocrinology (2016) 30:7 (809-825) DOI: 10.1210/me.2016-1036).
Salatino S., Kupr B., Baresic M., Omidi S., Van Nimwegen E., & Endocrinology, 159(7), 2703. https://doi.org/10.1210/en.2018-00545
(2018). Corrigendum: The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells (Endocrinology (2016) 30:7 (809-825) DOI: 10.1210/me.2016-1036).
Baum, Oliver, Aaldijk, Dea, Engeli, Anna Lena, Spree, Matthias, Summermatter, Serge, Nitric Oxide: Biology and Chemistry, 77, 35–43. https://doi.org/10.1016/j.niox.2018.04.005
, & Zakrzewicz, Andreas. (2018). Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice.
Baum, Oliver, Aaldijk, Dea, Engeli, Anna Lena, Spree, Matthias, Summermatter, Serge, Nitric Oxide: Biology and Chemistry, 77, 35–43. https://doi.org/10.1016/j.niox.2018.04.005
, & Zakrzewicz, Andreas. (2018). Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice.
Delezie, Julien, & Frontiers in Neurology, 9, 698. https://doi.org/10.3389/fneur.2018.00698
. (2018). Endocrine Crosstalk Between Skeletal Muscle and the Brain.
Delezie, Julien, & Frontiers in Neurology, 9, 698. https://doi.org/10.3389/fneur.2018.00698
. (2018). Endocrine Crosstalk Between Skeletal Muscle and the Brain.
Gill, Jonathan F., Santos, Gesa, Schnyder, Svenia, & Aging Cell, 17(1), e12697. https://doi.org/10.1111/acel.12697
. (2018). PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice.
Gill, Jonathan F., Santos, Gesa, Schnyder, Svenia, & Aging Cell, 17(1), e12697. https://doi.org/10.1111/acel.12697
. (2018). PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice.
Haralampieva, Deana, Salemi, Souzan, Betzel, Thomas, Dinulovic, Ivana, Krämer, Stefanie D., Schibli, Roger, Sulser, Tullio, Stem cells international, 2018, 4658503. https://doi.org/10.1155/2018/4658503
, Ametamey, Simon M., & Eberli, Daniel. (2018). Injected Human Muscle Precursor Cells Overexpressing PGC-1α. Enhance Functional Muscle Regeneration after Trauma.
Haralampieva, Deana, Salemi, Souzan, Betzel, Thomas, Dinulovic, Ivana, Krämer, Stefanie D., Schibli, Roger, Sulser, Tullio, Stem cells international, 2018, 4658503. https://doi.org/10.1155/2018/4658503
, Ametamey, Simon M., & Eberli, Daniel. (2018). Injected Human Muscle Precursor Cells Overexpressing PGC-1α. Enhance Functional Muscle Regeneration after Trauma.
Ruiz, Alexis, Dror, Erez, Scientific Reports, 8(1), 636. https://doi.org/10.1038/s41598-017-18844-3
, Furrer, Regula, Perez-Schindler, Joaquin, Bachmann, Christoph, Treves, Susan, & Zorzato, Francesco. (2018). Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance.
Ruiz, Alexis, Dror, Erez, Scientific Reports, 8(1), 636. https://doi.org/10.1038/s41598-017-18844-3
, Furrer, Regula, Perez-Schindler, Joaquin, Bachmann, Christoph, Treves, Susan, & Zorzato, Francesco. (2018). Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance.
Weihrauch, Martin, & Biochemical Pharmacology, 147, 211–220. https://doi.org/10.1016/j.bcp.2017.10.006
. (2018). Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.
Weihrauch, Martin, & Biochemical Pharmacology, 147, 211–220. https://doi.org/10.1016/j.bcp.2017.10.006
. (2018). Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.
Whitehead, Natasha, Gill, Jonathan F., Brink, Marijke, & Frontiers in Physiology, 9, 242. https://doi.org/10.3389/fphys.2018.00242
. (2018). Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart.
Whitehead, Natasha, Gill, Jonathan F., Brink, Marijke, & Frontiers in Physiology, 9, 242. https://doi.org/10.3389/fphys.2018.00242
. (2018). Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart.
Pérez-Schindler, Joaquín, & Nutrition and Skeletal Muscle (1st Edition, pp. 139–150). Academic Press. https://doi.org/10.1016/b978-0-12-810422-4.00011-7
. (2018). Physiological Regulation of Skeletal Muscle Mass: Resistance Exercise- Mediated Muscle Hypertrophy. In Walrand, Stéphane (Ed.),
Pérez-Schindler, Joaquín, & Nutrition and Skeletal Muscle (1st Edition, pp. 139–150). Academic Press. https://doi.org/10.1016/b978-0-12-810422-4.00011-7
. (2018). Physiological Regulation of Skeletal Muscle Mass: Resistance Exercise- Mediated Muscle Hypertrophy. In Walrand, Stéphane (Ed.),
Dinulovic, Ivana, Furrer, Regula, & Advances in experimental medicine and biology, 1041, 141–169. https://doi.org/10.1007/978-3-319-69194-7_8
. (2017). Plasticity of the Muscle Stem Cell Microenvironment.
Dinulovic, Ivana, Furrer, Regula, & Advances in experimental medicine and biology, 1041, 141–169. https://doi.org/10.1007/978-3-319-69194-7_8
. (2017). Plasticity of the Muscle Stem Cell Microenvironment.
Furrer, Regula, Eisele, Petra S., Schmidt, Alexander, Beer, Markus, & Scientific Reports, 7, 40789. https://doi.org/10.1038/srep40789
. (2017). Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP.
Furrer, Regula, Eisele, Petra S., Schmidt, Alexander, Beer, Markus, & Scientific Reports, 7, 40789. https://doi.org/10.1038/srep40789
. (2017). Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP.
Haralampieva, Deana, Salemi, Souzan, Dinulovic, Ivana, Sulser, Tullio, Ametamey, Simon, Cell Transplantation, 26(6), 1103–1114. https://doi.org/10.3727/096368917x694868
, & Eberli, Daniel. (2017). Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.
Haralampieva, Deana, Salemi, Souzan, Dinulovic, Ivana, Sulser, Tullio, Ametamey, Simon, Cell Transplantation, 26(6), 1103–1114. https://doi.org/10.3727/096368917x694868
, & Eberli, Daniel. (2017). Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.
Kupr, Barbara, Schnyder, Svenia, & Cold Spring Harbor perspectives in medicine, 7(6), a029835. https://doi.org/10.1101/cshperspect.a029835
. (2017). Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations.
Kupr, Barbara, Schnyder, Svenia, & Cold Spring Harbor perspectives in medicine, 7(6), a029835. https://doi.org/10.1101/cshperspect.a029835
. (2017). Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations.
Ross, Jacob Alexander, Pearson, Adam, Levy, Yotam, Cardel, Bettina, Journal of Cellular Physiology, 232(6), 1270–1274. https://doi.org/10.1002/jcp.25678
, & Ochala, Julien. (2017). Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.
Ross, Jacob Alexander, Pearson, Adam, Levy, Yotam, Cardel, Bettina, Journal of Cellular Physiology, 232(6), 1270–1274. https://doi.org/10.1002/jcp.25678
, & Ochala, Julien. (2017). Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.
Schnyder, Svenia, Kupr, Barbara, & Biochimie, 136, 49–54. https://doi.org/10.1016/j.biochi.2016.12.011
. (2017). Coregulator-mediated control of skeletal muscle plasticity - A mini-review.
Schnyder, Svenia, Kupr, Barbara, & Biochimie, 136, 49–54. https://doi.org/10.1016/j.biochi.2016.12.011
. (2017). Coregulator-mediated control of skeletal muscle plasticity - A mini-review.
Schnyder, Svenia, Svensson, Kristoffer, Cardel, Bettina, & American Journal of Physiology. Endocrinology and Metabolism, 312(5), E437–E446. https://doi.org/10.1152/ajpendo.00361.2016
. (2017). Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice.
Schnyder, Svenia, Svensson, Kristoffer, Cardel, Bettina, & American Journal of Physiology. Endocrinology and Metabolism, 312(5), E437–E446. https://doi.org/10.1152/ajpendo.00361.2016
. (2017). Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice.
Furrer, Regula, & Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
. (2017). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In Spiegelman, Bruce M. (Ed.),
Furrer, Regula, & Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
. (2017). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In Spiegelman, Bruce M. (Ed.),
natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel (pp. 85). Schwabe. http://www.ngib.ch/natura-obscura/
. (2017). Muskeln: mehr als nur “schön anzusehen”. In Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.),
natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel (pp. 85). Schwabe. http://www.ngib.ch/natura-obscura/
. (2017). Muskeln: mehr als nur “schön anzusehen”. In Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.),
Albert, Verena, Svensson, Kristoffer, Shimobayashi, Mitsugu, Colombi, Marco, Munoz, Sergio, Jimenez, Veronica, EMBO MOLECULAR MEDICINE, 8, 232–246.
, Bosch, Fatima, & Hall, Michael N. (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
Albert, Verena, Svensson, Kristoffer, Shimobayashi, Mitsugu, Colombi, Marco, Munoz, Sergio, Jimenez, Veronica, EMBO MOLECULAR MEDICINE, 8, 232–246.
, Bosch, Fatima, & Hall, Michael N. (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
Albert, V., Svensson, K., Shimobayashi, M., Colombi, M., Muñoz, S., Jimenez, V., EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
, Bosch, F., & Hall, M. N. (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
Albert, V., Svensson, K., Shimobayashi, M., Colombi, M., Muñoz, S., Jimenez, V., EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
, Bosch, F., & Hall, M. N. (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
Dinulovic, Ivana, Furrer, Regula, Beer, Markus, Ferry, Arnaud, Cardel, Bettina, & Skeletal Muscle, 6(1), 39. https://doi.org/10.1186/s13395-016-0111-9
. (2016). Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche.
Dinulovic, Ivana, Furrer, Regula, Beer, Markus, Ferry, Arnaud, Cardel, Bettina, & Skeletal Muscle, 6(1), 39. https://doi.org/10.1186/s13395-016-0111-9
. (2016). Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche.
Dinulovic, Ivana, Furrer, Regula, Di Fulvio, Sabrina, Ferry, Arnaud, Beer, Markus, & Skeletal Muscle, 6(38), 38. https://doi.org/10.1186/s13395-016-0110-x
. (2016). PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle.
Dinulovic, Ivana, Furrer, Regula, Di Fulvio, Sabrina, Ferry, Arnaud, Beer, Markus, & Skeletal Muscle, 6(38), 38. https://doi.org/10.1186/s13395-016-0110-x
. (2016). PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle.
Gill, Jonathan F, Delezie, Julien, Santos, Gesa, & Molecular metabolism, 5(7), 580–588. https://doi.org/10.1016/j.molmet.2016.05.008
. (2016). PGC-1α expression in murine AgRP neurons regulates food intake and energy balance.
Gill, Jonathan F, Delezie, Julien, Santos, Gesa, & Molecular metabolism, 5(7), 580–588. https://doi.org/10.1016/j.molmet.2016.05.008
. (2016). PGC-1α expression in murine AgRP neurons regulates food intake and energy balance.
Haralampieva, Deana, Betzel, Thomas, Dinulovic, Ivana, Salemi, Souzan, Stoelting, Meline, Krämer, Stefanie D, Schibli, Roger, Sulser, Tullio, Journal of Nuclear Medicine, 57(9), 1467–1473. https://doi.org/10.2967/jnumed.115.170548
, Eberli, Daniel, & Ametamey, Simon M. (2016). Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.
Haralampieva, Deana, Betzel, Thomas, Dinulovic, Ivana, Salemi, Souzan, Stoelting, Meline, Krämer, Stefanie D, Schibli, Roger, Sulser, Tullio, Journal of Nuclear Medicine, 57(9), 1467–1473. https://doi.org/10.2967/jnumed.115.170548
, Eberli, Daniel, & Ametamey, Simon M. (2016). Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.
Salatino, Silvia, Kupr, Barbara, Baresic, Mario, van Nimwegen, Erik, & Molecular Endocrinology, 30(7), 809–825. https://doi.org/10.1210/me.2016-1036
. (2016). The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
Salatino, Silvia, Kupr, Barbara, Baresic, Mario, van Nimwegen, Erik, & Molecular Endocrinology, 30(7), 809–825. https://doi.org/10.1210/me.2016-1036
. (2016). The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
Stölting, Meline N. L., Arnold, Anne Sophie, Haralampieva, Deana, Muscle and Nerve, 53(4), 598–607. https://doi.org/10.1002/mus.24780
, Sulser, Tullio, & Eberli, Daniel. (2016). Magnetic stimulation supports muscle and nerve regeneration after trauma in mice.
Stölting, Meline N. L., Arnold, Anne Sophie, Haralampieva, Deana, Muscle and Nerve, 53(4), 598–607. https://doi.org/10.1002/mus.24780
, Sulser, Tullio, & Eberli, Daniel. (2016). Magnetic stimulation supports muscle and nerve regeneration after trauma in mice.
Svensson, Kristoffer, Albert, Verena, Cardel, Bettina, Salatino, Silvia, & FASEB Journal, 30(5), 1976–1986. https://doi.org/10.1096/fj.201500128
. (2016). Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice.
Svensson, Kristoffer, Albert, Verena, Cardel, Bettina, Salatino, Silvia, & FASEB Journal, 30(5), 1976–1986. https://doi.org/10.1096/fj.201500128
. (2016). Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice.
Svensson, Kristoffer, Schnyder, Svenia, Cardel, Bettina, & PLoS ONE, 11(7), e0158716. https://doi.org/10.1371/journal.pone.0158716
. (2016). Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice.
Svensson, Kristoffer, Schnyder, Svenia, Cardel, Bettina, & PLoS ONE, 11(7), e0158716. https://doi.org/10.1371/journal.pone.0158716
. (2016). Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice.
Eisele, Petra Sabine, Furrer, Regula, Beer, Markus, & Biochemical and Biophysical Research Communications, 464(3), 692–697. https://doi.org/10.1016/j.bbrc.2015.06.166
. (2015). The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo.
Eisele, Petra Sabine, Furrer, Regula, Beer, Markus, & Biochemical and Biophysical Research Communications, 464(3), 692–697. https://doi.org/10.1016/j.bbrc.2015.06.166
. (2015). The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo.
Furrer, Regula, & Deutsche Zeitschrift für Sportmedizin, 66(12), 317–320. https://doi.org/10.5960/dzsm.2015.185
. (2015). Exercise and PGC-1α in inflammation and chronic disease.
Furrer, Regula, & Deutsche Zeitschrift für Sportmedizin, 66(12), 317–320. https://doi.org/10.5960/dzsm.2015.185
. (2015). Exercise and PGC-1α in inflammation and chronic disease.
Pharmacological research, 103, 158–166. https://doi.org/10.1016/j.phrs.2015.11.009
. (2015). Caloric restriction and exercise “mimetics″: Ready for prime time?
Pharmacological research, 103, 158–166. https://doi.org/10.1016/j.phrs.2015.11.009
. (2015). Caloric restriction and exercise “mimetics″: Ready for prime time?
External physical and biochemical stimulation to enhance skeletal muscle bioengineering]. Advanced drug delivery reviews, 82-83, 168–175. https://doi.org/10.1016/j.addr.2014.10.021
, Mortezavi, Ashkan, Plock, Jan, & Eberli, Daniel. (2015). External physical and biochemical stimulation to enhance skeletal muscle bioengineering [Review of
External physical and biochemical stimulation to enhance skeletal muscle bioengineering]. Advanced drug delivery reviews, 82-83, 168–175. https://doi.org/10.1016/j.addr.2014.10.021
, Mortezavi, Ashkan, Plock, Jan, & Eberli, Daniel. (2015). External physical and biochemical stimulation to enhance skeletal muscle bioengineering [Review of
Kupr, Barbara, & Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle]. Frontiers in Physiology, 6, 325. https://doi.org/10.3389/fphys.2015.00325
. (2015). Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle [Review of
Kupr, Barbara, & Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle]. Frontiers in Physiology, 6, 325. https://doi.org/10.3389/fphys.2015.00325
. (2015). Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle [Review of
Schnyder, Svenia, & Bone, 80, 115–125. https://doi.org/10.1016/j.bone.2015.02.008
. (2015). Skeletal muscle as an endocrine organ : PGC-1α, myokines and exercise.
Schnyder, Svenia, & Bone, 80, 115–125. https://doi.org/10.1016/j.bone.2015.02.008
. (2015). Skeletal muscle as an endocrine organ : PGC-1α, myokines and exercise.
Soler, Fernando, Fernández-Belda, Francisco, Pérez-Schindler, Joaquín, Experimental biology and medicine, 240(9), 1205–1213. https://doi.org/10.1177/1535370214560969
, Fuente, Teodomiro, & Hernandez-Cascales, Jesús. (2015). PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects.
Soler, Fernando, Fernández-Belda, Francisco, Pérez-Schindler, Joaquín, Experimental biology and medicine, 240(9), 1205–1213. https://doi.org/10.1177/1535370214560969
, Fuente, Teodomiro, & Hernandez-Cascales, Jesús. (2015). PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects.
Svensson, Kristoffer, Schnyder, Svenia, Albert, Verena, Cardel, Bettina, Quagliata, Luca, Terracciano, Luigi M., & Journal of biological chemistry, 290(26), 16059–16076. https://doi.org/10.1074/jbc.m114.590653
. (2015). Resveratrol and SRT1720 elicit differential effects in metabolic organs and modulate systemic parameters independently of skeletal muscle peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α).
Svensson, Kristoffer, Schnyder, Svenia, Albert, Verena, Cardel, Bettina, Quagliata, Luca, Terracciano, Luigi M., & Journal of biological chemistry, 290(26), 16059–16076. https://doi.org/10.1074/jbc.m114.590653
. (2015). Resveratrol and SRT1720 elicit differential effects in metabolic organs and modulate systemic parameters independently of skeletal muscle peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α).
Arnold, Anne-Sophie, Gill, Jonathan, Christe, Martine, Ruiz, Rocío, McGuirk, Shawn, St-Pierre, Julie, Tabares, Lucía, & Nature communications, 5, 3569. https://doi.org/10.1038/ncomms4569
. (2014). Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α.
Arnold, Anne-Sophie, Gill, Jonathan, Christe, Martine, Ruiz, Rocío, McGuirk, Shawn, St-Pierre, Julie, Tabares, Lucía, & Nature communications, 5, 3569. https://doi.org/10.1038/ncomms4569
. (2014). Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α.
Baresic, Mario, Salatino, Silvia, Kupr, Barbara, van Nimwegen, Erik, & Molecular and cellular biology, 34(16), 2996–3012. https://doi.org/10.1128/mcb.01710-13
. (2014). Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
Baresic, Mario, Salatino, Silvia, Kupr, Barbara, van Nimwegen, Erik, & Molecular and cellular biology, 34(16), 2996–3012. https://doi.org/10.1128/mcb.01710-13
. (2014). Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
Eisele, Petra S, & Seminars in immunopathology, 36(1), 27–53. https://doi.org/10.1007/s00281-013-0406-4
. (2014). Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology.
Eisele, Petra S, & Seminars in immunopathology, 36(1), 27–53. https://doi.org/10.1007/s00281-013-0406-4
. (2014). Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology.
Diabetologia, 57(11), 2405–2412. https://doi.org/10.1007/s00125-014-3352-3
. (2014). The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet.
Diabetologia, 57(11), 2405–2412. https://doi.org/10.1007/s00125-014-3352-3
. (2014). The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet.
Morand, Réjane, Bouitbir, Jamal, Felser, Andrea, Hench, Jürgen, European journal of nutrition, 53(6), 1313–1325. https://doi.org/10.1007/s00394-013-0631-6
, Frank, Stephan, & Krähenbühl, Stephan. (2014). Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice.
Morand, Réjane, Bouitbir, Jamal, Felser, Andrea, Hench, Jürgen, European journal of nutrition, 53(6), 1313–1325. https://doi.org/10.1007/s00394-013-0631-6
, Frank, Stephan, & Krähenbühl, Stephan. (2014). Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice.
Svensson, Kristoffer, & Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases]. Drug discovery today, 19, Article 7. https://doi.org/10.1016/j.drudis.2014.02.013
. (2014). Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases [Review of
Svensson, Kristoffer, & Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases]. Drug discovery today, 19, Article 7. https://doi.org/10.1016/j.drudis.2014.02.013
. (2014). Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases [Review of
Svensson, Kristoffer, & Diabetes, 63(5), 1451–1453. https://doi.org/10.2337/db14-0166
. (2014). MicroRNAs emerge as modulators of NAD+-dependent energy metabolism in skeletal muscle.
Svensson, Kristoffer, & Diabetes, 63(5), 1451–1453. https://doi.org/10.2337/db14-0166
. (2014). MicroRNAs emerge as modulators of NAD+-dependent energy metabolism in skeletal muscle.
Eisele P.S., Salatino S., Sobek J., Hottiger M.O., & Journal of Biological Chemistry, 288(9), 6589. https://doi.org/10.1074/jbc.a112.375253
(2013). Erratum: The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells (Journal of Biological Chemistry (2013) 288 (2246-2260)).
Eisele P.S., Salatino S., Sobek J., Hottiger M.O., & Journal of Biological Chemistry, 288(9), 6589. https://doi.org/10.1074/jbc.a112.375253
(2013). Erratum: The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells (Journal of Biological Chemistry (2013) 288 (2246-2260)).
Bentzinger, C. Florian, Lin, Shuo, Romanino, Klaas, Castets, Perrine, Guridi, Maitea, Summermatter, Serge, Skeletal Muscle, 3(1), 6. https://doi.org/10.1186/2044-5040-3-6
, Tintignac, Lionel A., Hall, Michael N., & Rüegg, Markus A. (2013). Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy.
Bentzinger, C. Florian, Lin, Shuo, Romanino, Klaas, Castets, Perrine, Guridi, Maitea, Summermatter, Serge, Skeletal Muscle, 3(1), 6. https://doi.org/10.1186/2044-5040-3-6
, Tintignac, Lionel A., Hall, Michael N., & Rüegg, Markus A. (2013). Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy.
Eisele, Petra S., Salatino, Silvia, Sobek, Jens, Hottiger, Michael O., & Journal of Biological Chemistry, 288(4), 2246–2260. https://doi.org/10.1074/jbc.m112.375253
. (2013). The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells.
Eisele, Petra S., Salatino, Silvia, Sobek, Jens, Hottiger, Michael O., & Journal of Biological Chemistry, 288(4), 2246–2260. https://doi.org/10.1074/jbc.m112.375253
. (2013). The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells.
Pérez-Schindler, Joaquín, & Drug Discovery Today. Disease Models, 10(2), e79–e85. https://doi.org/10.1016/j.ddmod.2012.12.002
. (2013). New insights in the regulation of skeletal muscle PGC-1α by exercise and metabolic diseases.
Pérez-Schindler, Joaquín, & Drug Discovery Today. Disease Models, 10(2), e79–e85. https://doi.org/10.1016/j.ddmod.2012.12.002
. (2013). New insights in the regulation of skeletal muscle PGC-1α by exercise and metabolic diseases.
Pérez-Schindler, Joaquín, Summermatter, Serge, Santos, Gesa, Zorzato, Francesco, & Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20314–20319. https://doi.org/10.1073/pnas.1312039110
. (2013). The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling.
Pérez-Schindler, Joaquín, Summermatter, Serge, Santos, Gesa, Zorzato, Francesco, & Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20314–20319. https://doi.org/10.1073/pnas.1312039110
. (2013). The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling.
Stölting, Meline Nogueira Lucena, Ferrari, Stefano, Journal of Urology, 189(5), 1952–1959. https://doi.org/10.1016/j.juro.2012.10.071
, Becskei, Attila, Provenzano, Maurizio, Sulser, Tullio, & Eberli, Daniel. (2013). Myoblasts inhibit prostate cancer growth by paracrine secretion of tumor necrosis factor-α.
Stölting, Meline Nogueira Lucena, Ferrari, Stefano, Journal of Urology, 189(5), 1952–1959. https://doi.org/10.1016/j.juro.2012.10.071
, Becskei, Attila, Provenzano, Maurizio, Sulser, Tullio, & Eberli, Daniel. (2013). Myoblasts inhibit prostate cancer growth by paracrine secretion of tumor necrosis factor-α.