Publications
199 found
Show per page
Ruiz, Alexis, Benucci, Sofia, Meier, Hervé, Schultz, Georg, Buczak, Katarzyna, , Pena, Rodrigo C. G., Treves, Susan, & Zorzato, Francesco. (2025). Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis. Journal of Physiology, Online ahead of print. https://doi.org/10.1113/jp287832
Ruiz, Alexis, Benucci, Sofia, Meier, Hervé, Schultz, Georg, Buczak, Katarzyna, , Pena, Rodrigo C. G., Treves, Susan, & Zorzato, Francesco. (2025). Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis. Journal of Physiology, Online ahead of print. https://doi.org/10.1113/jp287832
Furrer, Regula, Hawley, John A., & . (2025). Endurance Performance. In Encyclopedia of Exercise Medicine in Health and Disease (2 ed., pp. 1–5). Springer. https://doi.org/10.1007/978-3-642-27830-3_14429-1
Furrer, Regula, Hawley, John A., & . (2025). Endurance Performance. In Encyclopedia of Exercise Medicine in Health and Disease (2 ed., pp. 1–5). Springer. https://doi.org/10.1007/978-3-642-27830-3_14429-1
de Smalen, Laura M., Adak, Volkan, Leuchtmann, Aurel B., Schneider-Heieck, Konstantin, Steurer, Stefan A., & . (2025). Endurance training promotes chromatin closure and timely repression of the post-exercise immediate early stress response [Journal-article]. Molecular Metabolism, 99(September 2025). https://doi.org/10.1016/j.molmet.2025.102206
de Smalen, Laura M., Adak, Volkan, Leuchtmann, Aurel B., Schneider-Heieck, Konstantin, Steurer, Stefan A., & . (2025). Endurance training promotes chromatin closure and timely repression of the post-exercise immediate early stress response [Journal-article]. Molecular Metabolism, 99(September 2025). https://doi.org/10.1016/j.molmet.2025.102206
Furrer, Regula, Dilbaz, Sedat, Steurer, Stefan A, Santos, Gesa, Karrer-Cardel, Bettina, Ritz, Danilo, Sinnreich, Michael, & . (2025). Metabolic dysregulation contributes to the development of dysferlinopathy [Journal-article]. Life Science Alliance, 8(5), e202402991. https://doi.org/10.26508/lsa.202402991
Furrer, Regula, Dilbaz, Sedat, Steurer, Stefan A, Santos, Gesa, Karrer-Cardel, Bettina, Ritz, Danilo, Sinnreich, Michael, & . (2025). Metabolic dysregulation contributes to the development of dysferlinopathy [Journal-article]. Life Science Alliance, 8(5), e202402991. https://doi.org/10.26508/lsa.202402991
Schneider-Heieck, Konstantin, Pérez-Schindler, Joaquín, Blatter, Jonas, de Smalen, Laura M., Duchemin, Wandrille, Steurer, Stefan A., Karrer-Cardel, Bettina, Ritz, Danilo, & . (2025). Krüppel-like factor 5 remodels lipid metabolism in exercised skeletal muscle [Journal-article]. Molecular Metabolism, 96(June). https://doi.org/10.1016/j.molmet.2025.102154
Schneider-Heieck, Konstantin, Pérez-Schindler, Joaquín, Blatter, Jonas, de Smalen, Laura M., Duchemin, Wandrille, Steurer, Stefan A., Karrer-Cardel, Bettina, Ritz, Danilo, & . (2025). Krüppel-like factor 5 remodels lipid metabolism in exercised skeletal muscle [Journal-article]. Molecular Metabolism, 96(June). https://doi.org/10.1016/j.molmet.2025.102154
Furrer, Regula, & . (2025). Biomarkers of aging: from molecules and surrogates to physiology and function [Journal-article]. Physiological Reviews, 105(3), 1609–1694. https://doi.org/10.1152/physrev.00045.2024
Furrer, Regula, & . (2025). Biomarkers of aging: from molecules and surrogates to physiology and function [Journal-article]. Physiological Reviews, 105(3), 1609–1694. https://doi.org/10.1152/physrev.00045.2024
Furrer, Regula, & . (2025). Biomarkers of aging: functional aspects still trump molecular parameters [Journal-article]. Npj Aging, 11(1). https://doi.org/10.1038/s41514-025-00207-2
Furrer, Regula, & . (2025). Biomarkers of aging: functional aspects still trump molecular parameters [Journal-article]. Npj Aging, 11(1). https://doi.org/10.1038/s41514-025-00207-2
Gómez-Cabrera, Maria Carmen, & . (2025). Special Issue: “Unlocking Athletic Potential: Exploring Exercise Physiology from Mechanisms to Performance” [Journal-article]. Free Radical Biology and Medicine, 230, 48–49. https://doi.org/10.1016/j.freeradbiomed.2025.01.036
Gómez-Cabrera, Maria Carmen, & . (2025). Special Issue: “Unlocking Athletic Potential: Exploring Exercise Physiology from Mechanisms to Performance” [Journal-article]. Free Radical Biology and Medicine, 230, 48–49. https://doi.org/10.1016/j.freeradbiomed.2025.01.036
Mansingh, Shivani, Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Ritz, Danilo, Duchemin, Wandrille, Santos, Gesa, Karrer-Cardel, Bettina, Steurer, Stefan A., Albrecht, Urs, & . (2024). More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα. Journal of Physiology, 602(23), 6373–6402. https://doi.org/10.1113/JP285585
Mansingh, Shivani, Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Ritz, Danilo, Duchemin, Wandrille, Santos, Gesa, Karrer-Cardel, Bettina, Steurer, Stefan A., Albrecht, Urs, & . (2024). More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα. Journal of Physiology, 602(23), 6373–6402. https://doi.org/10.1113/JP285585
Timper, Katharina, Coban, Mustafa, Odermatt, Timothy, Schmid, Jochen, Abiven, Pierre, Gnann, Alexandra, Pedersen, Kent, Stage, Christina, Othman, Alaa, Zamboni, Nicola, Drogen, Audrey van, Goetze, Sandra, Karrer-Cardel, Bettina, , Matter, Matthias, Febbraio, Maria, Wüest, Stephan, Konrad, Daniel, Clausen, Trine, & Jørgensen, Sebastian. (2024). Astrocytes regulate brain fatty acid uptake and food intake via cluster of differentiation (CD)36 in diet-induced obesity [Posted-content]. In Research Square. Research Square. https://doi.org/10.21203/rs.3.rs-5280547/v1
Timper, Katharina, Coban, Mustafa, Odermatt, Timothy, Schmid, Jochen, Abiven, Pierre, Gnann, Alexandra, Pedersen, Kent, Stage, Christina, Othman, Alaa, Zamboni, Nicola, Drogen, Audrey van, Goetze, Sandra, Karrer-Cardel, Bettina, , Matter, Matthias, Febbraio, Maria, Wüest, Stephan, Konrad, Daniel, Clausen, Trine, & Jørgensen, Sebastian. (2024). Astrocytes regulate brain fatty acid uptake and food intake via cluster of differentiation (CD)36 in diet-induced obesity [Posted-content]. In Research Square. Research Square. https://doi.org/10.21203/rs.3.rs-5280547/v1
de Smalen, Laura M., & . (2024). Mitochondrial Maintenance in Skeletal Muscle [Journal-article]. Cold Spring Harbor Perspectives in Biology, 17(5). https://doi.org/10.1101/cshperspect.a041514
de Smalen, Laura M., & . (2024). Mitochondrial Maintenance in Skeletal Muscle [Journal-article]. Cold Spring Harbor Perspectives in Biology, 17(5). https://doi.org/10.1101/cshperspect.a041514
Ruiz, Alexis, Benucci, Sofia, Meier, Herve, Schultz, Georg, Buczak, Katarzyna, , Pena, Rodrigo C. G., Treves, Susan, & Zorzato, Francesco. (2024). Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis [Posted-content]. In bioRxiv (Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.09.607317
Ruiz, Alexis, Benucci, Sofia, Meier, Herve, Schultz, Georg, Buczak, Katarzyna, , Pena, Rodrigo C. G., Treves, Susan, & Zorzato, Francesco. (2024). Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis [Posted-content]. In bioRxiv (Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.09.607317
Furrer, Regula, & . (2024). Molecular aspects of the exercise response and training adaptation in skeletal muscle [Journal-article]. Free Radical Biology and Medicine, 223, 53–68. https://doi.org/10.1016/j.freeradbiomed.2024.07.026
Furrer, Regula, & . (2024). Molecular aspects of the exercise response and training adaptation in skeletal muscle [Journal-article]. Free Radical Biology and Medicine, 223, 53–68. https://doi.org/10.1016/j.freeradbiomed.2024.07.026
Lenardič, Ajda, Domenig, Seraina A., Zvick, Joel, Bundschuh, Nicola, Tarnowska-Sengül, Monika, Furrer, Regula, Noé, Falko J., Trautmann, Christine Ling Li, Ghosh, Adhideb, Bacchin, Giada, Gjonlleshaj, Pjeter, Qabrati, Xhem, Masschelein, Evi, De Bock, Katrien, , & Bar-Nur, Ori. (2024). Generation of allogenic and xenogeneic functional muscle stem cells for intramuscular transplantation [Journal-article]. Journal of Clinical Investigation, 134(12). https://doi.org/10.1172/jci166998
Lenardič, Ajda, Domenig, Seraina A., Zvick, Joel, Bundschuh, Nicola, Tarnowska-Sengül, Monika, Furrer, Regula, Noé, Falko J., Trautmann, Christine Ling Li, Ghosh, Adhideb, Bacchin, Giada, Gjonlleshaj, Pjeter, Qabrati, Xhem, Masschelein, Evi, De Bock, Katrien, , & Bar-Nur, Ori. (2024). Generation of allogenic and xenogeneic functional muscle stem cells for intramuscular transplantation [Journal-article]. Journal of Clinical Investigation, 134(12). https://doi.org/10.1172/jci166998
Fröhlich, Klemens, Furrer, Regula, Schori, Christian, , & Schmidt, Alexander. (2024). Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme [Journal-article]. Journal of Proteome Research, 23(3), 1028–1038. https://doi.org/10.1021/acs.jproteome.3c00736
Fröhlich, Klemens, Furrer, Regula, Schori, Christian, , & Schmidt, Alexander. (2024). Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme [Journal-article]. Journal of Proteome Research, 23(3), 1028–1038. https://doi.org/10.1021/acs.jproteome.3c00736
Furrer, Regula, Hawley, John A., & . (2023). The molecular bases of endurance training adaptation. In Mujika, Iñigo (Ed.), & Mujika, Iñigo (Trans.), Endurance Training - Science and practice (2nd edition, pp. 149–159). Iñigo Mujika S.L.U.
Furrer, Regula, Hawley, John A., & . (2023). The molecular bases of endurance training adaptation. In Mujika, Iñigo (Ed.), & Mujika, Iñigo (Trans.), Endurance Training - Science and practice (2nd edition, pp. 149–159). Iñigo Mujika S.L.U.
Furrer, Regula, & . (2023). Complex regulatory processes control exercise adaptations of skeletal muscle. Nature Metabolism, 5(11), 1856–1857. https://doi.org/10.1038/s42255-023-00894-9
Furrer, Regula, & . (2023). Complex regulatory processes control exercise adaptations of skeletal muscle. Nature Metabolism, 5(11), 1856–1857. https://doi.org/10.1038/s42255-023-00894-9
de Smalen, Laura M., Börsch, Anastasiya, Leuchtmann, Aurel B., Gill, Jonathan F., Ritz, Danilo, Zavolan, Mihaela, & . (2023). Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α. Proceedings of the National Academy of Sciences (PNAS), 120(36), e2302360120. https://doi.org/10.1073/pnas.2302360120
de Smalen, Laura M., Börsch, Anastasiya, Leuchtmann, Aurel B., Gill, Jonathan F., Ritz, Danilo, Zavolan, Mihaela, & . (2023). Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α. Proceedings of the National Academy of Sciences (PNAS), 120(36), e2302360120. https://doi.org/10.1073/pnas.2302360120
Furrer, Regula, Hawley, John A., & . (2023). The molecular athlete: exercise physiology from mechanisms to medals. Physiological Reviews, 103(3), 1693–1787. https://doi.org/10.1152/physrev.00017.2022
Furrer, Regula, Hawley, John A., & . (2023). The molecular athlete: exercise physiology from mechanisms to medals. Physiological Reviews, 103(3), 1693–1787. https://doi.org/10.1152/physrev.00017.2022
Furrer, Regula, Heim, Barbara, Schmid, Svenia, Dilbaz, Sedat, Adak, Volkan, Nordström, Karl J V, Ritz, Danilo, Steurer, Stefan A, Walter, Jörn, & . (2023). Molecular control of endurance training adaptation in male mouse skeletal muscle. Nature metabolism, 5(11), 2020–2035. https://doi.org/10.1038/s42255-023-00891-y
Furrer, Regula, Heim, Barbara, Schmid, Svenia, Dilbaz, Sedat, Adak, Volkan, Nordström, Karl J V, Ritz, Danilo, Steurer, Stefan A, Walter, Jörn, & . (2023). Molecular control of endurance training adaptation in male mouse skeletal muscle. Nature metabolism, 5(11), 2020–2035. https://doi.org/10.1038/s42255-023-00891-y
. (2023). Churchill was wrong - do sports! Swiss Medical Forum, 23(26), 1175. https://doi.org/10.4414/smf.2023.09452
. (2023). Churchill was wrong - do sports! Swiss Medical Forum, 23(26), 1175. https://doi.org/10.4414/smf.2023.09452
Leuchtmann, Aurel B., Afifi, Yasmine, Ritz, Danilo, & . (2023). Effects of high-resistance wheel running on hallmarks of endurance and resistance training adaptations in mice. Physiological Reports, 11(11), e15701. https://doi.org/10.14814/phy2.15701
Leuchtmann, Aurel B., Afifi, Yasmine, Ritz, Danilo, & . (2023). Effects of high-resistance wheel running on hallmarks of endurance and resistance training adaptations in mice. Physiological Reports, 11(11), e15701. https://doi.org/10.14814/phy2.15701
Novakova, Katerina, Török, Michael, Panajatovic, Miljenko, Bouitbir, Jamal, Duong, François H T, , & Krähenbühl, Stephan. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 23(20), 12304. https://doi.org/10.3390/ijms232012304
Novakova, Katerina, Török, Michael, Panajatovic, Miljenko, Bouitbir, Jamal, Duong, François H T, , & Krähenbühl, Stephan. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 23(20), 12304. https://doi.org/10.3390/ijms232012304
Novakova K, Török M, Panajatovic M, Bouitbir J, Duong FHT, , & Krähenbühl S. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 23(20). https://doi.org/10.3390/ijms232012304
Novakova K, Török M, Panajatovic M, Bouitbir J, Duong FHT, , & Krähenbühl S. (2022). PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 23(20). https://doi.org/10.3390/ijms232012304
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, , Tintignac LA, Zavolan M, Mittal N, & Rüegg MA. (2022). Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, , Tintignac LA, Zavolan M, Mittal N, & Rüegg MA. (2022). Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
Furrer, Regula, & . (2022). Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. Journal of Physiology, 601(11), 2057–2068. https://doi.org/10.1113/jp282887
Furrer, Regula, & . (2022). Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. Journal of Physiology, 601(11), 2057–2068. https://doi.org/10.1113/jp282887
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, , Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, , Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
Leuchtmann, Aurel B., Furrer, Regula, Steurer, Stefan A., Schneider-Heieck, Konstantin, Karrer-Cardel, Bettina, Sagot, Yves, & . (2022). Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice. Journal of Cachexia, Sarcopenia and Muscle, 13(2), 1164–1176. https://doi.org/10.1002/jcsm.12949
Leuchtmann, Aurel B., Furrer, Regula, Steurer, Stefan A., Schneider-Heieck, Konstantin, Karrer-Cardel, Bettina, Sagot, Yves, & . (2022). Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice. Journal of Cachexia, Sarcopenia and Muscle, 13(2), 1164–1176. https://doi.org/10.1002/jcsm.12949
Mansingh, Shivani, & . (2022). Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Frontiers in Physiology, 13, 902031. https://doi.org/10.3389/fphys.2022.902031
Mansingh, Shivani, & . (2022). Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Frontiers in Physiology, 13, 902031. https://doi.org/10.3389/fphys.2022.902031
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & . (2022). Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity. Scientific Reports, 12(1), 11477. https://doi.org/10.1038/s41598-022-15731-4
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & . (2022). Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity. Scientific Reports, 12(1), 11477. https://doi.org/10.1038/s41598-022-15731-4
Schmid, Svenia, Heim-Kupr, Barbara, Pérez-Schindler, Joaquín, Mansingh, Shivani, Beer, Markus, Mittal, Nitish, Ehrenfeuchter, Nikolaus, & . (2022). PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds. Molecular metabolism, 66, 101643. https://doi.org/10.1016/j.molmet.2022.101643
Schmid, Svenia, Heim-Kupr, Barbara, Pérez-Schindler, Joaquín, Mansingh, Shivani, Beer, Markus, Mittal, Nitish, Ehrenfeuchter, Nikolaus, & . (2022). PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds. Molecular metabolism, 66, 101643. https://doi.org/10.1016/j.molmet.2022.101643
Streese, Lukas, Liffert, Jeannine, Vilser, Walthard, , & Hanssen, Henner. (2022). In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach. PloS One, 17(7), e0271815. https://doi.org/10.1371/journal.pone.0271815
Streese, Lukas, Liffert, Jeannine, Vilser, Walthard, , & Hanssen, Henner. (2022). In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach. PloS One, 17(7), e0271815. https://doi.org/10.1371/journal.pone.0271815
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & . (2021). Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.03.24.436772
Pérez-Schindler, Joaquín, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, & . (2021). Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.03.24.436772
Battey, Edmund, Furrer, Regula, Ross, Jacob, , Ochala, Julien, & Stroud, Matthew J. (2021). PGC-1α regulates myonuclear accretion after moderate endurance training. Journal of Cellular Physiology, Jul 28. https://doi.org/10.1002/jcp.30539
Battey, Edmund, Furrer, Regula, Ross, Jacob, , Ochala, Julien, & Stroud, Matthew J. (2021). PGC-1α regulates myonuclear accretion after moderate endurance training. Journal of Cellular Physiology, Jul 28. https://doi.org/10.1002/jcp.30539
Furrer, Regula, Jauch, Annaïse J., Rao, Tata Nageswara, Dilbaz, Sedat, Rhein, Peter, Steurer, Stefan A., Recher, Mike, Skoda, Radek C., & . (2021). Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia. Science Advances, 7(37), eabi4852. https://doi.org/10.1126/sciadv.abi4852
Furrer, Regula, Jauch, Annaïse J., Rao, Tata Nageswara, Dilbaz, Sedat, Rhein, Peter, Steurer, Stefan A., Recher, Mike, Skoda, Radek C., & . (2021). Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia. Science Advances, 7(37), eabi4852. https://doi.org/10.1126/sciadv.abi4852
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, , Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2021). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, , Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Rüegg, Markus A. (2021). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
Leuchtmann, Aurel B., Adak, Volkan, Dilbaz, Sedat, & . (2021). The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Frontiers in Physiology, 12, 709807. https://doi.org/10.3389/fphys.2021.709807
Leuchtmann, Aurel B., Adak, Volkan, Dilbaz, Sedat, & . (2021). The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Frontiers in Physiology, 12, 709807. https://doi.org/10.3389/fphys.2021.709807
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & . (2021). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. Journal of Physiology, Jun 18, epub ahead of print. https://doi.org/10.1113/jp281535
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & . (2021). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. Journal of Physiology, Jun 18, epub ahead of print. https://doi.org/10.1113/jp281535
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Leuchtmann, Aurel B., Henríquez-Olguín, Carlos, Adak, Volkan, Maier, Geraldine, Delezie, Julien, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Jensen, Thomas E., Hiller, Sebastian, & . (2021). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2105951118. https://doi.org/10.1073/pnas.2105951118
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Leuchtmann, Aurel B., Henríquez-Olguín, Carlos, Adak, Volkan, Maier, Geraldine, Delezie, Julien, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Jensen, Thomas E., Hiller, Sebastian, & . (2021). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2105951118. https://doi.org/10.1073/pnas.2105951118
Sjögren, Rasmus J. O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K. R., , Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2021). Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia, 64(9), 2077–2091. https://doi.org/10.1007/s00125-021-05481-9
Sjögren, Rasmus J. O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K. R., , Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2021). Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia, 64(9), 2077–2091. https://doi.org/10.1007/s00125-021-05481-9
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & . (2020). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of endurance training [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.10.19.345686
Maier, Geraldine, Delezie, Julien, Westermark, Pål O., Santos, Gesa, Ritz, Danilo, & . (2020). Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of endurance training [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.10.19.345686
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Adak, Volkan, Delezie, Julien, Maier, Geraldine, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Hiller, Sebastian, & . (2020). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.09.23.310623
Pérez-Schindler, Joaquín, Kohl, Bastian, Schneider-Heieck, Konstantin, Adak, Volkan, Delezie, Julien, Maier, Geraldine, Sakoparnig, Thomas, Vargas-Fernández, Elyzabeth, Karrer-Cardel, Bettina, Ritz, Danilo, Schmidt, Alexander, Hondele, Maria, Hiller, Sebastian, & . (2020). RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.09.23.310623
Sjögren, Rasmus J.O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K.R., , Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2020). Branched-Chain Amino Acid Metabolism is Regulated by ERRα in Primary Human Myotubes and is Further Impaired by Glucose Loading in Type 2 Diabetes [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.07.24.218099
Sjögren, Rasmus J.O., Rizo-Roca, David, Chibalin, Alexander V., Chorell, Elin, Furrer, Regula, Katayama, Shintaro, Harada, Jun, Karlsson, Håkan K.R., , Moritz, Thomas, Krook, Anna, Näslund, Erik, & Zierath, Juleen R. (2020). Branched-Chain Amino Acid Metabolism is Regulated by ERRα in Primary Human Myotubes and is Further Impaired by Glucose Loading in Type 2 Diabetes [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.07.24.218099
Battilana, Fabienne, Steurer, Stefan, Rizzi, Giorgio, Delgado, Ana C., Tan, Kelly R., & . (2020). Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons. Aging Cell, 19(12), e13274. https://doi.org/10.1111/acel.13274
Battilana, Fabienne, Steurer, Stefan, Rizzi, Giorgio, Delgado, Ana C., Tan, Kelly R., & . (2020). Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons. Aging Cell, 19(12), e13274. https://doi.org/10.1111/acel.13274
Delezie, Julien, Gill, Jonathan F., Santos, Gesa, Karrer-Cardel, Bettina, & . (2020). PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse. Scientific Reports, 10(1), 16888. https://doi.org/10.1038/s41598-020-73794-7
Delezie, Julien, Gill, Jonathan F., Santos, Gesa, Karrer-Cardel, Bettina, & . (2020). PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse. Scientific Reports, 10(1), 16888. https://doi.org/10.1038/s41598-020-73794-7
Furrer, Regula, & . (2020). Lifestyle vs. pharmacological interventions for healthy aging. Aging, 12(1), 5–7. https://doi.org/10.18632/aging.102741
Furrer, Regula, & . (2020). Lifestyle vs. pharmacological interventions for healthy aging. Aging, 12(1), 5–7. https://doi.org/10.18632/aging.102741
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., , Zavolan, Mihaela, & Rüegg, Markus A. (2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., , Zavolan, Mihaela, & Rüegg, Markus A. (2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
Leuchtmann, Aurel B., & . (2020). Pharmacological targeting of age-related changes in skeletal muscle tissue. Pharmacological Research, 154, 104191. https://doi.org/10.1016/j.phrs.2019.02.030
Leuchtmann, Aurel B., & . (2020). Pharmacological targeting of age-related changes in skeletal muscle tissue. Pharmacological Research, 154, 104191. https://doi.org/10.1016/j.phrs.2019.02.030
Panajatovic, Miljenko Valentin, Singh, François, Roos, Noëmi Johanna, Duthaler, Urs, , Krähenbühl, Stephan, & Bouitbir, Jamal. (2020). PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice. Acta physiologica (Oxford, England), 228(4), e13402. https://doi.org/10.1111/apha.13402
Panajatovic, Miljenko Valentin, Singh, François, Roos, Noëmi Johanna, Duthaler, Urs, , Krähenbühl, Stephan, & Bouitbir, Jamal. (2020). PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice. Acta physiologica (Oxford, England), 228(4), e13402. https://doi.org/10.1111/apha.13402
Furrer, Regula, & . (2019). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
Furrer, Regula, & . (2019). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
Rao TN, Hansen N, Hilfiker J, Rai S, Majewska JM, Leković D, Gezer D, Andina N, Galli S, Cassel T, Geier F, Delezie J, Nienhold R, Hao-Shen H, Beisel C, Di Palma S, Dimeloe S, Trebicka J, Wolf D, et al. (2019). JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Rao TN, Hansen N, Hilfiker J, Rai S, Majewska JM, Leković D, Gezer D, Andina N, Galli S, Cassel T, Geier F, Delezie J, Nienhold R, Hao-Shen H, Beisel C, Di Palma S, Dimeloe S, Trebicka J, Wolf D, et al. (2019). JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Krämer, A. I., & Handschin, C. (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1<em>&alpha;</em> In the Regulation of Metabolism [Posted-content]. MDPI AG. https://doi.org/10.20944/preprints201910.0021.v1
Krämer, A. I., & Handschin, C. (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1<em>&alpha;</em> In the Regulation of Metabolism [Posted-content]. MDPI AG. https://doi.org/10.20944/preprints201910.0021.v1
Agudelo, Leandro Z., Ferreira, Duarte M. S., Dadvar, Shamim, Cervenka, Igor, Ketscher, Lars, Izadi, Manizheh, Zhengye, Liu, Furrer, Regula, , Venckunas, Tomas, Brazaitis, Marius, Kamandulis, Sigitas, Lanner, Johanna T., & Ruas, Jorge L. (2019). Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nature Communications, 10(1), 2767. https://doi.org/10.1038/s41467-019-10712-0
Agudelo, Leandro Z., Ferreira, Duarte M. S., Dadvar, Shamim, Cervenka, Igor, Ketscher, Lars, Izadi, Manizheh, Zhengye, Liu, Furrer, Regula, , Venckunas, Tomas, Brazaitis, Marius, Kamandulis, Sigitas, Lanner, Johanna T., & Ruas, Jorge L. (2019). Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nature Communications, 10(1), 2767. https://doi.org/10.1038/s41467-019-10712-0
Brinkkoetter, Paul T., Bork, Tillmann, Salou, Sarah, Liang, Wei, Mizi, Athanasia, Özel, Cem, Koehler, Sybille, Hagmann, H. Henning, Ising, Christina, Kuczkowski, Alexander, Schnyder, Svenia, Abed, Ahmed, Schermer, Bernhard, Benzing, Thomas, Kretz, Oliver, Puelles, Victor G., Lagies, Simon, Schlimpert, Manuel, Kammerer, Bernd, et al. (2019). Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 27(5), 1551–1566. https://doi.org/10.1016/j.celrep.2019.04.012
Brinkkoetter, Paul T., Bork, Tillmann, Salou, Sarah, Liang, Wei, Mizi, Athanasia, Özel, Cem, Koehler, Sybille, Hagmann, H. Henning, Ising, Christina, Kuczkowski, Alexander, Schnyder, Svenia, Abed, Ahmed, Schermer, Bernhard, Benzing, Thomas, Kretz, Oliver, Puelles, Victor G., Lagies, Simon, Schlimpert, Manuel, Kammerer, Bernd, et al. (2019). Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 27(5), 1551–1566. https://doi.org/10.1016/j.celrep.2019.04.012
Delezie, Julien, Weihrauch, Martin, Maier, Geraldine, Tejero, Rocío, Ham, Daniel J., Gill, Jonathan F., Karrer-Cardel, Bettina, Rüegg, Markus A., Tabares, Lucía, & . (2019). BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proceedings of the National Academy of Sciences (PNAS), 116(32), 16111–16120. https://doi.org/10.1073/pnas.1900544116
Delezie, Julien, Weihrauch, Martin, Maier, Geraldine, Tejero, Rocío, Ham, Daniel J., Gill, Jonathan F., Karrer-Cardel, Bettina, Rüegg, Markus A., Tabares, Lucía, & . (2019). BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proceedings of the National Academy of Sciences (PNAS), 116(32), 16111–16120. https://doi.org/10.1073/pnas.1900544116
Furrer, Regula, & . (2019). Muscle Wasting Diseases: Novel Targets and Treatments. Annual review of pharmacology and toxicology, 59, 315–339. https://doi.org/10.1146/annurev-pharmtox-010818-021041
Furrer, Regula, & . (2019). Muscle Wasting Diseases: Novel Targets and Treatments. Annual review of pharmacology and toxicology, 59, 315–339. https://doi.org/10.1146/annurev-pharmtox-010818-021041
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & . (2019). Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging. Aging cell, 18(5), e12993. https://doi.org/10.1111/acel.12993
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & . (2019). Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging. Aging cell, 18(5), e12993. https://doi.org/10.1111/acel.12993
Krämer, Anne I., & . (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism. International Journal of Molecular Sciences, 20(21), E5449. https://doi.org/10.3390/ijms20215449
Krämer, Anne I., & . (2019). How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism. International Journal of Molecular Sciences, 20(21), E5449. https://doi.org/10.3390/ijms20215449
Nageswara Rao, Tata, Hansen, Nils, Hilfiker, Julian, Rai, Shivam, Majewska, Julia-Magdalena, Lekovic, Danijela, Gezer, Deniz, Andina, Nicola, Galli, Serena, Cassel, Teresa, Geier, Florian, Delezie, Julien, Nienhold, Ronny, Hao-Shen, Hui, Beisel, Christian, Di Palma, Serena, Dimeloe, Sarah, Trebicka, Jonel, Wolf, Dominik, et al. (2019). JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Nageswara Rao, Tata, Hansen, Nils, Hilfiker, Julian, Rai, Shivam, Majewska, Julia-Magdalena, Lekovic, Danijela, Gezer, Deniz, Andina, Nicola, Galli, Serena, Cassel, Teresa, Geier, Florian, Delezie, Julien, Nienhold, Ronny, Hao-Shen, Hui, Beisel, Christian, Di Palma, Serena, Dimeloe, Sarah, Trebicka, Jonel, Wolf, Dominik, et al. (2019). JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood, 134(21), 1832–1846. https://doi.org/10.1182/blood.2019000162
Pérez-Schindler, Joaquín, & . (2018). Physiological Regulation of Skeletal Muscle Mass: Resistance Exercise- Mediated Muscle Hypertrophy. In Walrand, Stéphane (Ed.), Nutrition and Skeletal Muscle (1st Edition, pp. 139–150). Academic Press. https://doi.org/10.1016/b978-0-12-810422-4.00011-7
Pérez-Schindler, Joaquín, & . (2018). Physiological Regulation of Skeletal Muscle Mass: Resistance Exercise- Mediated Muscle Hypertrophy. In Walrand, Stéphane (Ed.), Nutrition and Skeletal Muscle (1st Edition, pp. 139–150). Academic Press. https://doi.org/10.1016/b978-0-12-810422-4.00011-7
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & . (2018). PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging [Posted-content]. bioRxiv. https://doi.org/10.1101/451229
Gill, Jonathan F., Delezie, Julien, Santos, Gesa, McGuirk, Shawn, Schnyder, Svenia, Frank, Stephan, Rausch, Martin, St-Pierre, Julie, & . (2018). PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging [Posted-content]. bioRxiv. https://doi.org/10.1101/451229
Salatino S., Kupr B., Baresic M., Omidi S., Van Nimwegen E., & (2018). Corrigendum: The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells (Endocrinology (2016) 30:7 (809-825) DOI: 10.1210/me.2016-1036). Endocrinology, 159(7), 2703. https://doi.org/10.1210/en.2018-00545
Salatino S., Kupr B., Baresic M., Omidi S., Van Nimwegen E., & (2018). Corrigendum: The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells (Endocrinology (2016) 30:7 (809-825) DOI: 10.1210/me.2016-1036). Endocrinology, 159(7), 2703. https://doi.org/10.1210/en.2018-00545
. (2018). Faculty Opinions recommendation of Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732773706.793543452
. (2018). Faculty Opinions recommendation of Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732773706.793543452
Baum, Oliver, Aaldijk, Dea, Engeli, Anna Lena, Spree, Matthias, Summermatter, Serge, , & Zakrzewicz, Andreas. (2018). Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice. Nitric Oxide: Biology and Chemistry, 77, 35–43. https://doi.org/10.1016/j.niox.2018.04.005
Baum, Oliver, Aaldijk, Dea, Engeli, Anna Lena, Spree, Matthias, Summermatter, Serge, , & Zakrzewicz, Andreas. (2018). Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice. Nitric Oxide: Biology and Chemistry, 77, 35–43. https://doi.org/10.1016/j.niox.2018.04.005
Delezie, Julien, & . (2018). Endocrine Crosstalk Between Skeletal Muscle and the Brain. Frontiers in Neurology, 9, 698. https://doi.org/10.3389/fneur.2018.00698
Delezie, Julien, & . (2018). Endocrine Crosstalk Between Skeletal Muscle and the Brain. Frontiers in Neurology, 9, 698. https://doi.org/10.3389/fneur.2018.00698
Gill, Jonathan F., Santos, Gesa, Schnyder, Svenia, & . (2018). PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell, 17(1), e12697. https://doi.org/10.1111/acel.12697
Gill, Jonathan F., Santos, Gesa, Schnyder, Svenia, & . (2018). PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell, 17(1), e12697. https://doi.org/10.1111/acel.12697
Haralampieva, Deana, Salemi, Souzan, Betzel, Thomas, Dinulovic, Ivana, Krämer, Stefanie D., Schibli, Roger, Sulser, Tullio, , Ametamey, Simon M., & Eberli, Daniel. (2018). Injected Human Muscle Precursor Cells Overexpressing PGC-1α. Enhance Functional Muscle Regeneration after Trauma. Stem cells international, 2018, 4658503. https://doi.org/10.1155/2018/4658503
Haralampieva, Deana, Salemi, Souzan, Betzel, Thomas, Dinulovic, Ivana, Krämer, Stefanie D., Schibli, Roger, Sulser, Tullio, , Ametamey, Simon M., & Eberli, Daniel. (2018). Injected Human Muscle Precursor Cells Overexpressing PGC-1α. Enhance Functional Muscle Regeneration after Trauma. Stem cells international, 2018, 4658503. https://doi.org/10.1155/2018/4658503
Ruiz, Alexis, Dror, Erez, , Furrer, Regula, Perez-Schindler, Joaquin, Bachmann, Christoph, Treves, Susan, & Zorzato, Francesco. (2018). Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance. Scientific Reports, 8(1), 636. https://doi.org/10.1038/s41598-017-18844-3
Ruiz, Alexis, Dror, Erez, , Furrer, Regula, Perez-Schindler, Joaquin, Bachmann, Christoph, Treves, Susan, & Zorzato, Francesco. (2018). Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance. Scientific Reports, 8(1), 636. https://doi.org/10.1038/s41598-017-18844-3
Svensson, K, Schnyder, S, Cardel, B, & (2018). Anaysis of the Ppargc1a-dependent renal transcriptome in a mouse model of diet-induced obesity (1.0) [Dataset]. Signaling Pathways Project. https://doi.org/10.1621/xxjjpandlz
Svensson, K, Schnyder, S, Cardel, B, & (2018). Anaysis of the Ppargc1a-dependent renal transcriptome in a mouse model of diet-induced obesity (1.0) [Dataset]. Signaling Pathways Project. https://doi.org/10.1621/xxjjpandlz
Weihrauch, Martin, & . (2018). Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. Biochemical Pharmacology, 147, 211–220. https://doi.org/10.1016/j.bcp.2017.10.006
Weihrauch, Martin, & . (2018). Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. Biochemical Pharmacology, 147, 211–220. https://doi.org/10.1016/j.bcp.2017.10.006
Whitehead, Natasha, Gill, Jonathan F., Brink, Marijke, & . (2018). Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart. Frontiers in Physiology, 9, 242. https://doi.org/10.3389/fphys.2018.00242
Whitehead, Natasha, Gill, Jonathan F., Brink, Marijke, & . (2018). Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart. Frontiers in Physiology, 9, 242. https://doi.org/10.3389/fphys.2018.00242
Furrer, Regula, & . (2017). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In Spiegelman, Bruce M. (Ed.), Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
Furrer, Regula, & . (2017). Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. In Spiegelman, Bruce M. (Ed.), Hormones, Metabolism and the Benefits of Exercise (pp. 57–66). Springer. https://doi.org/10.1007/978-3-319-72790-5_5
. (2017). Muskeln: mehr als nur “schön anzusehen”. In Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.), natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel (pp. 85). Schwabe. http://www.ngib.ch/natura-obscura/
. (2017). Muskeln: mehr als nur “schön anzusehen”. In Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.), natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel (pp. 85). Schwabe. http://www.ngib.ch/natura-obscura/
. (2017). Faculty Opinions recommendation of Cellular and molecular anatomy of the human neuromuscular junction. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732198617.793539847
. (2017). Faculty Opinions recommendation of Cellular and molecular anatomy of the human neuromuscular junction. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732198617.793539847
. (2017). Faculty Opinions recommendation of Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging. [Dataset]. In H1 Connect. H1 Connect. https://doi.org/10.3410/f.732091497.793539608
. (2017). Faculty Opinions recommendation of Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging. [Dataset]. In H1 Connect. H1 Connect. https://doi.org/10.3410/f.732091497.793539608
. (2017). Faculty Opinions recommendation of Multigenerational silencing dynamics control cell aging. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732036339.793539609
. (2017). Faculty Opinions recommendation of Multigenerational silencing dynamics control cell aging. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732036339.793539609
. (2017). Faculty Opinions recommendation of MyD88 promotes myoblast fusion in a cell-autonomous manner. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732141780.793539606
. (2017). Faculty Opinions recommendation of MyD88 promotes myoblast fusion in a cell-autonomous manner. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.732141780.793539606
. (2017). Faculty Opinions recommendation of Proprotein convertase furin regulates osteocalcin and bone endocrine function. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.731684922.793539612
. (2017). Faculty Opinions recommendation of Proprotein convertase furin regulates osteocalcin and bone endocrine function. [Dataset]. In H1Connect. H1 Connect. https://doi.org/10.3410/f.731684922.793539612
. (2017). Faculty Opinions recommendation of Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. [Dataset]. In H1 Connect. H1 Connect. https://doi.org/10.3410/f.718188815.793538551
. (2017). Faculty Opinions recommendation of Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. [Dataset]. In H1 Connect. H1 Connect. https://doi.org/10.3410/f.718188815.793538551
Dinulovic, Ivana, Furrer, Regula, & . (2017). Plasticity of the Muscle Stem Cell Microenvironment. Advances in experimental medicine and biology, 1041, 141–169. https://doi.org/10.1007/978-3-319-69194-7_8
Dinulovic, Ivana, Furrer, Regula, & . (2017). Plasticity of the Muscle Stem Cell Microenvironment. Advances in experimental medicine and biology, 1041, 141–169. https://doi.org/10.1007/978-3-319-69194-7_8
Furrer, Regula, Eisele, Petra S., Schmidt, Alexander, Beer, Markus, & . (2017). Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Scientific Reports, 7, 40789. https://doi.org/10.1038/srep40789
Furrer, Regula, Eisele, Petra S., Schmidt, Alexander, Beer, Markus, & . (2017). Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Scientific Reports, 7, 40789. https://doi.org/10.1038/srep40789
Haralampieva, Deana, Salemi, Souzan, Dinulovic, Ivana, Sulser, Tullio, Ametamey, Simon, , & Eberli, Daniel. (2017). Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation. Cell Transplantation, 26(6), 1103–1114. https://doi.org/10.3727/096368917x694868
Haralampieva, Deana, Salemi, Souzan, Dinulovic, Ivana, Sulser, Tullio, Ametamey, Simon, , & Eberli, Daniel. (2017). Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation. Cell Transplantation, 26(6), 1103–1114. https://doi.org/10.3727/096368917x694868
Kupr, Barbara, Schnyder, Svenia, & . (2017). Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations. Cold Spring Harbor perspectives in medicine, 7(6), a029835. https://doi.org/10.1101/cshperspect.a029835
Kupr, Barbara, Schnyder, Svenia, & . (2017). Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations. Cold Spring Harbor perspectives in medicine, 7(6), a029835. https://doi.org/10.1101/cshperspect.a029835
Ross, Jacob Alexander, Pearson, Adam, Levy, Yotam, Cardel, Bettina, , & Ochala, Julien. (2017). Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres. Journal of Cellular Physiology, 232(6), 1270–1274. https://doi.org/10.1002/jcp.25678
Ross, Jacob Alexander, Pearson, Adam, Levy, Yotam, Cardel, Bettina, , & Ochala, Julien. (2017). Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres. Journal of Cellular Physiology, 232(6), 1270–1274. https://doi.org/10.1002/jcp.25678
Schnyder, Svenia, Kupr, Barbara, & . (2017). Coregulator-mediated control of skeletal muscle plasticity - A mini-review. Biochimie, 136, 49–54. https://doi.org/10.1016/j.biochi.2016.12.011
Schnyder, Svenia, Kupr, Barbara, & . (2017). Coregulator-mediated control of skeletal muscle plasticity - A mini-review. Biochimie, 136, 49–54. https://doi.org/10.1016/j.biochi.2016.12.011
Schnyder, Svenia, Svensson, Kristoffer, Cardel, Bettina, & . (2017). Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice. American Journal of Physiology. Endocrinology and Metabolism, 312(5), E437–E446. https://doi.org/10.1152/ajpendo.00361.2016
Schnyder, Svenia, Svensson, Kristoffer, Cardel, Bettina, & . (2017). Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice. American Journal of Physiology. Endocrinology and Metabolism, 312(5), E437–E446. https://doi.org/10.1152/ajpendo.00361.2016
Haralampieva, Deana, Salemi, Souzan, Dinulovic, Ivana, Sulser, Tullio, Ametamey, Simon M., , & Eberli, Daniel. (2016). MP30-16 GENETICALLY MODIFIED HUMAN MUSCLE PRECURSOR CELLS OVEREXPRESSING PGC-1? SUPPORT EARLY MYOFIBER FORMATION FOR BIOENGINEERING OF SLOW TWITCH SPHINCTER MUSCLE [Journal-article]. Journal of Urology, 195(4S). https://doi.org/10.1016/j.juro.2016.02.1248
Haralampieva, Deana, Salemi, Souzan, Dinulovic, Ivana, Sulser, Tullio, Ametamey, Simon M., , & Eberli, Daniel. (2016). MP30-16 GENETICALLY MODIFIED HUMAN MUSCLE PRECURSOR CELLS OVEREXPRESSING PGC-1? SUPPORT EARLY MYOFIBER FORMATION FOR BIOENGINEERING OF SLOW TWITCH SPHINCTER MUSCLE [Journal-article]. Journal of Urology, 195(4S). https://doi.org/10.1016/j.juro.2016.02.1248
Haralampieva, D., Salemi, S., Dinulovic, I., Sulser, T., Ametamey, S.M., , & Eberli, D. (2016). 909 Genetically modified human muscle precursor cells overexpressing PGC-1α support early myofiber formation for bioengineering of slow twitch sphincter muscle [Journal-article]. European Urology Supplements, 15(3), e909. https://doi.org/10.1016/s1569-9056(16)60911-9
Haralampieva, D., Salemi, S., Dinulovic, I., Sulser, T., Ametamey, S.M., , & Eberli, D. (2016). 909 Genetically modified human muscle precursor cells overexpressing PGC-1α support early myofiber formation for bioengineering of slow twitch sphincter muscle [Journal-article]. European Urology Supplements, 15(3), e909. https://doi.org/10.1016/s1569-9056(16)60911-9
Albert, Verena, Svensson, Kristoffer, Shimobayashi, Mitsugu, Colombi, Marco, Muñoz, Sergio, Jimenez, Veronica, , Bosch, Fatima, & Hall, Michael N. (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
Albert, Verena, Svensson, Kristoffer, Shimobayashi, Mitsugu, Colombi, Marco, Muñoz, Sergio, Jimenez, Veronica, , Bosch, Fatima, & Hall, Michael N. (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
Dinulovic, Ivana, Furrer, Regula, Beer, Markus, Ferry, Arnaud, Cardel, Bettina, & . (2016). Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skeletal Muscle, 6(1), 39. https://doi.org/10.1186/s13395-016-0111-9
Dinulovic, Ivana, Furrer, Regula, Beer, Markus, Ferry, Arnaud, Cardel, Bettina, & . (2016). Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skeletal Muscle, 6(1), 39. https://doi.org/10.1186/s13395-016-0111-9
Dinulovic, Ivana, Furrer, Regula, Di Fulvio, Sabrina, Ferry, Arnaud, Beer, Markus, & . (2016). PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle. Skeletal Muscle, 6(38), 38. https://doi.org/10.1186/s13395-016-0110-x
Dinulovic, Ivana, Furrer, Regula, Di Fulvio, Sabrina, Ferry, Arnaud, Beer, Markus, & . (2016). PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle. Skeletal Muscle, 6(38), 38. https://doi.org/10.1186/s13395-016-0110-x
Gill, Jonathan F, Delezie, Julien, Santos, Gesa, & . (2016). PGC-1α expression in murine AgRP neurons regulates food intake and energy balance. Molecular metabolism, 5(7), 8–580. https://doi.org/10.1016/j.molmet.2016.05.008
Gill, Jonathan F, Delezie, Julien, Santos, Gesa, & . (2016). PGC-1α expression in murine AgRP neurons regulates food intake and energy balance. Molecular metabolism, 5(7), 8–580. https://doi.org/10.1016/j.molmet.2016.05.008
Haralampieva, Deana, Betzel, Thomas, Dinulovic, Ivana, Salemi, Souzan, Stoelting, Meline, Krämer, Stefanie D, Schibli, Roger, Sulser, Tullio, , Eberli, Daniel, & Ametamey, Simon M. (2016). Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering. Journal of Nuclear Medicine, 57(9), 73–1467. https://doi.org/10.2967/jnumed.115.170548
Haralampieva, Deana, Betzel, Thomas, Dinulovic, Ivana, Salemi, Souzan, Stoelting, Meline, Krämer, Stefanie D, Schibli, Roger, Sulser, Tullio, , Eberli, Daniel, & Ametamey, Simon M. (2016). Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering. Journal of Nuclear Medicine, 57(9), 73–1467. https://doi.org/10.2967/jnumed.115.170548
Salatino, Silvia, Kupr, Barbara, Baresic, Mario, van Nimwegen, Erik, & . (2016). The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells. Molecular Endocrinology, 30(7), 809–825. https://doi.org/10.1210/me.2016-1036
Salatino, Silvia, Kupr, Barbara, Baresic, Mario, van Nimwegen, Erik, & . (2016). The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells. Molecular Endocrinology, 30(7), 809–825. https://doi.org/10.1210/me.2016-1036
Stölting, Meline N. L., Arnold, Anne Sophie, Haralampieva, Deana, , Sulser, Tullio, & Eberli, Daniel. (2016). Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle and Nerve, 53(4), 598–607. https://doi.org/10.1002/mus.24780
Stölting, Meline N. L., Arnold, Anne Sophie, Haralampieva, Deana, , Sulser, Tullio, & Eberli, Daniel. (2016). Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle and Nerve, 53(4), 598–607. https://doi.org/10.1002/mus.24780
Svensson, Kristoffer, Albert, Verena, Cardel, Bettina, Salatino, Silvia, & . (2016). Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. FASEB Journal, 30(5), 86–1976. https://doi.org/10.1096/fj.201500128
Svensson, Kristoffer, Albert, Verena, Cardel, Bettina, Salatino, Silvia, & . (2016). Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. FASEB Journal, 30(5), 86–1976. https://doi.org/10.1096/fj.201500128
Svensson, Kristoffer, Schnyder, Svenia, Cardel, Bettina, & . (2016). Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice. PLoS ONE, 11(7), e0158716. https://doi.org/10.1371/journal.pone.0158716
Svensson, Kristoffer, Schnyder, Svenia, Cardel, Bettina, & . (2016). Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice. PLoS ONE, 11(7), e0158716. https://doi.org/10.1371/journal.pone.0158716
. (2015). Analysis of the the silencing mediator of retinoid and thyroid receptors (SMRT/Ncor2)- and peroxisome proliferator activated receptor-γ coactivator 1- β (PGC1β/Ppargc1b)-regulated transcriptomes in mouse skeletal muscle (1.0) [Dataset]. Signaling Pathways Project. https://doi.org/10.1621/kexa1iann4
. (2015). Analysis of the the silencing mediator of retinoid and thyroid receptors (SMRT/Ncor2)- and peroxisome proliferator activated receptor-γ coactivator 1- β (PGC1β/Ppargc1b)-regulated transcriptomes in mouse skeletal muscle (1.0) [Dataset]. Signaling Pathways Project. https://doi.org/10.1621/kexa1iann4
Eisele, Petra Sabine, Furrer, Regula, Beer, Markus, & . (2015). The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo. Biochemical and Biophysical Research Communications, 464(3), 692–697. https://doi.org/10.1016/j.bbrc.2015.06.166
Eisele, Petra Sabine, Furrer, Regula, Beer, Markus, & . (2015). The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo. Biochemical and Biophysical Research Communications, 464(3), 692–697. https://doi.org/10.1016/j.bbrc.2015.06.166
Furrer, Regula, & . (2015). Exercise and PGC-1α in inflammation and chronic disease. Deutsche Zeitschrift für Sportmedizin, 66(12), 317–320. https://doi.org/10.5960/dzsm.2015.185
Furrer, Regula, & . (2015). Exercise and PGC-1α in inflammation and chronic disease. Deutsche Zeitschrift für Sportmedizin, 66(12), 317–320. https://doi.org/10.5960/dzsm.2015.185