[FG] György Bence
Publications
64 found
Show per page
Spitznagel, T. et al. (2025) ‘Evaluating Photodynamic Therapy vs. Subthreshold Micropulse Laser for Central Serous Chorioretinopathy: A Retrospective Study ergleich von photodynamischer Therapie mit Subthreshold-Micropulse-Lasertherapie bei Chorioretinopathia centralis serosa’, Klinische Monatsblatter fur Augenheilkunde, 242(4), pp. 405–412. Available at: https://doi.org/10.1055/a-2542-4969.
Spitznagel, T. et al. (2025) ‘Evaluating Photodynamic Therapy vs. Subthreshold Micropulse Laser for Central Serous Chorioretinopathy: A Retrospective Study ergleich von photodynamischer Therapie mit Subthreshold-Micropulse-Lasertherapie bei Chorioretinopathia centralis serosa’, Klinische Monatsblatter fur Augenheilkunde, 242(4), pp. 405–412. Available at: https://doi.org/10.1055/a-2542-4969.
Zoellin, J.R.T. et al. (2025) ‘Evaluating the reproducibility of a deep learning algorithm for the prediction of retinal age’, GeroScience, 47(2), pp. 2541–2554. Available at: https://doi.org/10.1007/s11357-024-01445-0.
Zoellin, J.R.T. et al. (2025) ‘Evaluating the reproducibility of a deep learning algorithm for the prediction of retinal age’, GeroScience, 47(2), pp. 2541–2554. Available at: https://doi.org/10.1007/s11357-024-01445-0.
Muller, Alissa et al. (2025) ‘High-efficiency base editing in the retina in primates and human tissues’, Nature Medicine, 31(2), pp. 490–501. Available at: https://doi.org/10.1038/s41591-024-03422-8.
Muller, Alissa et al. (2025) ‘High-efficiency base editing in the retina in primates and human tissues’, Nature Medicine, 31(2), pp. 490–501. Available at: https://doi.org/10.1038/s41591-024-03422-8.
Szabó, Viktória et al. (2025) ‘Insights into eye genetics and recent advances in ocular gene therapy’, Molecular and Cellular Probes, 79, p. 102008. Available at: https://doi.org/10.1016/j.mcp.2025.102008.
Szabó, Viktória et al. (2025) ‘Insights into eye genetics and recent advances in ocular gene therapy’, Molecular and Cellular Probes, 79, p. 102008. Available at: https://doi.org/10.1016/j.mcp.2025.102008.
György, Bence (2025) ‘A base editor for correcting deafness: Genome editing’, Nature Biomedical Engineering, 9(1), pp. 3–4. Available at: https://doi.org/10.1038/s41551-024-01234-2.
György, Bence (2025) ‘A base editor for correcting deafness: Genome editing’, Nature Biomedical Engineering, 9(1), pp. 3–4. Available at: https://doi.org/10.1038/s41551-024-01234-2.
Scholl, Hendrik P. N. and György, Bence (2025) ‘Single-Eye Gene Therapy for Leber Hereditary Optic Neuropathy’, JAMA Ophthalmology [Preprint]. Available at: https://doi.org/10.1001/jamaophthalmol.2024.5618.
Scholl, Hendrik P. N. and György, Bence (2025) ‘Single-Eye Gene Therapy for Leber Hereditary Optic Neuropathy’, JAMA Ophthalmology [Preprint]. Available at: https://doi.org/10.1001/jamaophthalmol.2024.5618.
Ivanchenko, Maryna V. et al. (2024) ‘PCDH15 dual-AAV gene therapy for deafness and blindness in Usher syndrome type 1F models’, Journal of Clinical Investigation, 134(23). Available at: https://doi.org/10.1172/JCI177700.
Ivanchenko, Maryna V. et al. (2024) ‘PCDH15 dual-AAV gene therapy for deafness and blindness in Usher syndrome type 1F models’, Journal of Clinical Investigation, 134(23). Available at: https://doi.org/10.1172/JCI177700.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
György Bence, Roska Botond and Scholl Hendrik P N (2024) ‘HUMAN CONE PHOTORECEPTOR OPTOGENETIC CONSTRUCTS’. Edited by Institute of molecular and clinical ophthalmology Basel (IOB).
György Bence, Roska Botond and Scholl Hendrik P N (2024) ‘HUMAN CONE PHOTORECEPTOR OPTOGENETIC CONSTRUCTS’. Edited by Institute of molecular and clinical ophthalmology Basel (IOB).
Ivanchenko, Maryna V. et al. (2023) ‘PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.09.566447.
Ivanchenko, Maryna V. et al. (2023) ‘PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.09.566447.
Muller, Alissa et al. (2023) ‘High-efficiency base editing for Stargardt disease in mice, non-human primates, and human retina tissue’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.04.17.535579.
Muller, Alissa et al. (2023) ‘High-efficiency base editing for Stargardt disease in mice, non-human primates, and human retina tissue’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.04.17.535579.
McAlpine SM et al. (2023) ‘Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis’, Journal of Rheumatology, 50(2), pp. 224–235. Available at: https://doi.org/10.3899/jrheum.220160.
McAlpine SM et al. (2023) ‘Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis’, Journal of Rheumatology, 50(2), pp. 224–235. Available at: https://doi.org/10.3899/jrheum.220160.
Maguire Casey A, Corey David P and Gyorgy Bence (2022) ‘Hybrid System for Efficient Gene Delivery to Cells of the Inner Ear’. Edited by Institute of molecular and clinical ophthalmology Basel (IOB).
Maguire Casey A, Corey David P and Gyorgy Bence (2022) ‘Hybrid System for Efficient Gene Delivery to Cells of the Inner Ear’. Edited by Institute of molecular and clinical ophthalmology Basel (IOB).
Konstantinidis E et al. (2022) ‘CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation’, Molecular Therapy Nucleic Acids, 28, pp. 450–461. Available at: https://doi.org/10.1016/j.omtn.2022.03.022.
Konstantinidis E et al. (2022) ‘CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation’, Molecular Therapy Nucleic Acids, 28, pp. 450–461. Available at: https://doi.org/10.1016/j.omtn.2022.03.022.
Zabek O et al. (2022) ‘Rare occult macular dystrophy with a pathogenic variant in the RP1L1 gene in a patient of Swiss descent’, American Journal of Ophthalmology Case Reports. Elsevier Inc., 26. Available at: https://doi.org/10.1016/j.ajoc.2022.101527.
Zabek O et al. (2022) ‘Rare occult macular dystrophy with a pathogenic variant in the RP1L1 gene in a patient of Swiss descent’, American Journal of Ophthalmology Case Reports. Elsevier Inc., 26. Available at: https://doi.org/10.1016/j.ajoc.2022.101527.
Holt Jeffrey R and Gyorgy Bence (2022) ‘METHODS AND COMPOSITIONS FOR ALLELE SPECIFIC GENE EDITING’. Edited by Childrens Medical Center, 015-245-156-218-541( 202117556463).
Holt Jeffrey R and Gyorgy Bence (2022) ‘METHODS AND COMPOSITIONS FOR ALLELE SPECIFIC GENE EDITING’. Edited by Childrens Medical Center, 015-245-156-218-541( 202117556463).
Janeschitz-Kriegl L et al. (2022) ‘c.-61g> a in ovol2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1’, Cornea, 41(1), pp. 89–94. Available at: https://doi.org/10.1097/ICO.0000000000002843.
Janeschitz-Kriegl L et al. (2022) ‘c.-61g> a in ovol2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1’, Cornea, 41(1), pp. 89–94. Available at: https://doi.org/10.1097/ICO.0000000000002843.
Anders P et al. (2021) ‘Effect of prolactin on normal and keratoconus human corneal stromal fibroblasts in vitro’, PLoS ONE, 16(4 April), p. e0249344. Available at: https://doi.org/10.1371/journal.pone.0249344.
Anders P et al. (2021) ‘Effect of prolactin on normal and keratoconus human corneal stromal fibroblasts in vitro’, PLoS ONE, 16(4 April), p. e0249344. Available at: https://doi.org/10.1371/journal.pone.0249344.
Maguire Casey A, Corey David P and Gyorgy Bence (2021) ‘AAV VECTORS ENCODING CLARIN-1 OR GJB2 AND USES THEREOF’. Edited by President and fellows of Harcard College.
Maguire Casey A, Corey David P and Gyorgy Bence (2021) ‘AAV VECTORS ENCODING CLARIN-1 OR GJB2 AND USES THEREOF’. Edited by President and fellows of Harcard College.
Cheah PS et al. (2021) ‘Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin’, Science Advances, 7(2). Available at: https://doi.org/10.1126/sciadv.abb1703.
Cheah PS et al. (2021) ‘Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin’, Science Advances, 7(2). Available at: https://doi.org/10.1126/sciadv.abb1703.
György, B. (2021) ‘CRISPR cuts disease course short in blood disorders’, Science Translational Medicine, 13(575). Available at: https://doi.org/10.1126/SCITRANSLMED.ABG1756.
György, B. (2021) ‘CRISPR cuts disease course short in blood disorders’, Science Translational Medicine, 13(575). Available at: https://doi.org/10.1126/SCITRANSLMED.ABG1756.
Holt Jeffrey R and Gyorgy Bence (2020) ‘METHODS AND COMPOSITIONS FOR ALLELE SPECIFIC GENE EDITING’. Edited by Childrens Medical Center, Havard College.
Holt Jeffrey R and Gyorgy Bence (2020) ‘METHODS AND COMPOSITIONS FOR ALLELE SPECIFIC GENE EDITING’. Edited by Childrens Medical Center, Havard College.
Cruz L et al. (2020) ‘Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function’, Molecular Therapy Nucleic Acids, 21, pp. 1–12. Available at: https://doi.org/10.1016/j.omtn.2020.05.009.
Cruz L et al. (2020) ‘Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function’, Molecular Therapy Nucleic Acids, 21, pp. 1–12. Available at: https://doi.org/10.1016/j.omtn.2020.05.009.
Niggemann P, György B and Chen ZY (2020) ‘Genome and base editing for genetic hearing loss’, Hearing Research, 394, p. 107958. Available at: https://doi.org/10.1016/j.heares.2020.107958.
Niggemann P, György B and Chen ZY (2020) ‘Genome and base editing for genetic hearing loss’, Hearing Research, 394, p. 107958. Available at: https://doi.org/10.1016/j.heares.2020.107958.
György, B. (2020) ‘Hope on the horizon for inherited blindness’, Science Translational Medicine, 12(535). Available at: https://doi.org/10.1126/scitranslmed.abb2772.
György, B. (2020) ‘Hope on the horizon for inherited blindness’, Science Translational Medicine, 12(535). Available at: https://doi.org/10.1126/scitranslmed.abb2772.
György, B. (2020) ‘Clearing the path for gene therapy’, Science Translational Medicine, 12(551). Available at: https://doi.org/10.1126/SCITRANSLMED.ABD3080.
György, B. (2020) ‘Clearing the path for gene therapy’, Science Translational Medicine, 12(551). Available at: https://doi.org/10.1126/SCITRANSLMED.ABD3080.
Hanlon KS et al. (2019) ‘High levels of AAV vector integration into CRISPR-induced DNA breaks’, Nature Communications, 10(1), p. 4439. Available at: https://doi.org/10.1038/s41467-019-12449-2.
Hanlon KS et al. (2019) ‘High levels of AAV vector integration into CRISPR-induced DNA breaks’, Nature Communications, 10(1), p. 4439. Available at: https://doi.org/10.1038/s41467-019-12449-2.
Zaborowski MP et al. (2019) ‘Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles’, Scientific Reports, 9(1), p. 17387. Available at: https://doi.org/10.1038/s41598-019-53554-y.
Zaborowski MP et al. (2019) ‘Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles’, Scientific Reports, 9(1), p. 17387. Available at: https://doi.org/10.1038/s41598-019-53554-y.
György B et al. (2019) ‘Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss’, Nature Medicine, 25(7), pp. 1123–1130. Available at: https://doi.org/10.1038/s41591-019-0500-9.
György B et al. (2019) ‘Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss’, Nature Medicine, 25(7), pp. 1123–1130. Available at: https://doi.org/10.1038/s41591-019-0500-9.
György B et al. (2019) ‘Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate’, Molecular Therapy Methods and Clinical Development, 13, pp. 1–13. Available at: https://doi.org/10.1016/j.omtm.2018.11.003.
György B et al. (2019) ‘Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate’, Molecular Therapy Methods and Clinical Development, 13, pp. 1–13. Available at: https://doi.org/10.1016/j.omtm.2018.11.003.
Maguire Casey A, Corey David P and Gyorgy Bence (2019) ‘Hybrid System for Efficient Gene Delivery to Cells of the Inner Ear’. Edited by The General Hospital Corporation, President and Fellows of Harvard College.
Maguire Casey A, Corey David P and Gyorgy Bence (2019) ‘Hybrid System for Efficient Gene Delivery to Cells of the Inner Ear’. Edited by The General Hospital Corporation, President and Fellows of Harvard College.
Eimer WA et al. (2018) ‘Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection.’, 100(6). Available at: https://doi.org/10.1016/j.neuron.2018.11.043.
Eimer WA et al. (2018) ‘Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection.’, 100(6). Available at: https://doi.org/10.1016/j.neuron.2018.11.043.
György B et al. (2018) ‘Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts’, Scientific Reports, 8(1), p. 2324. Available at: https://doi.org/10.1038/s41598-018-19865-2.
György B et al. (2018) ‘Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts’, Scientific Reports, 8(1), p. 2324. Available at: https://doi.org/10.1038/s41598-018-19865-2.
Gustafsson G et al. (2018) ‘Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells’, Cellular and Molecular Neurobiology, 38(8), pp. 1539–1550. Available at: https://doi.org/10.1007/s10571-018-0622-5.
Gustafsson G et al. (2018) ‘Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells’, Cellular and Molecular Neurobiology, 38(8), pp. 1539–1550. Available at: https://doi.org/10.1007/s10571-018-0622-5.
Pan B et al. (2018) ‘TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells’, Neuron, 99(4), pp. 736–753.e6. Available at: https://doi.org/10.1016/j.neuron.2018.07.033.
Pan B et al. (2018) ‘TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells’, Neuron, 99(4), pp. 736–753.e6. Available at: https://doi.org/10.1016/j.neuron.2018.07.033.
Eimer WA et al. (2018) ‘Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection’, Neuron, 99(1), pp. 56–63.e3. Available at: https://doi.org/10.1016/j.neuron.2018.06.030.
Eimer WA et al. (2018) ‘Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection’, Neuron, 99(1), pp. 56–63.e3. Available at: https://doi.org/10.1016/j.neuron.2018.06.030.
György B et al. (2018) ‘CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease’, Molecular Therapy Nucleic Acids, 11, pp. 429–440. Available at: https://doi.org/10.1016/j.omtn.2018.03.007.
György B et al. (2018) ‘CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease’, Molecular Therapy Nucleic Acids, 11, pp. 429–440. Available at: https://doi.org/10.1016/j.omtn.2018.03.007.
György B and Maguire CA (2018) ‘Extracellular vesicles: nature’s nanoparticles for improving gene transfer with adeno-associated virus vectors’, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(3), p. e1488. Available at: https://doi.org/10.1002/wnan.1488.
György B and Maguire CA (2018) ‘Extracellular vesicles: nature’s nanoparticles for improving gene transfer with adeno-associated virus vectors’, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(3), p. e1488. Available at: https://doi.org/10.1002/wnan.1488.
Sadik N et al. (2018) ‘Extracellular RNAs: A new awareness of old perspectives’, Methods in Molecular Biology, 1740, pp. 1–15. Available at: https://doi.org/10.1007/978-1-4939-7652-2_1.
Sadik N et al. (2018) ‘Extracellular RNAs: A new awareness of old perspectives’, Methods in Molecular Biology, 1740, pp. 1–15. Available at: https://doi.org/10.1007/978-1-4939-7652-2_1.
Maguire Casey A, Gyorgy Bence and Corey David P (2017) ‘HYBRID SYSTEM FOR EFFICIENT GENE DELIVERY TO CELLS OF THE INNER EAR’. Edited by The General Hospital Corporation, President and Fellows of Harvard College.
Maguire Casey A, Gyorgy Bence and Corey David P (2017) ‘HYBRID SYSTEM FOR EFFICIENT GENE DELIVERY TO CELLS OF THE INNER EAR’. Edited by The General Hospital Corporation, President and Fellows of Harvard College.
Wassmer SJ et al. (2017) ‘Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection’, Scientific Reports, 7, p. 45329. Available at: https://doi.org/10.1038/srep45329.
Wassmer SJ et al. (2017) ‘Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection’, Scientific Reports, 7, p. 45329. Available at: https://doi.org/10.1038/srep45329.
György B et al. (2017) ‘Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV’, Molecular Therapy, 25(2), pp. 379–391. Available at: https://doi.org/10.1016/j.ymthe.2016.12.010.
György B et al. (2017) ‘Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV’, Molecular Therapy, 25(2), pp. 379–391. Available at: https://doi.org/10.1016/j.ymthe.2016.12.010.
Hudry E et al. (2016) ‘Exosome-associated AAV vector as a robust and convenient neuroscience tool.’, Gene therapy, 23(11), p. 819. Available at: https://doi.org/10.1038/gt.2016.65.
Hudry E et al. (2016) ‘Exosome-associated AAV vector as a robust and convenient neuroscience tool.’, Gene therapy, 23(11), p. 819. Available at: https://doi.org/10.1038/gt.2016.65.
Osteikoetxea X et al. (2015) ‘Improved characterization of EV preparations based on protein to lipid ratio and lipid properties’, PLoS ONE, 10(3), p. e0121184. Available at: https://doi.org/10.1371/journal.pone.0121184.
Osteikoetxea X et al. (2015) ‘Improved characterization of EV preparations based on protein to lipid ratio and lipid properties’, PLoS ONE, 10(3), p. e0121184. Available at: https://doi.org/10.1371/journal.pone.0121184.
György B et al. (2015) ‘Therapeutic applications of extracellular vesicles: Clinical promise and open questions’, Annual Review of Pharmacology and Toxicology, 55, pp. 439–464. Available at: https://doi.org/10.1146/annurev-pharmtox-010814-124630.
György B et al. (2015) ‘Therapeutic applications of extracellular vesicles: Clinical promise and open questions’, Annual Review of Pharmacology and Toxicology, 55, pp. 439–464. Available at: https://doi.org/10.1146/annurev-pharmtox-010814-124630.
Pal Z et al. (2014) ‘Immunosuppressants increase the levels of natural autoantibodies reactive with glycosaminoglycans in myasthenia gravis’, Journal of Neuroimmunology, 276(1-2), pp. 224–228. Available at: https://doi.org/10.1016/j.jneuroim.2014.08.002.
Pal Z et al. (2014) ‘Immunosuppressants increase the levels of natural autoantibodies reactive with glycosaminoglycans in myasthenia gravis’, Journal of Neuroimmunology, 276(1-2), pp. 224–228. Available at: https://doi.org/10.1016/j.jneuroim.2014.08.002.
Fitzpatrick Z et al. (2014) ‘Extracellular vesicles as enhancers of virus vector-mediated gene delivery’, Human Gene Therapy, 25(9), pp. 785–786. Available at: https://doi.org/10.1089/hum.2014.082.
Fitzpatrick Z et al. (2014) ‘Extracellular vesicles as enhancers of virus vector-mediated gene delivery’, Human Gene Therapy, 25(9), pp. 785–786. Available at: https://doi.org/10.1089/hum.2014.082.
György B et al. (2014) ‘Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube’, Thrombosis Research, 133(2), pp. 285–292. Available at: https://doi.org/10.1016/j.thromres.2013.11.010.
György B et al. (2014) ‘Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube’, Thrombosis Research, 133(2), pp. 285–292. Available at: https://doi.org/10.1016/j.thromres.2013.11.010.
Buzas EI et al. (2014) ‘Emerging role of extracellular vesicles in inflammatory diseases’, Nature Reviews Rheumatology, 10(6), pp. 356–364. Available at: https://doi.org/10.1038/nrrheum.2014.19.
Buzas EI et al. (2014) ‘Emerging role of extracellular vesicles in inflammatory diseases’, Nature Reviews Rheumatology, 10(6), pp. 356–364. Available at: https://doi.org/10.1038/nrrheum.2014.19.
György B et al. (2014) ‘Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery invivo’, Biomaterials, 35(26), pp. 7598–7609. Available at: https://doi.org/10.1016/j.biomaterials.2014.05.032.
György B et al. (2014) ‘Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery invivo’, Biomaterials, 35(26), pp. 7598–7609. Available at: https://doi.org/10.1016/j.biomaterials.2014.05.032.
Szabó GT et al. (2014) ‘Critical role of extracellular vesicles in modulating the cellular effects of cytokines.’, Cellular and molecular life sciences : CMLS, 71(20), pp. 4055–4067. Available at: https://doi.org/10.1007/s00018-014-1618-z.
Szabó GT et al. (2014) ‘Critical role of extracellular vesicles in modulating the cellular effects of cytokines.’, Cellular and molecular life sciences : CMLS, 71(20), pp. 4055–4067. Available at: https://doi.org/10.1007/s00018-014-1618-z.
Misják P et al. (2013) ‘The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis’, Immunology Letters, 152(1), pp. 25–31. Available at: https://doi.org/10.1016/j.imlet.2013.03.005.
Misják P et al. (2013) ‘The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis’, Immunology Letters, 152(1), pp. 25–31. Available at: https://doi.org/10.1016/j.imlet.2013.03.005.
Baka, Z. et al. (2013) ‘Citrullination in normal and pathologic situations La citrullination en situations normale et pathologique’, Revue du Rhumatisme (Edition Francaise), 80(1), pp. 18–24. Available at: https://doi.org/10.1016/j.rhum.2012.09.004.
Baka, Z. et al. (2013) ‘Citrullination in normal and pathologic situations La citrullination en situations normale et pathologique’, Revue du Rhumatisme (Edition Francaise), 80(1), pp. 18–24. Available at: https://doi.org/10.1016/j.rhum.2012.09.004.
György B et al. (2012) ‘Improved Flow Cytometric Assessment Reveals Distinct Microvesicle (Cell-Derived Microparticle) Signatures in Joint Diseases’, PLoS ONE, 7(11), p. e49726. Available at: https://doi.org/10.1371/journal.pone.0049726.
György B et al. (2012) ‘Improved Flow Cytometric Assessment Reveals Distinct Microvesicle (Cell-Derived Microparticle) Signatures in Joint Diseases’, PLoS ONE, 7(11), p. e49726. Available at: https://doi.org/10.1371/journal.pone.0049726.
Baka Z et al. (2012) ‘Citrullination under physiological and pathological conditions’, Joint Bone Spine, 79(5), pp. 431–436. Available at: https://doi.org/10.1016/j.jbspin.2012.01.008.
Baka Z et al. (2012) ‘Citrullination under physiological and pathological conditions’, Joint Bone Spine, 79(5), pp. 431–436. Available at: https://doi.org/10.1016/j.jbspin.2012.01.008.
György, B., Pasztoi, M. and Buzas, E.I. (2012) ‘Systematic use of Triton lysis as a control for microvesicle labeling’, Blood, 119(9), pp. 2175–2176. Available at: https://doi.org/10.1182/blood-2012-01-401091.
György, B., Pasztoi, M. and Buzas, E.I. (2012) ‘Systematic use of Triton lysis as a control for microvesicle labeling’, Blood, 119(9), pp. 2175–2176. Available at: https://doi.org/10.1182/blood-2012-01-401091.
Pásztói M et al. (2011) ‘Infection and autoimmunity: Lessons of animal models.’, European journal of microbiology & immunology, 1(3), pp. 198–207. Available at: https://doi.org/10.1556/eujmi.1.2011.3.3.
Pásztói M et al. (2011) ‘Infection and autoimmunity: Lessons of animal models.’, European journal of microbiology & immunology, 1(3), pp. 198–207. Available at: https://doi.org/10.1556/eujmi.1.2011.3.3.
György B et al. (2011) ‘Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles’, Cellular and Molecular Life Sciences, 68(16), pp. 2667–2688. Available at: https://doi.org/10.1007/s00018-011-0689-3.
György B et al. (2011) ‘Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles’, Cellular and Molecular Life Sciences, 68(16), pp. 2667–2688. Available at: https://doi.org/10.1007/s00018-011-0689-3.
György B et al. (2011) ‘Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters’, Blood, 117(4), pp. e39–48. Available at: https://doi.org/10.1182/blood-2010-09-307595.
György B et al. (2011) ‘Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters’, Blood, 117(4), pp. e39–48. Available at: https://doi.org/10.1182/blood-2010-09-307595.
Pásztói M et al. (2009) ‘Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts’, Arthritis Research and Therapy, 11(3), p. R68. Available at: https://doi.org/10.1186/ar2697.
Pásztói M et al. (2009) ‘Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts’, Arthritis Research and Therapy, 11(3), p. R68. Available at: https://doi.org/10.1186/ar2697.
Pozsonyi E et al. (2009) ‘HLA-association of serum levels of natural antibodies’, Molecular Immunology, 46(7), pp. 1416–1423. Available at: https://doi.org/10.1016/j.molimm.2008.12.006.
Pozsonyi E et al. (2009) ‘HLA-association of serum levels of natural antibodies’, Molecular Immunology, 46(7), pp. 1416–1423. Available at: https://doi.org/10.1016/j.molimm.2008.12.006.
György B et al. (2008) ‘Natural autoantibodies reactive with glycosaminoglycans in rheumatoid arthritis’, Arthritis Research and Therapy, 10(5), p. R110. Available at: https://doi.org/10.1186/ar2507.
György B et al. (2008) ‘Natural autoantibodies reactive with glycosaminoglycans in rheumatoid arthritis’, Arthritis Research and Therapy, 10(5), p. R110. Available at: https://doi.org/10.1186/ar2507.
Buzás EI et al. (2006) ‘Carbohydrate recognition systems in autoimmunity’, Autoimmunity, 39(8), pp. 691–704. Available at: https://doi.org/10.1080/08916930601061470.
Buzás EI et al. (2006) ‘Carbohydrate recognition systems in autoimmunity’, Autoimmunity, 39(8), pp. 691–704. Available at: https://doi.org/10.1080/08916930601061470.
György B et al. (2006) ‘Citrullination: A posttranslational modification in health and disease’, International Journal of Biochemistry and Cell Biology, 38(10), pp. 1662–1677. Available at: https://doi.org/10.1016/j.biocel.2006.03.008.
György B et al. (2006) ‘Citrullination: A posttranslational modification in health and disease’, International Journal of Biochemistry and Cell Biology, 38(10), pp. 1662–1677. Available at: https://doi.org/10.1016/j.biocel.2006.03.008.