[FG] Pfau Kristina und Pfau Maximilian
Publications
33 found
Show per page
Khateri, P. et al. (2025) ‘Looking outside the box with a pathology aware AI approach for analyzing OCT retinal images in Stargardt disease’, 15(1). Available at: https://doi.org/10.1038/s41598-025-85213-w.
Khateri, P. et al. (2025) ‘Looking outside the box with a pathology aware AI approach for analyzing OCT retinal images in Stargardt disease’, 15(1). Available at: https://doi.org/10.1038/s41598-025-85213-w.
Liermann, Y.N. et al. (2025) ‘Ellipsoid zone reflectivity as a functional imaging biomarker for age-related macular degeneration: a MACUSTAR study report’, 15(1). Available at: https://doi.org/10.1038/s41598-025-00735-7.
Liermann, Y.N. et al. (2025) ‘Ellipsoid zone reflectivity as a functional imaging biomarker for age-related macular degeneration: a MACUSTAR study report’, 15(1). Available at: https://doi.org/10.1038/s41598-025-00735-7.
Wu, Z. et al. (2025) ‘Onset of End-Stage Atrophic Age-Related Macular Degeneration as an End Point—A Delphi Study: Classification of Atrophy Meetings Report 7’, in Ophthalmology Science. Elsevier Inc. (Ophthalmology Science). Available at: https://doi.org/10.1016/j.xops.2025.100777.
Wu, Z. et al. (2025) ‘Onset of End-Stage Atrophic Age-Related Macular Degeneration as an End Point—A Delphi Study: Classification of Atrophy Meetings Report 7’, in Ophthalmology Science. Elsevier Inc. (Ophthalmology Science). Available at: https://doi.org/10.1016/j.xops.2025.100777.
Ansari, G. et al. (2025) ‘Validation and Repeatability of Differential Light Sensitivity Measurements with the Novel MAIA Microperimetry Device’, Ophthalmology Science, p. 100886. Available at: https://doi.org/10.1016/j.xops.2025.100886.
Ansari, G. et al. (2025) ‘Validation and Repeatability of Differential Light Sensitivity Measurements with the Novel MAIA Microperimetry Device’, Ophthalmology Science, p. 100886. Available at: https://doi.org/10.1016/j.xops.2025.100886.
Foa, N. et al. (2025) ‘Autosomal Dominant RP1 c.2613dupA (p.Arg872Thrfs∗2) Variant Retinitis Pigmentosa Shows Linear Loss of the Ellipsoid Zone over Time with Highly Variable Phenotype’, 248(3), pp. 175–184. Available at: https://doi.org/10.1159/000545606.
Foa, N. et al. (2025) ‘Autosomal Dominant RP1 c.2613dupA (p.Arg872Thrfs∗2) Variant Retinitis Pigmentosa Shows Linear Loss of the Ellipsoid Zone over Time with Highly Variable Phenotype’, 248(3), pp. 175–184. Available at: https://doi.org/10.1159/000545606.
Ehrenzeller, C. et al. (2025) ‘DRUSEN VOLUME AS CLINICAL OUTCOME MEASURE IN SUBJECTS WITH MALATTIA LEVENTINESE’, Retina, 45(6), pp. 1192–1199. Available at: https://doi.org/10.1097/IAE.0000000000004407.
Ehrenzeller, C. et al. (2025) ‘DRUSEN VOLUME AS CLINICAL OUTCOME MEASURE IN SUBJECTS WITH MALATTIA LEVENTINESE’, Retina, 45(6), pp. 1192–1199. Available at: https://doi.org/10.1097/IAE.0000000000004407.
Guymer, R.H. et al. (2025) ‘Designing the next generation of clinical trials in intermediate AMD-a consensus driven, pragmatic, proof of concept early intervention study’, 255. Available at: https://doi.org/10.1016/j.exer.2025.110340.
Guymer, R.H. et al. (2025) ‘Designing the next generation of clinical trials in intermediate AMD-a consensus driven, pragmatic, proof of concept early intervention study’, 255. Available at: https://doi.org/10.1016/j.exer.2025.110340.
Meinke, J. et al. (2025) ‘Pseudoxanthoma elasticum—Novel therapeutic approaches on the horizon? Pseudoxanthoma elasticum – Neue Therapieansätze am Horizont?’, 122(6), pp. 432–437. Available at: https://doi.org/10.1007/s00347-025-02223-9.
Meinke, J. et al. (2025) ‘Pseudoxanthoma elasticum—Novel therapeutic approaches on the horizon? Pseudoxanthoma elasticum – Neue Therapieansätze am Horizont?’, 122(6), pp. 432–437. Available at: https://doi.org/10.1007/s00347-025-02223-9.
Pfau, K., Holz, F.G. and Pfau, M. (2025) ‘Pseudoxanthoma elasticum (PXE)—The eye as a diagnostic key Pseudoxanthoma elasticum (PXE) – Diagnose durch Blick ins Auge’, 122(6), pp. 421–423. Available at: https://doi.org/10.1007/s00347-025-02256-0.
Pfau, K., Holz, F.G. and Pfau, M. (2025) ‘Pseudoxanthoma elasticum (PXE)—The eye as a diagnostic key Pseudoxanthoma elasticum (PXE) – Diagnose durch Blick ins Auge’, 122(6), pp. 421–423. Available at: https://doi.org/10.1007/s00347-025-02256-0.
Pontikos, N. et al. (2025) ‘Next-generation phenotyping of inherited retinal diseases from multimodal imaging with Eye2Gene’, 7(6), pp. 967–978. Available at: https://doi.org/10.1038/s42256-025-01040-8.
Pontikos, N. et al. (2025) ‘Next-generation phenotyping of inherited retinal diseases from multimodal imaging with Eye2Gene’, 7(6), pp. 967–978. Available at: https://doi.org/10.1038/s42256-025-01040-8.
Raming, K. et al. (2025) ‘Ocular alterations in pseudoxanthoma elasticum: The eye as a window to diagnosing a systemic disease Okuläre Veränderungen bei Pseudoxanthoma elasticum: Das Auge als Schlüssel zur systemischen Diagnosestellung’, 122(6), pp. 424–431. Available at: https://doi.org/10.1007/s00347-025-02261-3.
Raming, K. et al. (2025) ‘Ocular alterations in pseudoxanthoma elasticum: The eye as a window to diagnosing a systemic disease Okuläre Veränderungen bei Pseudoxanthoma elasticum: Das Auge als Schlüssel zur systemischen Diagnosestellung’, 122(6), pp. 424–431. Available at: https://doi.org/10.1007/s00347-025-02261-3.
Huang, A. et al. (2025) ‘Geographic atrophy: Understanding the relationship between structure and function’, Asia-Pacific Journal of Ophthalmology, 14(3), p. 100207. Available at: https://doi.org/10.1016/j.apjo.2025.100207.
Huang, A. et al. (2025) ‘Geographic atrophy: Understanding the relationship between structure and function’, Asia-Pacific Journal of Ophthalmology, 14(3), p. 100207. Available at: https://doi.org/10.1016/j.apjo.2025.100207.
Karuntu, J.S. et al. (2025) ‘Test–retest variability of mesopic microperimetry-associated parameters in patients with retinitis pigmentosa: REPEAT Study Report No. 2’, Acta Ophthalmologica, 103(3), pp. 313–326. Available at: https://doi.org/10.1111/aos.16780.
Karuntu, J.S. et al. (2025) ‘Test–retest variability of mesopic microperimetry-associated parameters in patients with retinitis pigmentosa: REPEAT Study Report No. 2’, Acta Ophthalmologica, 103(3), pp. 313–326. Available at: https://doi.org/10.1111/aos.16780.
Kaminska, Karolina et al. (2025) ‘Bi-allelic variants in three genes encoding distinct subunits of the vesicular AP-5 complex cause hereditary macular dystrophy’, American Journal of Human Genetics, 112(4), pp. 808–828. Available at: https://doi.org/10.1016/j.ajhg.2025.02.015.
Kaminska, Karolina et al. (2025) ‘Bi-allelic variants in three genes encoding distinct subunits of the vesicular AP-5 complex cause hereditary macular dystrophy’, American Journal of Human Genetics, 112(4), pp. 808–828. Available at: https://doi.org/10.1016/j.ajhg.2025.02.015.
Pfau, K. et al. (2025) ‘N-Acetylcysteine (NAC) for Retinitis pigmentosa N-Acetylcystein (NAC) bei Retinitis pigmentosa’, 242(3), pp. 199–204. Available at: https://doi.org/10.1055/a-2525-4419.
Pfau, K. et al. (2025) ‘N-Acetylcysteine (NAC) for Retinitis pigmentosa N-Acetylcystein (NAC) bei Retinitis pigmentosa’, 242(3), pp. 199–204. Available at: https://doi.org/10.1055/a-2525-4419.
Broadbent, E. et al. (2025) ‘Age-related macular degeneration: natural history revisited in geographic atrophy’, 39(2), pp. 217–227. Available at: https://doi.org/10.1038/s41433-024-03443-0.
Broadbent, E. et al. (2025) ‘Age-related macular degeneration: natural history revisited in geographic atrophy’, 39(2), pp. 217–227. Available at: https://doi.org/10.1038/s41433-024-03443-0.
Futterknecht, Stefan et al. (2025) ‘Targeted Microperimetry Grids for Focal Lesions in Intermediate AMD: PINNACLE Study Report 7’, Investigative Ophthalmology and Visual Science, 66(2), p. 6. Available at: https://doi.org/10.1167/iovs.66.2.6.
Futterknecht, Stefan et al. (2025) ‘Targeted Microperimetry Grids for Focal Lesions in Intermediate AMD: PINNACLE Study Report 7’, Investigative Ophthalmology and Visual Science, 66(2), p. 6. Available at: https://doi.org/10.1167/iovs.66.2.6.
Mukherjee, S. et al. (2025) ‘Structure–Function Relationships in Geographic Atrophy Based on Mesopic Microperimetry, Fundus Autofluorescence, and Optical Coherence Tomography’, 14(2). Available at: https://doi.org/10.1167/tvst.14.2.7.
Mukherjee, S. et al. (2025) ‘Structure–Function Relationships in Geographic Atrophy Based on Mesopic Microperimetry, Fundus Autofluorescence, and Optical Coherence Tomography’, 14(2). Available at: https://doi.org/10.1167/tvst.14.2.7.
Pfau, Kristina et al. (2025) ‘Topography of Slowed Dark Adaptation in Pseudoxanthoma Elasticum: PROPXE Study Report 1’, Investigative Ophthalmology and Visual Science, 66(2), p. 17. Available at: https://doi.org/10.1167/iovs.66.2.17.
Pfau, Kristina et al. (2025) ‘Topography of Slowed Dark Adaptation in Pseudoxanthoma Elasticum: PROPXE Study Report 1’, Investigative Ophthalmology and Visual Science, 66(2), p. 17. Available at: https://doi.org/10.1167/iovs.66.2.17.
Anders, Philipp et al. (2025) ‘Association of Localized Retinal Sensitivities with Spectral-Domain Optical Coherence Tomography-Derived Morphologic Data in Macular Subfields in Age-Related Macular Degeneration’, Ophthalmic Research, 68(1), pp. 389–399. Available at: https://doi.org/10.1159/000546990.
Anders, Philipp et al. (2025) ‘Association of Localized Retinal Sensitivities with Spectral-Domain Optical Coherence Tomography-Derived Morphologic Data in Macular Subfields in Age-Related Macular Degeneration’, Ophthalmic Research, 68(1), pp. 389–399. Available at: https://doi.org/10.1159/000546990.
Giger, J.A.W., Pfau, M. and Zuche, H. (2025) ‘Golden Eye on Diabetic Retinopathy Screening’, 143(4). Available at: https://doi.org/10.1001/jamaophthalmol.2024.6513.
Giger, J.A.W., Pfau, M. and Zuche, H. (2025) ‘Golden Eye on Diabetic Retinopathy Screening’, 143(4). Available at: https://doi.org/10.1001/jamaophthalmol.2024.6513.
Herzog, M. et al. (2025) ‘Is there a common factor for vision?’, Acta Ophthalmologica, 103(S284). Available at: https://doi.org/10.1111/aos.17277.
Herzog, M. et al. (2025) ‘Is there a common factor for vision?’, Acta Ophthalmologica, 103(S284). Available at: https://doi.org/10.1111/aos.17277.
Pfau, Kristina et al. (2024) ‘Pseudoxanthoma elasticum – Genetics, pathophysiology, and clinical presentation’, Progress in Retinal and Eye Research, 102. Available at: https://doi.org/10.1016/j.preteyeres.2024.101274.
Pfau, Kristina et al. (2024) ‘Pseudoxanthoma elasticum – Genetics, pathophysiology, and clinical presentation’, Progress in Retinal and Eye Research, 102. Available at: https://doi.org/10.1016/j.preteyeres.2024.101274.
RAMING, KRISTIN et al. (2024) ‘Anti-VEGF Treatment for Secondary Neovascularization in Pseudoxanthoma Elasticum - Age of Onset, Treatment Frequency, and Visual Outcome’, American Journal of Ophthalmology, 265, pp. 127–136. Available at: https://doi.org/10.1016/j.ajo.2024.03.026.
RAMING, KRISTIN et al. (2024) ‘Anti-VEGF Treatment for Secondary Neovascularization in Pseudoxanthoma Elasticum - Age of Onset, Treatment Frequency, and Visual Outcome’, American Journal of Ophthalmology, 265, pp. 127–136. Available at: https://doi.org/10.1016/j.ajo.2024.03.026.
Duic, C. et al. (2024) ‘Local and Global Associations of Reticular Pseudodrusen in Age-Related Macular Degeneration’, Ophthalmology Retina, 8(7), pp. 646–656. Available at: https://doi.org/10.1016/j.oret.2024.01.016.
Duic, C. et al. (2024) ‘Local and Global Associations of Reticular Pseudodrusen in Age-Related Macular Degeneration’, Ophthalmology Retina, 8(7), pp. 646–656. Available at: https://doi.org/10.1016/j.oret.2024.01.016.
Raming, Kristin et al. (2024) ‘Optic Disc Drusen in Pseudoxanthoma Elasticum Are Associated with the Extent of Bruch’s Membrane Calcification’, Journal of Clinical Medicine, 13(12). Available at: https://doi.org/10.3390/jcm13123395.
Raming, Kristin et al. (2024) ‘Optic Disc Drusen in Pseudoxanthoma Elasticum Are Associated with the Extent of Bruch’s Membrane Calcification’, Journal of Clinical Medicine, 13(12). Available at: https://doi.org/10.3390/jcm13123395.
Garzone, D. et al. (2023) ‘Author Correction: Comparability of automated drusen volume measurements in age-related macular degeneration: a MACUSTAR study report (Scientific Reports, (2022), 12, 1, (21911), 10.1038/s41598-022-26223-w)’, 13(1). Available at: https://doi.org/10.1038/s41598-023-30360-1.
Garzone, D. et al. (2023) ‘Author Correction: Comparability of automated drusen volume measurements in age-related macular degeneration: a MACUSTAR study report (Scientific Reports, (2022), 12, 1, (21911), 10.1038/s41598-022-26223-w)’, 13(1). Available at: https://doi.org/10.1038/s41598-023-30360-1.
Schmitz-Valckenberg, S. et al. (2023) ‘Interreader Agreement and Longitudinal Progression of Incomplete/Complete Retinal Pigment Epithelium and Outer Retinal Atrophy in Age-Related Macular Degeneration’, 7(12), pp. 1059–1068. Available at: https://doi.org/10.1016/j.oret.2023.07.021.
Schmitz-Valckenberg, S. et al. (2023) ‘Interreader Agreement and Longitudinal Progression of Incomplete/Complete Retinal Pigment Epithelium and Outer Retinal Atrophy in Age-Related Macular Degeneration’, 7(12), pp. 1059–1068. Available at: https://doi.org/10.1016/j.oret.2023.07.021.
Oertli, J. et al. (2023) ‘Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.09.23291212.
Oertli, J. et al. (2023) ‘Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.09.23291212.
Jolly, J.K. et al. (2023) ‘Assessment of Scotopic Function in Rod–Cone Inherited Retinal Degeneration With the Scotopic Macular Integrity Assessment’, 12(2). Available at: https://doi.org/10.1167/tvst.12.2.10.
Jolly, J.K. et al. (2023) ‘Assessment of Scotopic Function in Rod–Cone Inherited Retinal Degeneration With the Scotopic Macular Integrity Assessment’, 12(2). Available at: https://doi.org/10.1167/tvst.12.2.10.
Loewinger AS et al. (2023) ‘Choriocapillaris Flow Signal Impairment in Patients With Pseudoxanthoma Elasticum’, Investigative Ophthalmology and Visual Science, 64(2), p. 21. Available at: https://doi.org/10.1167/iovs.64.2.21.
Loewinger AS et al. (2023) ‘Choriocapillaris Flow Signal Impairment in Patients With Pseudoxanthoma Elasticum’, Investigative Ophthalmology and Visual Science, 64(2), p. 21. Available at: https://doi.org/10.1167/iovs.64.2.21.
Garzone, D. et al. (2022) ‘Comparability of automated drusen volume measurements in age-related macular degeneration: a MACUSTAR study report’, 12(1). Available at: https://doi.org/10.1038/s41598-022-26223-w.
Garzone, D. et al. (2022) ‘Comparability of automated drusen volume measurements in age-related macular degeneration: a MACUSTAR study report’, 12(1). Available at: https://doi.org/10.1038/s41598-022-26223-w.
Jeffrey, B.G. et al. (2022) ‘Scotopic Contour Deformation Detection Reveals Early Rod Dysfunction in Age-Related Macular Degeneration With and Without Reticular Pseudodrusen’, 63(6). Available at: https://doi.org/10.1167/iovs.63.6.23.
Jeffrey, B.G. et al. (2022) ‘Scotopic Contour Deformation Detection Reveals Early Rod Dysfunction in Age-Related Macular Degeneration With and Without Reticular Pseudodrusen’, 63(6). Available at: https://doi.org/10.1167/iovs.63.6.23.