Dynamic foot function in patients with Charcot Marie Tooth disease
Research Project | 5 Project Members
Charcot-Marie-Tooth disease (CMT) stands as one of the most prevalent hereditary neurological disorders, also recognized as hereditary motor and sensory neuropathy (HMSN) [1]. It ranks as the most common inherited neuropathy. CMT displays genetic diversity, involving over 80 mutated genes with varying inheritance patterns [2].
The majority of CMT cases fall into the CMT1 group, characterized by a demyelinating pattern of nerve damage. Within this group, CMT1A comprises 70% of all CMT patients and is linked with a defect on chromosome 17 that affects the peripheral myelin protein. Conversely, CMT2 cases exhibit an axonal pattern of nerve damage [3].
Individuals with CMT typically experience progressive muscle atrophy and weakness, leading to foot deformities and less frequently, hand deformities. The progression of deformities varies based on genetic and phenotypic factors. The disease often manifests as a multiplanar foot deformity, with cavovarus being the most observed. This deformity entails hindfoot varus, a high arch (cavus), downward flexion of the first metatarsal, a forefoot that's pulled inward (adducted), and claw toes. It arises from an imbalance in muscle strength, where the peroneus longus muscle may be relatively strong compared to a weakened anterior tibial muscle, or where the posterior tibial muscle is strong while the peroneus brevis muscle is weak [4, 5].
Patients with cavovarus deformity experience varying degrees of sensory loss, muscle weakness, painful foot calluses, abnormal gait, and ankle instability [3-6]. Despite ongoing research, the full understanding of these deformities remains elusive, leading to a variety of treatment recommendations. Therefore, the aim of this project is, to investigate and characterize functional gait parameters in CMT patients to improve therapeutic management.
To develop a sufficient therapeutic program (such as foot surgery and orthotics management), biomechanical knowledge on 1) the deviations from healthy function and 2) how the foot deformities influence dynamic function, are necessary.
1. Lisak RP., D.D.T., WILLIAM M. CARROLL, ROONGROJ BHIDAYASIRI, International Neurology – A Clinical Approach, ed. D.D.T. Lisak RP., WILLIAM M. CARROLL, ROONGROJ BHIDAYASIRI. 2009: Blackwell Publishing Ltd.
2. Timmerman, V., A.V. Strickland, and S. Zuchner, Genetics of Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success. Genes (Basel), 2014. 5(1): p. 13-32.
3. Newman, C.J., et al., The characteristics of gait in Charcot-Marie-Tooth disease types I and II. Gait Posture, 2007. 26(1): p. 120-7.
4. Mann, R.A. and J. Missirian, Pathophysiology of Charcot-Marie-Tooth disease. Clin Orthop Relat Res, 1988(234): p. 221-8.
5. Beals, T.C. and F. Nickisch, Charcot-Marie-Tooth disease and the cavovarus foot. Foot Ankle Clin, 2008. 13(2): p. 259-74, vi-vii.
BASEC-ID: