[FG] Pröbstel Anne-Katrin
Publications
62 found
Show per page
Siewert, L.K. et al. (2024) ‘Cutting Edge: Redundant Roles for MHC Class II–, CD1d-, and MR1-restricted T Cells in Clearing Bartonella Infection’, The Journal of Immunology [Preprint]. Available at: https://doi.org/10.4049/jimmunol.2400045.
Siewert, L.K. et al. (2024) ‘Cutting Edge: Redundant Roles for MHC Class II–, CD1d-, and MR1-restricted T Cells in Clearing Bartonella Infection’, The Journal of Immunology [Preprint]. Available at: https://doi.org/10.4049/jimmunol.2400045.
Cagol, Alessandro et al. (2024) ‘Diagnostic Performance of Cortical Lesions and the Central Vein Sign in Multiple Sclerosis’, JAMA Neurology, 81, pp. 143–153. Available at: https://doi.org/10.1001/jamaneurol.2023.4737.
Cagol, Alessandro et al. (2024) ‘Diagnostic Performance of Cortical Lesions and the Central Vein Sign in Multiple Sclerosis’, JAMA Neurology, 81, pp. 143–153. Available at: https://doi.org/10.1001/jamaneurol.2023.4737.
Dalmau, Josep et al. (2024) ‘Ten Years of Neurology ® Neuroimmunology & Neuroinflammation Decade in Review’, Neurology: Neuroimmunology and NeuroInflammation, 12. Available at: https://doi.org/10.1212/NXI.0000000000200363.
Dalmau, Josep et al. (2024) ‘Ten Years of Neurology ® Neuroimmunology & Neuroinflammation Decade in Review’, Neurology: Neuroimmunology and NeuroInflammation, 12. Available at: https://doi.org/10.1212/NXI.0000000000200363.
Gomes, Ana Beatriz Ayroza Galvão Ribeiro et al. (2024) ‘Neurofilament Light Chain as a Discriminator of Disease Activity Status in MOG Antibody-Associated Disease’, Neurology: Neuroimmunology and NeuroInflammation, 12(1). Available at: https://doi.org/10.1212/NXI.0000000000200347.
Gomes, Ana Beatriz Ayroza Galvão Ribeiro et al. (2024) ‘Neurofilament Light Chain as a Discriminator of Disease Activity Status in MOG Antibody-Associated Disease’, Neurology: Neuroimmunology and NeuroInflammation, 12(1). Available at: https://doi.org/10.1212/NXI.0000000000200347.
Kulsvehagen, Laila, Gomes, Ana Beatriz Ayroza Galvão Ribeiro and Pröbstel, Anne-Katrin (2024) ‘In Reply’, JAMA Neurology, 81, p. 298. Available at: https://doi.org/10.1001/jamaneurol.2023.5170.
Kulsvehagen, Laila, Gomes, Ana Beatriz Ayroza Galvão Ribeiro and Pröbstel, Anne-Katrin (2024) ‘In Reply’, JAMA Neurology, 81, p. 298. Available at: https://doi.org/10.1001/jamaneurol.2023.5170.
Kulsvehagen, Laila et al. (2024) ‘Case report: Concurrent MOG antibody-associated disease and latent infections in two patients’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1455355.
Kulsvehagen, Laila et al. (2024) ‘Case report: Concurrent MOG antibody-associated disease and latent infections in two patients’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1455355.
Pakeerathan, T. et al. (2024) ‘Rapid differentiation of MOGAD and MS after a single optic neuritis’, Journal of Neurology, 271, pp. 7222–7231. Available at: https://doi.org/10.1007/s00415-024-12666-w.
Pakeerathan, T. et al. (2024) ‘Rapid differentiation of MOGAD and MS after a single optic neuritis’, Journal of Neurology, 271, pp. 7222–7231. Available at: https://doi.org/10.1007/s00415-024-12666-w.
Wang, Angela A. et al. (2024) ‘B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans’, Science Translational Medicine, 16. Available at: https://doi.org/10.1126/scitranslmed.adi0295.
Wang, Angela A. et al. (2024) ‘B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans’, Science Translational Medicine, 16. Available at: https://doi.org/10.1126/scitranslmed.adi0295.
Zuo, Michelle et al. (2024) ‘Erratum: Age-dependent gray matter demyelination is associated with leptomeningeal neutrophil accumulation (JCI insight PII: e183445)’, JCI insight, 9. Available at: https://doi.org/10.1172/jci.insight.183445.
Zuo, Michelle et al. (2024) ‘Erratum: Age-dependent gray matter demyelination is associated with leptomeningeal neutrophil accumulation (JCI insight PII: e183445)’, JCI insight, 9. Available at: https://doi.org/10.1172/jci.insight.183445.
Ayroza Galvão Ribeiro Gomes, Ana Beatriz et al. (2023) ‘Immunoglobulin A Antibodies Against Myelin Oligodendrocyte Glycoprotein in a Subgroup of Patients with Central Nervous System Demyelination’, JAMA Neurology, 80, pp. 989–995. Available at: https://doi.org/10.1001/jamaneurol.2023.2523.
Ayroza Galvão Ribeiro Gomes, Ana Beatriz et al. (2023) ‘Immunoglobulin A Antibodies Against Myelin Oligodendrocyte Glycoprotein in a Subgroup of Patients with Central Nervous System Demyelination’, JAMA Neurology, 80, pp. 989–995. Available at: https://doi.org/10.1001/jamaneurol.2023.2523.
Flammer, Julia et al. (2023) ‘Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes’, Drugs, 83(2), pp. 135–158. Available at: https://doi.org/10.1007/s40265-022-01826-9.
Flammer, Julia et al. (2023) ‘Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes’, Drugs, 83(2), pp. 135–158. Available at: https://doi.org/10.1007/s40265-022-01826-9.
Gelpi, Ellen et al. (2023) ‘Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence’, Viruses, 15. Available at: https://doi.org/10.3390/v15040908.
Gelpi, Ellen et al. (2023) ‘Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence’, Viruses, 15. Available at: https://doi.org/10.3390/v15040908.
Grüter, Thomas et al. (2023) ‘Clinical, serological and genetic predictors of response to immunotherapy in anti-IgLON5 disease’, Brain, 146, pp. 600–611. Available at: https://doi.org/10.1093/brain/awac090.
Grüter, Thomas et al. (2023) ‘Clinical, serological and genetic predictors of response to immunotherapy in anti-IgLON5 disease’, Brain, 146, pp. 600–611. Available at: https://doi.org/10.1093/brain/awac090.
Kapell, Hannah et al. (2023) ‘Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination’, Journal of Clinical Investigation, 133. Available at: https://doi.org/10.1172/JCI164223.
Kapell, Hannah et al. (2023) ‘Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination’, Journal of Clinical Investigation, 133. Available at: https://doi.org/10.1172/JCI164223.
Lipps, Patrick et al. (2023) ‘Ongoing Challenges in the Diagnosis of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease’, JAMA Neurology, 80, pp. 1377–1379. Available at: https://doi.org/10.1001/jamaneurol.2023.3956.
Lipps, Patrick et al. (2023) ‘Ongoing Challenges in the Diagnosis of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease’, JAMA Neurology, 80, pp. 1377–1379. Available at: https://doi.org/10.1001/jamaneurol.2023.3956.
Neziraj, Tradite, Kappos, Ludwig and Pröbstel, Anne-Katrin (2023) ‘Moving toward personalized B cell depletion in multiple sclerosis?’, Med, 4(6), pp. 344–346. Available at: https://doi.org/10.1016/j.medj.2023.05.006.
Neziraj, Tradite, Kappos, Ludwig and Pröbstel, Anne-Katrin (2023) ‘Moving toward personalized B cell depletion in multiple sclerosis?’, Med, 4(6), pp. 344–346. Available at: https://doi.org/10.1016/j.medj.2023.05.006.
Neziraj, Tradite et al. (2023) ‘Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases’, European Journal of Immunology, 53(11). Available at: https://doi.org/10.1002/eji.202250033.
Neziraj, Tradite et al. (2023) ‘Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases’, European Journal of Immunology, 53(11). Available at: https://doi.org/10.1002/eji.202250033.
Schwake, Carolin et al. (2023) ‘Humoral COVID-19 vaccine response in patients with NMOSD/MOGAD during anti-IL-6 receptor therapy compared to other immunotherapies’, Multiple Sclerosis Journal, 29, pp. 757–761. Available at: https://doi.org/10.1177/13524585221151124.
Schwake, Carolin et al. (2023) ‘Humoral COVID-19 vaccine response in patients with NMOSD/MOGAD during anti-IL-6 receptor therapy compared to other immunotherapies’, Multiple Sclerosis Journal, 29, pp. 757–761. Available at: https://doi.org/10.1177/13524585221151124.
Strippel, Christine et al. (2023) ‘A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies’, Brain, 146, pp. 977–990. Available at: https://doi.org/10.1093/brain/awac119.
Strippel, Christine et al. (2023) ‘A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies’, Brain, 146, pp. 977–990. Available at: https://doi.org/10.1093/brain/awac119.
Stüdle, Chiara et al. (2023) ‘SARS-CoV-2 infects epithelial cells of the blood-cerebrospinal fluid barrier rather than endothelial cells or pericytes of the blood-brain barrier’, Fluids and Barriers of the CNS, 20. Available at: https://doi.org/10.1186/s12987-023-00479-4.
Stüdle, Chiara et al. (2023) ‘SARS-CoV-2 infects epithelial cells of the blood-cerebrospinal fluid barrier rather than endothelial cells or pericytes of the blood-brain barrier’, Fluids and Barriers of the CNS, 20. Available at: https://doi.org/10.1186/s12987-023-00479-4.
Zuo M et al. (2022) ‘Age-dependent gray matter demyelination is associated with leptomeningeal neutrophil accumulation.’, JCI insight, 7(12). Available at: https://doi.org/10.1172/jci.insight.158144.
Zuo M et al. (2022) ‘Age-dependent gray matter demyelination is associated with leptomeningeal neutrophil accumulation.’, JCI insight, 7(12). Available at: https://doi.org/10.1172/jci.insight.158144.
Müller J et al. (2022) ‘Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder: A Retrospective, Cross-sectional Analysis.’, Neurology(R) neuroimmunology & neuroinflammation, 9(3). Available at: https://doi.org/10.1212/nxi.0000000000001147.
Müller J et al. (2022) ‘Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder: A Retrospective, Cross-sectional Analysis.’, Neurology(R) neuroimmunology & neuroinflammation, 9(3). Available at: https://doi.org/10.1212/nxi.0000000000001147.
Abboud H. et al. (2022) ‘Symptomatic and restorative therapies in neuromyelitis optica spectrum disorders’, Journal of Neurology, 269(4), pp. 1786–1801. Available at: https://doi.org/10.1007/s00415-021-10783-4.
Abboud H. et al. (2022) ‘Symptomatic and restorative therapies in neuromyelitis optica spectrum disorders’, Journal of Neurology, 269(4), pp. 1786–1801. Available at: https://doi.org/10.1007/s00415-021-10783-4.
Diebold, Martin et al. (2022) ‘Gut microbiota composition as a candidate risk factor for dimethyl fumarate-induced lymphopenia in multiple sclerosis’, Gut Microbes, 14. Available at: https://doi.org/10.1080/19490976.2022.2147055.
Diebold, Martin et al. (2022) ‘Gut microbiota composition as a candidate risk factor for dimethyl fumarate-induced lymphopenia in multiple sclerosis’, Gut Microbes, 14. Available at: https://doi.org/10.1080/19490976.2022.2147055.
Probstel A.-K. and Schirmer L. (2021) ‘SARS-CoV-2-specific neuropathology: fact or fiction?’, Trends in Neurosciences, 44(12), pp. 933–935. Available at: https://doi.org/10.1016/j.tins.2021.10.006.
Probstel A.-K. and Schirmer L. (2021) ‘SARS-CoV-2-specific neuropathology: fact or fiction?’, Trends in Neurosciences, 44(12), pp. 933–935. Available at: https://doi.org/10.1016/j.tins.2021.10.006.
Tietz A.K. et al. (2021) ‘Genome-wide Association Study Identifies 2 New Loci Associated With Anti-NMDAR Encephalitis’, Neurology: Neuroimmunology and NeuroInflammation, 8(6). Available at: https://doi.org/10.1212/nxi.0000000000001085.
Tietz A.K. et al. (2021) ‘Genome-wide Association Study Identifies 2 New Loci Associated With Anti-NMDAR Encephalitis’, Neurology: Neuroimmunology and NeuroInflammation, 8(6). Available at: https://doi.org/10.1212/nxi.0000000000001085.
Dürr M et al. (2021) ‘CSF Findings in Acute NMDAR and LGI1 Antibody-Associated Autoimmune Encephalitis.’, Neurology(R) neuroimmunology & neuroinflammation, 8(6). Available at: https://doi.org/10.1212/nxi.0000000000001086.
Dürr M et al. (2021) ‘CSF Findings in Acute NMDAR and LGI1 Antibody-Associated Autoimmune Encephalitis.’, Neurology(R) neuroimmunology & neuroinflammation, 8(6). Available at: https://doi.org/10.1212/nxi.0000000000001086.
Thaler F.S. et al. (2021) ‘Rituximab Treatment and Long-term Outcome of Patients With Autoimmune Encephalitis: Real-world Evidence From the GENERATE Registry’, Neurology(R) neuroimmunology & neuroinflammation, 8(6). Available at: https://doi.org/10.1212/nxi.0000000000001088.
Thaler F.S. et al. (2021) ‘Rituximab Treatment and Long-term Outcome of Patients With Autoimmune Encephalitis: Real-world Evidence From the GENERATE Registry’, Neurology(R) neuroimmunology & neuroinflammation, 8(6). Available at: https://doi.org/10.1212/nxi.0000000000001088.
Siewert, L.K. et al. (2021) The <i>Bartonella</i> autotransporter CFA is a protective antigen and hypervariable target of neutralizing antibodies blocking erythrocyte infection. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.29.462357.
Siewert, L.K. et al. (2021) The <i>Bartonella</i> autotransporter CFA is a protective antigen and hypervariable target of neutralizing antibodies blocking erythrocyte infection. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.29.462357.
Marignier R. et al. (2021) ‘Myelin-oligodendrocyte glycoprotein antibody-associated disease’, The Lancet Neurology, 20(9), pp. 762–772. Available at: https://doi.org/10.1016/s1474-4422(21)00218-0.
Marignier R. et al. (2021) ‘Myelin-oligodendrocyte glycoprotein antibody-associated disease’, The Lancet Neurology, 20(9), pp. 762–772. Available at: https://doi.org/10.1016/s1474-4422(21)00218-0.
Meier AL et al. (2021) ‘Neuro-psychiatric manifestations in patients with systemic lupus erythematosus: A systematic review and results from the Swiss lupus cohort study’, Lupus, 30(10), pp. 1565–1576. Available at: https://doi.org/10.1177/09612033211025636.
Meier AL et al. (2021) ‘Neuro-psychiatric manifestations in patients with systemic lupus erythematosus: A systematic review and results from the Swiss lupus cohort study’, Lupus, 30(10), pp. 1565–1576. Available at: https://doi.org/10.1177/09612033211025636.
Fuchs V et al. (2021) ‘Presence of SARS-CoV-2 Transcripts in the Choroid Plexus of MS and Non-MS Patients With COVID-19’, Neurology: Neuroimmunology and NeuroInflammation, 8(2). Available at: https://doi.org/10.1212/NXI.0000000000000957.
Fuchs V et al. (2021) ‘Presence of SARS-CoV-2 Transcripts in the Choroid Plexus of MS and Non-MS Patients With COVID-19’, Neurology: Neuroimmunology and NeuroInflammation, 8(2). Available at: https://doi.org/10.1212/NXI.0000000000000957.
Kim K et al. (2021) ‘Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis’, Brain, 144(2), pp. 450–461. Available at: https://doi.org/10.1093/brain/awaa421.
Kim K et al. (2021) ‘Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis’, Brain, 144(2), pp. 450–461. Available at: https://doi.org/10.1093/brain/awaa421.
Zhou, Xiaoyuan et al. (2021) ‘Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis’, Multiple Sclerosis Journal, 27, pp. 366–379. Available at: https://doi.org/10.1177/1352458520924594.
Zhou, Xiaoyuan et al. (2021) ‘Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis’, Multiple Sclerosis Journal, 27, pp. 366–379. Available at: https://doi.org/10.1177/1352458520924594.
Whittam DH et al. (2020) ‘Treatment of MOG antibody associated disorders: results of an international survey’, Journal of Neurology, 267(12), pp. 3565–3577. Available at: https://doi.org/10.1007/s00415-020-10026-y.
Whittam DH et al. (2020) ‘Treatment of MOG antibody associated disorders: results of an international survey’, Journal of Neurology, 267(12), pp. 3565–3577. Available at: https://doi.org/10.1007/s00415-020-10026-y.
Pröbstel AK et al. (2020) ‘Gut microbiota–specific iga+ B cells traffic to the CNS in active multiple sclerosis’, Science Immunology, 5(53). Available at: https://doi.org/10.1126/SCIIMMUNOL.ABC7191.
Pröbstel AK et al. (2020) ‘Gut microbiota–specific iga+ B cells traffic to the CNS in active multiple sclerosis’, Science Immunology, 5(53). Available at: https://doi.org/10.1126/SCIIMMUNOL.ABC7191.
Deigendesch N et al. (2020) ‘Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology’, Acta Neuropathologica, 140(4), pp. 583–586. Available at: https://doi.org/10.1007/s00401-020-02213-y.
Deigendesch N et al. (2020) ‘Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology’, Acta Neuropathologica, 140(4), pp. 583–586. Available at: https://doi.org/10.1007/s00401-020-02213-y.
Ramesh A et al. (2020) ‘A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis’, Proceedings of the National Academy of Sciences of the United States of America, 117(37), pp. 22932–22943. Available at: https://doi.org/10.1073/pnas.2008523117.
Ramesh A et al. (2020) ‘A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis’, Proceedings of the National Academy of Sciences of the United States of America, 117(37), pp. 22932–22943. Available at: https://doi.org/10.1073/pnas.2008523117.
Waubant E et al. (2020) ‘The future of microbiome research in neuroinflammatory disorders’, 40. Available at: https://doi.org/10.1016/j.msard.2020.102098.
Waubant E et al. (2020) ‘The future of microbiome research in neuroinflammatory disorders’, 40. Available at: https://doi.org/10.1016/j.msard.2020.102098.
Sabatino JJ Jr, Pröbstel AK and Zamvil SS (2020) ‘Publisher Correction: B cells in autoimmune and neurodegenerative central nervous system diseases.’, 21(1). Available at: https://doi.org/10.1038/s41583-019-0251-0.
Sabatino JJ Jr, Pröbstel AK and Zamvil SS (2020) ‘Publisher Correction: B cells in autoimmune and neurodegenerative central nervous system diseases.’, 21(1). Available at: https://doi.org/10.1038/s41583-019-0251-0.
Sabatino JJ Jr, Pröbstel AK and Zamvil SS (2019) ‘B cells in autoimmune and neurodegenerative central nervous system diseases’, Nature Reviews Neuroscience, 20(12), pp. 728–745. Available at: https://doi.org/10.1038/s41583-019-0233-2.
Sabatino JJ Jr, Pröbstel AK and Zamvil SS (2019) ‘B cells in autoimmune and neurodegenerative central nervous system diseases’, Nature Reviews Neuroscience, 20(12), pp. 728–745. Available at: https://doi.org/10.1038/s41583-019-0233-2.
Bischof A et al. (2019) ‘Peripheral neuropathy in antineutrophil cytoplasmic antibody-associated vasculitides: Insights from the DCVAS study’, Neurology(R) neuroimmunology & neuroinflammation, 6(6). Available at: https://doi.org/10.1212/NXI.0000000000000615.
Bischof A et al. (2019) ‘Peripheral neuropathy in antineutrophil cytoplasmic antibody-associated vasculitides: Insights from the DCVAS study’, Neurology(R) neuroimmunology & neuroinflammation, 6(6). Available at: https://doi.org/10.1212/NXI.0000000000000615.
Pröbstel AK and Zamvil SS (2019) ‘Do maternal anti–N-methyl-D-aspartate receptor antibodies promote development of neuropsychiatric disease in children?’, 86(5). Available at: https://doi.org/10.1002/ana.25584.
Pröbstel AK and Zamvil SS (2019) ‘Do maternal anti–N-methyl-D-aspartate receptor antibodies promote development of neuropsychiatric disease in children?’, 86(5). Available at: https://doi.org/10.1002/ana.25584.
Jokubaitis VG et al. (2019) ‘Introducing the International Women in Multiple Sclerosis network’, 18(6). Available at: https://doi.org/10.1016/S1474-4422(19)30160-7.
Jokubaitis VG et al. (2019) ‘Introducing the International Women in Multiple Sclerosis network’, 18(6). Available at: https://doi.org/10.1016/S1474-4422(19)30160-7.
Pröbstel AK et al. (2019) ‘Association of antibodies against myelin and neuronal antigens with neuroinflammation in systemic lupus erythematosus’, Rheumatology (United Kingdom), 58(5), pp. 908–913. Available at: https://doi.org/10.1093/rheumatology/key282.
Pröbstel AK et al. (2019) ‘Association of antibodies against myelin and neuronal antigens with neuroinflammation in systemic lupus erythematosus’, Rheumatology (United Kingdom), 58(5), pp. 908–913. Available at: https://doi.org/10.1093/rheumatology/key282.
Rojas OL et al. (2019) ‘Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10.’, 177(2). Available at: https://doi.org/10.1016/j.cell.2019.03.037.
Rojas OL et al. (2019) ‘Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10.’, 177(2). Available at: https://doi.org/10.1016/j.cell.2019.03.037.
Rojas OL et al. (2019) ‘Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10’, Cell. 03.01.2019, 176(3), pp. 610–624.e18. Available at: https://doi.org/10.1016/j.cell.2018.11.035.
Rojas OL et al. (2019) ‘Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10’, Cell. 03.01.2019, 176(3), pp. 610–624.e18. Available at: https://doi.org/10.1016/j.cell.2018.11.035.
Lanz TV et al. (2019) ‘Single-cell high-throughput technologies in cerebrospinal fluid research and diagnostics’, Frontiers in Immunology, 10(JUN), p. 1302. Available at: https://doi.org/10.3389/fimmu.2019.01302.
Lanz TV et al. (2019) ‘Single-cell high-throughput technologies in cerebrospinal fluid research and diagnostics’, Frontiers in Immunology, 10(JUN), p. 1302. Available at: https://doi.org/10.3389/fimmu.2019.01302.
Cekanaviciute E et al. (2018) ‘Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria.’, mSystems. 06.11.2018, 3(6). Available at: https://doi.org/10.1128/msystems.00083-18.
Cekanaviciute E et al. (2018) ‘Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria.’, mSystems. 06.11.2018, 3(6). Available at: https://doi.org/10.1128/msystems.00083-18.
Schirmer L et al. (2018) ‘Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity.’, eLife. 11.09.2018, 7. Available at: https://doi.org/10.7554/elife.36428.
Schirmer L et al. (2018) ‘Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity.’, eLife. 11.09.2018, 7. Available at: https://doi.org/10.7554/elife.36428.
Pröbstel AK and Hauser SL (2018) ‘Multiple Sclerosis: B Cells Take Center Stage.’, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society, 38(2), pp. 251–258. Available at: https://doi.org/10.1097/wno.0000000000000642.
Pröbstel AK and Hauser SL (2018) ‘Multiple Sclerosis: B Cells Take Center Stage.’, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society, 38(2), pp. 251–258. Available at: https://doi.org/10.1097/wno.0000000000000642.
Pröbstel AK and Baranzini SE (2018) ‘The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the ‘MS Microbiome’.’, Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 15(1), pp. 126–134. Available at: https://doi.org/10.1007/s13311-017-0587-y.
Pröbstel AK and Baranzini SE (2018) ‘The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the ‘MS Microbiome’.’, Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 15(1), pp. 126–134. Available at: https://doi.org/10.1007/s13311-017-0587-y.
Rasenack M et al. (2016) ‘Nerve Hypertrophy in Primary Amyloidosis.’, Muscle & nerve. 28.04.2016, 54(3), pp. 510–2. Available at: https://doi.org/10.1002/mus.25113.
Rasenack M et al. (2016) ‘Nerve Hypertrophy in Primary Amyloidosis.’, Muscle & nerve. 28.04.2016, 54(3), pp. 510–2. Available at: https://doi.org/10.1002/mus.25113.
Grimm A et al. (2016) ‘Ultrasound and electrophysiologic findings in patients with Guillain-Barré syndrome at disease onset and over a period of six months.’, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 127(2), pp. 1657–1663. Available at: https://doi.org/10.1016/j.clinph.2015.06.032.
Grimm A et al. (2016) ‘Ultrasound and electrophysiologic findings in patients with Guillain-Barré syndrome at disease onset and over a period of six months.’, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 127(2), pp. 1657–1663. Available at: https://doi.org/10.1016/j.clinph.2015.06.032.
Probstel, A. K. et al. (2016) ‘Multiple Sclerosis and Antibodies against KIR4.1’, N Engl J Med, 374(15), pp. 1496–1498. Available at: https://doi.org/10.1056/nejmc1507131.
Probstel, A. K. et al. (2016) ‘Multiple Sclerosis and Antibodies against KIR4.1’, N Engl J Med, 374(15), pp. 1496–1498. Available at: https://doi.org/10.1056/nejmc1507131.
Probstel, A. K. et al. (2016) ‘Mitochondrial cytopathy with common MELAS mutation presenting as multiple system atrophy mimic’, Neurol Genet, 2(6), p. e121. Available at: https://doi.org/10.1212/nxg.0000000000000121.
Probstel, A. K. et al. (2016) ‘Mitochondrial cytopathy with common MELAS mutation presenting as multiple system atrophy mimic’, Neurol Genet, 2(6), p. e121. Available at: https://doi.org/10.1212/nxg.0000000000000121.
Probstel, A. K., Sanderson, N. S. and Derfuss, T. (2015) ‘B Cells and Autoantibodies in Multiple Sclerosis’, International Journal of Molecular Sciences, 16(7), pp. 16576–92. Available at: https://doi.org/10.3390/ijms160716576.
Probstel, A. K., Sanderson, N. S. and Derfuss, T. (2015) ‘B Cells and Autoantibodies in Multiple Sclerosis’, International Journal of Molecular Sciences, 16(7), pp. 16576–92. Available at: https://doi.org/10.3390/ijms160716576.
Pröbstel, Anne-Katrin et al. (2015) ‘Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype’, Journal of neuroinflammation, 12, p. 46. Available at: https://doi.org/10.1186/s12974-015-0256-1.
Pröbstel, Anne-Katrin et al. (2015) ‘Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype’, Journal of neuroinflammation, 12, p. 46. Available at: https://doi.org/10.1186/s12974-015-0256-1.
Pröbstel, Anne-Katrin (2014) Autoantikörper bei Kindern mit demyelinisierenden ZNS Erkrankungen. . Translated by Derfuss Tobias Johannes. Dissertation.
Pröbstel, Anne-Katrin (2014) Autoantikörper bei Kindern mit demyelinisierenden ZNS Erkrankungen. . Translated by Derfuss Tobias Johannes. Dissertation.
Mayer, Marie C. et al. (2013) ‘Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases’, Journal of immunology (Baltimore, Md. : 1950), 191(7), pp. 3594–604. Available at: https://doi.org/10.4049/jimmunol.1301296.
Mayer, Marie C. et al. (2013) ‘Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases’, Journal of immunology (Baltimore, Md. : 1950), 191(7), pp. 3594–604. Available at: https://doi.org/10.4049/jimmunol.1301296.
Meinl, Edgar et al. (2011) ‘Humoral autoimmunity in multiple sclerosis’, Journal of the neurological sciences, pp. 180–2. Available at: https://doi.org/10.1016/j.jns.2010.08.009.
Meinl, Edgar et al. (2011) ‘Humoral autoimmunity in multiple sclerosis’, Journal of the neurological sciences, pp. 180–2. Available at: https://doi.org/10.1016/j.jns.2010.08.009.
Probstel, A. K. et al. (2011) ‘Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis’, Neurology, 77(6), pp. 580–8. Available at: https://doi.org/10.1212/wnl.0b013e318228c0b1.
Probstel, A. K. et al. (2011) ‘Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis’, Neurology, 77(6), pp. 580–8. Available at: https://doi.org/10.1212/wnl.0b013e318228c0b1.