[FG] Scholl Hendrik
Publications
431 found
Show per page
Karuntu, J.S. et al. (2025) ‘Test–retest variability of mesopic microperimetry-associated parameters in patients with retinitis pigmentosa: REPEAT Study Report No. 2’, Acta Ophthalmologica, 103(3), pp. 313–326. Available at: https://doi.org/10.1111/aos.16780.
Karuntu, J.S. et al. (2025) ‘Test–retest variability of mesopic microperimetry-associated parameters in patients with retinitis pigmentosa: REPEAT Study Report No. 2’, Acta Ophthalmologica, 103(3), pp. 313–326. Available at: https://doi.org/10.1111/aos.16780.
Feu-Basilio, Silvia et al. (2024) ‘Retinal vessel volume reference database derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-53000-8.
Feu-Basilio, Silvia et al. (2024) ‘Retinal vessel volume reference database derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-53000-8.
Morikawa, Rei et al. (2024) ‘The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision’, Neuron, 112(22), pp. 3715–3733.e9. Available at: https://doi.org/10.1016/j.neuron.2024.08.015.
Morikawa, Rei et al. (2024) ‘The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision’, Neuron, 112(22), pp. 3715–3733.e9. Available at: https://doi.org/10.1016/j.neuron.2024.08.015.
Pfau, Maximilian et al. (2024) ‘Multicenter Normative Data for Mesopic Microperimetry’, Investigative Ophthalmology and Visual Science, 65(12). Available at: https://doi.org/10.1167/iovs.65.12.27.
Pfau, Maximilian et al. (2024) ‘Multicenter Normative Data for Mesopic Microperimetry’, Investigative Ophthalmology and Visual Science, 65(12). Available at: https://doi.org/10.1167/iovs.65.12.27.
Pfau, Kristina et al. (2024) ‘Pseudoxanthoma elasticum – Genetics, pathophysiology, and clinical presentation’, Progress in Retinal and Eye Research, 102. Available at: https://doi.org/10.1016/j.preteyeres.2024.101274.
Pfau, Kristina et al. (2024) ‘Pseudoxanthoma elasticum – Genetics, pathophysiology, and clinical presentation’, Progress in Retinal and Eye Research, 102. Available at: https://doi.org/10.1016/j.preteyeres.2024.101274.
RAMING, KRISTIN et al. (2024) ‘Anti-VEGF Treatment for Secondary Neovascularization in Pseudoxanthoma Elasticum - Age of Onset, Treatment Frequency, and Visual Outcome’, American Journal of Ophthalmology, 265, pp. 127–136. Available at: https://doi.org/10.1016/j.ajo.2024.03.026.
RAMING, KRISTIN et al. (2024) ‘Anti-VEGF Treatment for Secondary Neovascularization in Pseudoxanthoma Elasticum - Age of Onset, Treatment Frequency, and Visual Outcome’, American Journal of Ophthalmology, 265, pp. 127–136. Available at: https://doi.org/10.1016/j.ajo.2024.03.026.
Müllner, Fiona E. and Roska, Botond (2024) ‘Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features’, Neuron, 112(16), pp. 2765–2782.e9. Available at: https://doi.org/10.1016/j.neuron.2024.06.001.
Müllner, Fiona E. and Roska, Botond (2024) ‘Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features’, Neuron, 112(16), pp. 2765–2782.e9. Available at: https://doi.org/10.1016/j.neuron.2024.06.001.
Künzel, Sandrine H. et al. (2024) ‘Association of Lesion Location and Functional Parameters with Vision-Related Quality of Life in Geographic Atrophy Secondary to Age-related Macular Degeneration’, Ophthalmology Retina, 8(8), pp. 794–803. Available at: https://doi.org/10.1016/j.oret.2024.01.025.
Künzel, Sandrine H. et al. (2024) ‘Association of Lesion Location and Functional Parameters with Vision-Related Quality of Life in Geographic Atrophy Secondary to Age-related Macular Degeneration’, Ophthalmology Retina, 8(8), pp. 794–803. Available at: https://doi.org/10.1016/j.oret.2024.01.025.
Chan, Eric J. et al. (2024) ‘Retinal sensitivity in macular subfields and their association with contrast sensitivity in early and intermediate age-related macular degeneration’, Ophthalmic Research, 67(1), pp. 458–469. Available at: https://doi.org/10.1159/000540312.
Chan, Eric J. et al. (2024) ‘Retinal sensitivity in macular subfields and their association with contrast sensitivity in early and intermediate age-related macular degeneration’, Ophthalmic Research, 67(1), pp. 458–469. Available at: https://doi.org/10.1159/000540312.
Duic, C. et al. (2024) ‘Local and Global Associations of Reticular Pseudodrusen in Age-Related Macular Degeneration’, Ophthalmology Retina, 8(7), pp. 646–656. Available at: https://doi.org/10.1016/j.oret.2024.01.016.
Duic, C. et al. (2024) ‘Local and Global Associations of Reticular Pseudodrusen in Age-Related Macular Degeneration’, Ophthalmology Retina, 8(7), pp. 646–656. Available at: https://doi.org/10.1016/j.oret.2024.01.016.
Wu, Zhichao et al. (2024) ‘Microperimetry Characteristics of Regions With a Truly Nonresponding Location: Implications for Atrophic Age-Related Macular Degeneration’, Investigative Ophthalmology and Visual Science, 65(8). Available at: https://doi.org/10.1167/iovs.65.8.44.
Wu, Zhichao et al. (2024) ‘Microperimetry Characteristics of Regions With a Truly Nonresponding Location: Implications for Atrophic Age-Related Macular Degeneration’, Investigative Ophthalmology and Visual Science, 65(8). Available at: https://doi.org/10.1167/iovs.65.8.44.
Raming, Kristin et al. (2024) ‘Optic Disc Drusen in Pseudoxanthoma Elasticum Are Associated with the Extent of Bruch’s Membrane Calcification’, Journal of Clinical Medicine, 13(12). Available at: https://doi.org/10.3390/jcm13123395.
Raming, Kristin et al. (2024) ‘Optic Disc Drusen in Pseudoxanthoma Elasticum Are Associated with the Extent of Bruch’s Membrane Calcification’, Journal of Clinical Medicine, 13(12). Available at: https://doi.org/10.3390/jcm13123395.
von der Emde, Leon et al. (2024) ‘Impact of lens autofluorescence and opacification on retinal imaging’, BMJ Open Ophthalmology, 9(1). Available at: https://doi.org/10.1136/bmjophth-2023-001628.
von der Emde, Leon et al. (2024) ‘Impact of lens autofluorescence and opacification on retinal imaging’, BMJ Open Ophthalmology, 9(1). Available at: https://doi.org/10.1136/bmjophth-2023-001628.
Valmaggia, Philippe (2024) Eye and heart synchronisation: development of time-resolved optical coherence tomography with electrocardiographic coupling. Doctoral Thesis. Universität Basel.
Valmaggia, Philippe (2024) Eye and heart synchronisation: development of time-resolved optical coherence tomography with electrocardiographic coupling. Doctoral Thesis. Universität Basel.
Della Volpe Waizel, Maria, Schlote, Torsten and Rickmann, Annekatrin (2024) ‘Proliferative vitreoretinopathy: an update on the current and emerging treatment options’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 262(3). Available at: https://doi.org/10.1007/s00417-023-06267-y.
Della Volpe Waizel, Maria, Schlote, Torsten and Rickmann, Annekatrin (2024) ‘Proliferative vitreoretinopathy: an update on the current and emerging treatment options’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 262(3). Available at: https://doi.org/10.1007/s00417-023-06267-y.
Grosspoetzl, Manuel et al. (2024) ‘Progression of PROM1-Associated Retinal Degeneration as Determined by Spectral-Domain Optical Coherence Tomography Over a 24-Month Period’, American Journal of Ophthalmology, 259, pp. 109–116. Available at: https://doi.org/10.1016/j.ajo.2023.11.010.
Grosspoetzl, Manuel et al. (2024) ‘Progression of PROM1-Associated Retinal Degeneration as Determined by Spectral-Domain Optical Coherence Tomography Over a 24-Month Period’, American Journal of Ophthalmology, 259, pp. 109–116. Available at: https://doi.org/10.1016/j.ajo.2023.11.010.
Hagag, Ahmed M. et al. (2024) ‘Systematic review of prognostic factors associated with progression to late age-related macular degeneration: Pinnacle study report 2’, Survey of Ophthalmology. 27.10.2023, 69(2), pp. 165–172. Available at: https://doi.org/10.1016/j.survophthal.2023.10.010.
Hagag, Ahmed M. et al. (2024) ‘Systematic review of prognostic factors associated with progression to late age-related macular degeneration: Pinnacle study report 2’, Survey of Ophthalmology. 27.10.2023, 69(2), pp. 165–172. Available at: https://doi.org/10.1016/j.survophthal.2023.10.010.
von der Emde, Leon et al. (2024) ‘Personalized Lens Correction Improves Quantitative Fundus Autofluorescence Analysis’, Investigative Ophthalmology and Visual Science, 65(3). Available at: https://doi.org/10.1167/iovs.65.3.13.
von der Emde, Leon et al. (2024) ‘Personalized Lens Correction Improves Quantitative Fundus Autofluorescence Analysis’, Investigative Ophthalmology and Visual Science, 65(3). Available at: https://doi.org/10.1167/iovs.65.3.13.
György Bence, Roska Botond and Scholl Hendrik P N (2024) ‘HUMAN CONE PHOTORECEPTOR OPTOGENETIC CONSTRUCTS’. Edited by Institute of molecular and clinical ophthalmology Basel (IOB).
György Bence, Roska Botond and Scholl Hendrik P N (2024) ‘HUMAN CONE PHOTORECEPTOR OPTOGENETIC CONSTRUCTS’. Edited by Institute of molecular and clinical ophthalmology Basel (IOB).
Pfau, Maximilian et al. (2024) ‘Multicenter normative data for mesopic microperimetry’, medRxiv [Preprint]. Cold Spring Harbor Laboratory (medRxiv). Available at: https://doi.org/10.1101/2024.02.05.24302327.
Pfau, Maximilian et al. (2024) ‘Multicenter normative data for mesopic microperimetry’, medRxiv [Preprint]. Cold Spring Harbor Laboratory (medRxiv). Available at: https://doi.org/10.1101/2024.02.05.24302327.
Maloca, Peter M. et al. (2024) ‘Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation’, Journal of Biophotonics, 17(2). Available at: https://doi.org/10.1002/jbio.202300274.
Maloca, Peter M. et al. (2024) ‘Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation’, Journal of Biophotonics, 17(2). Available at: https://doi.org/10.1002/jbio.202300274.
Schoenenberger, Monica S. et al. (2024) ‘The biophysical and compositional properties of human basement membranes’, FEBS Journal, 291(3), pp. 477–488. Available at: https://doi.org/10.1111/febs.17007.
Schoenenberger, Monica S. et al. (2024) ‘The biophysical and compositional properties of human basement membranes’, FEBS Journal, 291(3), pp. 477–488. Available at: https://doi.org/10.1111/febs.17007.
Chang, Petrus et al. (2024) ‘Use of artificial intelligence in geographic atrophy in age-related macular degeneration’, Ophthalmologie, 121, pp. 616–622. Available at: https://doi.org/10.1007/s00347-024-02080-y.
Chang, Petrus et al. (2024) ‘Use of artificial intelligence in geographic atrophy in age-related macular degeneration’, Ophthalmologie, 121, pp. 616–622. Available at: https://doi.org/10.1007/s00347-024-02080-y.
Lam, Byron L. et al. (2024) ‘A SYSTEMATIC LITERATURE REVIEW OF DISEASE PROGRESSION REPORTED IN RPGR -ASSOCIATED X-LINKED RETINITIS PIGMENTOSA’, Retina, 44(1), pp. 1–9. Available at: https://doi.org/10.1097/IAE.0000000000003920.
Lam, Byron L. et al. (2024) ‘A SYSTEMATIC LITERATURE REVIEW OF DISEASE PROGRESSION REPORTED IN RPGR -ASSOCIATED X-LINKED RETINITIS PIGMENTOSA’, Retina, 44(1), pp. 1–9. Available at: https://doi.org/10.1097/IAE.0000000000003920.
von der Emde, Leon et al. (2024) ‘Use of artificial intelligence for recognition of biomarkers in intermediate age-related macular degeneration’, Ophthalmologie, 121, pp. 609–615. Available at: https://doi.org/10.1007/s00347-024-02078-6.
von der Emde, Leon et al. (2024) ‘Use of artificial intelligence for recognition of biomarkers in intermediate age-related macular degeneration’, Ophthalmologie, 121, pp. 609–615. Available at: https://doi.org/10.1007/s00347-024-02078-6.
Denk, Nora et al. (2023) ‘Cynomolgus monkey’s retina volume reference database based on hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-32739-6.
Denk, Nora et al. (2023) ‘Cynomolgus monkey’s retina volume reference database based on hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-32739-6.
Leingang, Oliver et al. (2023) ‘Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5)’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-46626-7.
Leingang, Oliver et al. (2023) ‘Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5)’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-46626-7.
Maloca, Peter M. et al. (2023) ‘Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-37267-x.
Maloca, Peter M. et al. (2023) ‘Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-37267-x.
Oertli, Jeannine M. et al. (2023) ‘Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study’, Translational Vision Science and Technology, 12(12). Available at: https://doi.org/10.1167/tvst.12.12.18.
Oertli, Jeannine M. et al. (2023) ‘Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study’, Translational Vision Science and Technology, 12(12). Available at: https://doi.org/10.1167/tvst.12.12.18.
Pfau, Maximilian et al. (2023) ‘Multimodal imaging and deep learning in geographic atrophy secondary to age-related macular degeneration’, Acta Ophthalmologica, 101(8), pp. 881–890. Available at: https://doi.org/10.1111/aos.15796.
Pfau, Maximilian et al. (2023) ‘Multimodal imaging and deep learning in geographic atrophy secondary to age-related macular degeneration’, Acta Ophthalmologica, 101(8), pp. 881–890. Available at: https://doi.org/10.1111/aos.15796.
Wahle, Philipp et al. (2023) ‘Multimodal spatiotemporal phenotyping of human retinal organoid development’, Nature Biotechnology, 41(12), pp. 1765–1775. Available at: https://doi.org/10.1038/s41587-023-01747-2.
Wahle, Philipp et al. (2023) ‘Multimodal spatiotemporal phenotyping of human retinal organoid development’, Nature Biotechnology, 41(12), pp. 1765–1775. Available at: https://doi.org/10.1038/s41587-023-01747-2.
Ansari, Georg et al. (2023) ‘The Optical Coherence Tomography and Microperimetry Biomarker Evaluation in Patients with Geographic Atrophy (OMEGA) Study: Design and Baseline Characteristics - OMEGA Report 1’, Ophthalmic Research, 66(1), pp. 1392–1401. Available at: https://doi.org/10.1159/000535375.
Ansari, Georg et al. (2023) ‘The Optical Coherence Tomography and Microperimetry Biomarker Evaluation in Patients with Geographic Atrophy (OMEGA) Study: Design and Baseline Characteristics - OMEGA Report 1’, Ophthalmic Research, 66(1), pp. 1392–1401. Available at: https://doi.org/10.1159/000535375.
Dervos, T. et al. (2023) ‘Single versus Double PreserFlo MicroShunt Implantation in Glaucoma Patients: A Retrospective Cohort Study’, Ophthalmic Research, 66(1), pp. 1362–1375. Available at: https://doi.org/10.1159/000535276.
Dervos, T. et al. (2023) ‘Single versus Double PreserFlo MicroShunt Implantation in Glaucoma Patients: A Retrospective Cohort Study’, Ophthalmic Research, 66(1), pp. 1362–1375. Available at: https://doi.org/10.1159/000535276.
Anders, Philipp et al. (2023) ‘Evaluating Contrast Sensitivity in Early and Intermediate Age-Related Macular Degeneration With the Quick Contrast Sensitivity Function’, Investigative Ophthalmology and Visual Science, 64(14). Available at: https://doi.org/10.1167/iovs.64.14.7.
Anders, Philipp et al. (2023) ‘Evaluating Contrast Sensitivity in Early and Intermediate Age-Related Macular Degeneration With the Quick Contrast Sensitivity Function’, Investigative Ophthalmology and Visual Science, 64(14). Available at: https://doi.org/10.1167/iovs.64.14.7.
Schmetterer, Leopold et al. (2023) ‘Endpoints for clinical trials in ophthalmology’, Progress in Retinal and Eye Research, 97. Available at: https://doi.org/10.1016/j.preteyeres.2022.101160.
Schmetterer, Leopold et al. (2023) ‘Endpoints for clinical trials in ophthalmology’, Progress in Retinal and Eye Research, 97. Available at: https://doi.org/10.1016/j.preteyeres.2022.101160.
Künzel, S.H. et al. (2023) ‘Impact of lesion location and functional parameters on vision-related quality of life in geographic atrophy secondary to AMD’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.09.22.23295946.
Künzel, S.H. et al. (2023) ‘Impact of lesion location and functional parameters on vision-related quality of life in geographic atrophy secondary to AMD’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.09.22.23295946.
Leroy, Bart P. et al. (2023) ‘Gene Therapy for Inherited Retinal Disease: Long-Term Durability of Effect’, Ophthalmic Research, 66(1), pp. 179–196. Available at: https://doi.org/10.1159/000526317.
Leroy, Bart P. et al. (2023) ‘Gene Therapy for Inherited Retinal Disease: Long-Term Durability of Effect’, Ophthalmic Research, 66(1), pp. 179–196. Available at: https://doi.org/10.1159/000526317.
Menten, Martin J. et al. (2023) ‘Exploring Healthy Retinal Aging with Deep Learning’, Ophthalmology Science, 3(3). Available at: https://doi.org/10.1016/j.xops.2023.100294.
Menten, Martin J. et al. (2023) ‘Exploring Healthy Retinal Aging with Deep Learning’, Ophthalmology Science, 3(3). Available at: https://doi.org/10.1016/j.xops.2023.100294.
Pfau, K., Jeffrey, B.G. and Cukras, C.A. (2023) ‘LOW-DOSE SUPPLEMENTATION with RETINOL IMPROVES RETINAL FUNCTION in EYES with AGE-RELATED MACULAR DEGENERATION but WITHOUT RETICULAR PSEUDODRUSEN’, Retina, 43(9), pp. 1462–1471. Available at: https://doi.org/10.1097/IAE.0000000000003840.
Pfau, K., Jeffrey, B.G. and Cukras, C.A. (2023) ‘LOW-DOSE SUPPLEMENTATION with RETINOL IMPROVES RETINAL FUNCTION in EYES with AGE-RELATED MACULAR DEGENERATION but WITHOUT RETICULAR PSEUDODRUSEN’, Retina, 43(9), pp. 1462–1471. Available at: https://doi.org/10.1097/IAE.0000000000003840.
Pfau, M. et al. (2023) ‘Natural History of Visual Dysfunction in ABCA4 Retinopathy and Its Genetic Correlates’, American Journal of Ophthalmology, 253, pp. 224–232. Available at: https://doi.org/10.1016/j.ajo.2023.05.014.
Pfau, M. et al. (2023) ‘Natural History of Visual Dysfunction in ABCA4 Retinopathy and Its Genetic Correlates’, American Journal of Ophthalmology, 253, pp. 224–232. Available at: https://doi.org/10.1016/j.ajo.2023.05.014.
Anders, Philipp et al. (2023) ‘Comparison of Novel Volumetric Microperimetry Metrics in Intermediate Age-Related Macular Degeneration: PINNACLE Study Report 3’, Translational Vision Science and Technology, 12(8). Available at: https://doi.org/10.1167/tvst.12.8.21.
Anders, Philipp et al. (2023) ‘Comparison of Novel Volumetric Microperimetry Metrics in Intermediate Age-Related Macular Degeneration: PINNACLE Study Report 3’, Translational Vision Science and Technology, 12(8). Available at: https://doi.org/10.1167/tvst.12.8.21.
Ameln J et al. (2023) ‘Supernormal foveal photoreceptor density in Alport syndrome: A case report’, European Journal of Ophthalmology, 33(4), pp. NP51–NP54. Available at: https://doi.org/10.1177/11206721221093197.
Ameln J et al. (2023) ‘Supernormal foveal photoreceptor density in Alport syndrome: A case report’, European Journal of Ophthalmology, 33(4), pp. NP51–NP54. Available at: https://doi.org/10.1177/11206721221093197.
Oertli, J. et al. (2023) ‘Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.09.23291212.
Oertli, J. et al. (2023) ‘Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.09.23291212.
Cadoni, Sara et al. (2023) ‘Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration’, Nature Nanotechnology, 18(6), pp. 667–676. Available at: https://doi.org/10.1038/s41565-023-01359-6.
Cadoni, Sara et al. (2023) ‘Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration’, Nature Nanotechnology, 18(6), pp. 667–676. Available at: https://doi.org/10.1038/s41565-023-01359-6.
Fortuna, Laura L. et al. (2023) ‘Short-Term Effect of Micropulse Transscleral Laser Therapy on Intraocular Pressure in Untreated Fellow Eyes of Glaucoma Patients: Preliminary Results’, Journal of Clinical Medicine, 12(11). Available at: https://doi.org/10.3390/jcm12113680.
Fortuna, Laura L. et al. (2023) ‘Short-Term Effect of Micropulse Transscleral Laser Therapy on Intraocular Pressure in Untreated Fellow Eyes of Glaucoma Patients: Preliminary Results’, Journal of Clinical Medicine, 12(11). Available at: https://doi.org/10.3390/jcm12113680.
Strauss, Rupert W. et al. (2023) ‘Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 24-Month Period (ProgStar Report No. 17)’, American Journal of Ophthalmology, 250, pp. 157–170. Available at: https://doi.org/10.1016/j.ajo.2023.02.003.
Strauss, Rupert W. et al. (2023) ‘Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 24-Month Period (ProgStar Report No. 17)’, American Journal of Ophthalmology, 250, pp. 157–170. Available at: https://doi.org/10.1016/j.ajo.2023.02.003.
Sutton J et al. (2023) ‘Correction: Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol (Eye, (2023), 37, 6, (1275-1283), 10.1038/s41433-022-02097-0)’, Eye (Basingstoke). Springer Nature, 37(8). Available at: https://doi.org/10.1038/s41433-022-02131-1.
Sutton J et al. (2023) ‘Correction: Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol (Eye, (2023), 37, 6, (1275-1283), 10.1038/s41433-022-02097-0)’, Eye (Basingstoke). Springer Nature, 37(8). Available at: https://doi.org/10.1038/s41433-022-02131-1.
Lorenz, K. et al. (2023) ‘Participation in a clinical trial—Is that something for me?: Video article Teilnahme an einer klinischen Studie – Ist das etwas für mich?: Videobeitrag’, Ophthalmologie, 120(5), pp. 552–555. Available at: https://doi.org/10.1007/s00347-023-01845-1.
Lorenz, K. et al. (2023) ‘Participation in a clinical trial—Is that something for me?: Video article Teilnahme an einer klinischen Studie – Ist das etwas für mich?: Videobeitrag’, Ophthalmologie, 120(5), pp. 552–555. Available at: https://doi.org/10.1007/s00347-023-01845-1.
Saßmannshausen, Marlene et al. (2023) ‘Characteristics and Spatial Distribution of Structural Features in Age-Related Macular Degeneration: A MACUSTAR Study Report’, Ophthalmology Retina, 7(5), pp. 420–430. Available at: https://doi.org/10.1016/j.oret.2022.12.007.
Saßmannshausen, Marlene et al. (2023) ‘Characteristics and Spatial Distribution of Structural Features in Age-Related Macular Degeneration: A MACUSTAR Study Report’, Ophthalmology Retina, 7(5), pp. 420–430. Available at: https://doi.org/10.1016/j.oret.2022.12.007.
Munz, M. et al. (2023) ‘Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex’, Cell, 186(9), pp. 1930–1949.e31. Available at: https://doi.org/10.1016/j.cell.2023.03.025.
Munz, M. et al. (2023) ‘Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex’, Cell, 186(9), pp. 1930–1949.e31. Available at: https://doi.org/10.1016/j.cell.2023.03.025.
Bjerager J et al. (2023) ‘Diagnostic Accuracy of the Amsler Grid Test for Detecting Neovascular Age-Related Macular Degeneration: A Systematic Review and Meta-analysis’, JAMA Ophthalmology. American Medical Association, 141(4). Available at: https://doi.org/10.1001/jamaophthalmol.2022.6396.
Bjerager J et al. (2023) ‘Diagnostic Accuracy of the Amsler Grid Test for Detecting Neovascular Age-Related Macular Degeneration: A Systematic Review and Meta-analysis’, JAMA Ophthalmology. American Medical Association, 141(4). Available at: https://doi.org/10.1001/jamaophthalmol.2022.6396.
Bindewald-Wittich A et al. (2023) ‘Blue-light fundus autofluorescence imaging of pigment epithelial detachments’, Eye (Basingstoke), 37(6), pp. 1191–1201. Available at: https://doi.org/10.1038/s41433-022-02076-5.
Bindewald-Wittich A et al. (2023) ‘Blue-light fundus autofluorescence imaging of pigment epithelial detachments’, Eye (Basingstoke), 37(6), pp. 1191–1201. Available at: https://doi.org/10.1038/s41433-022-02076-5.
Duic C et al. (2023) ‘Hyperreflective Foci in Age-Related Macular Degeneration are Associated with Disease Severity and Functional Impairment’, Ophthalmology Retina, 7(4), pp. 307–317. Available at: https://doi.org/10.1016/j.oret.2022.11.006.
Duic C et al. (2023) ‘Hyperreflective Foci in Age-Related Macular Degeneration are Associated with Disease Severity and Functional Impairment’, Ophthalmology Retina, 7(4), pp. 307–317. Available at: https://doi.org/10.1016/j.oret.2022.11.006.
Hess K et al. (2023) ‘Inner retinal degeneration associated with optic nerve head drusen in pseudoxanthoma elasticum’, British Journal of Ophthalmology, 107(4), pp. 570–575. Available at: https://doi.org/10.1136/bjophthalmol-2021-320088.
Hess K et al. (2023) ‘Inner retinal degeneration associated with optic nerve head drusen in pseudoxanthoma elasticum’, British Journal of Ophthalmology, 107(4), pp. 570–575. Available at: https://doi.org/10.1136/bjophthalmol-2021-320088.
Prétot D et al. (2023) ‘More Than Meets the (Right) Eye.’, Klinische Monatsblatter fur Augenheilkunde, 240(4), pp. 496–498. Available at: https://doi.org/10.1055/a-2004-5461.
Prétot D et al. (2023) ‘More Than Meets the (Right) Eye.’, Klinische Monatsblatter fur Augenheilkunde, 240(4), pp. 496–498. Available at: https://doi.org/10.1055/a-2004-5461.
Prétot D et al. (2023) ‘When Your Patient Needs New Glasses Every Day.’, Klinische Monatsblatter fur Augenheilkunde, 240(4), pp. 566–568. Available at: https://doi.org/10.1055/a-2004-5504.
Prétot D et al. (2023) ‘When Your Patient Needs New Glasses Every Day.’, Klinische Monatsblatter fur Augenheilkunde, 240(4), pp. 566–568. Available at: https://doi.org/10.1055/a-2004-5504.
Sutton J et al. (2023) ‘Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol’, Eye (Basingstoke), 37(6), pp. 1275–1283. Available at: https://doi.org/10.1038/s41433-022-02097-0.
Sutton J et al. (2023) ‘Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol’, Eye (Basingstoke), 37(6), pp. 1275–1283. Available at: https://doi.org/10.1038/s41433-022-02097-0.
Beenakker, Jan-Willem M. et al. (2023) ‘Outcome Measures of New Technologies in Uveal Melanoma: Review from the European Vision Institute Special Interest Focus Group Meeting’, Ophthalmic Research, 66(1), pp. 14–26. Available at: https://doi.org/10.1159/000524372.
Beenakker, Jan-Willem M. et al. (2023) ‘Outcome Measures of New Technologies in Uveal Melanoma: Review from the European Vision Institute Special Interest Focus Group Meeting’, Ophthalmic Research, 66(1), pp. 14–26. Available at: https://doi.org/10.1159/000524372.
Lorenz, Birgit et al. (2023) ‘Current Management of Patients with RPE65 Mutation Associated Inherited Retinal Degenerations in Europe: Results of a 2-Year Follow-Up Multinational Survey’, Ophthalmic Research, 66(1), pp. 727–748. Available at: https://doi.org/10.1159/000529777.
Lorenz, Birgit et al. (2023) ‘Current Management of Patients with RPE65 Mutation Associated Inherited Retinal Degenerations in Europe: Results of a 2-Year Follow-Up Multinational Survey’, Ophthalmic Research, 66(1), pp. 727–748. Available at: https://doi.org/10.1159/000529777.
Daich Varela M et al. (2023) ‘Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies’, Human Molecular Genetics, 32(4), pp. 595–607. Available at: https://doi.org/10.1093/hmg/ddac227.
Daich Varela M et al. (2023) ‘Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies’, Human Molecular Genetics, 32(4), pp. 595–607. Available at: https://doi.org/10.1093/hmg/ddac227.
Hess K et al. (2023) ‘Tamoxifen Retinopathy and Macular Telangiectasia Type 2: Similarities and Differences on Multimodal Retinal Imaging’, Ophthalmology Retina, 7(2), pp. 101–110. Available at: https://doi.org/10.1016/j.oret.2022.08.004.
Hess K et al. (2023) ‘Tamoxifen Retinopathy and Macular Telangiectasia Type 2: Similarities and Differences on Multimodal Retinal Imaging’, Ophthalmology Retina, 7(2), pp. 101–110. Available at: https://doi.org/10.1016/j.oret.2022.08.004.
Loewinger AS et al. (2023) ‘Choriocapillaris Flow Signal Impairment in Patients With Pseudoxanthoma Elasticum’, Investigative Ophthalmology and Visual Science, 64(2), p. 21. Available at: https://doi.org/10.1167/iovs.64.2.21.
Loewinger AS et al. (2023) ‘Choriocapillaris Flow Signal Impairment in Patients With Pseudoxanthoma Elasticum’, Investigative Ophthalmology and Visual Science, 64(2), p. 21. Available at: https://doi.org/10.1167/iovs.64.2.21.
Lorenz, Birgit et al. (2023) ‘Current Management of Inherited Retinal Degeneration Patients in Europe: Results of a 2-Year Follow-Up Multinational Survey by the European Vision Institute Clinical Research Network - EVICR.net’, Ophthalmic Research, 66(1), pp. 550–568. Available at: https://doi.org/10.1159/000528716.
Lorenz, Birgit et al. (2023) ‘Current Management of Inherited Retinal Degeneration Patients in Europe: Results of a 2-Year Follow-Up Multinational Survey by the European Vision Institute Clinical Research Network - EVICR.net’, Ophthalmic Research, 66(1), pp. 550–568. Available at: https://doi.org/10.1159/000528716.
Emre, Taha et al. (2023) ‘Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT: A PINNACLE Study Report’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Basel: Springer Science and Business Media Deutschland GmbH (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), pp. 132–141. Available at: https://doi.org/10.1007/978-3-031-44013-7_14.
Emre, Taha et al. (2023) ‘Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT: A PINNACLE Study Report’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Basel: Springer Science and Business Media Deutschland GmbH (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), pp. 132–141. Available at: https://doi.org/10.1007/978-3-031-44013-7_14.
Holland, Robbie et al. (2023) ‘Clustering Disease Trajectories in Contrastive Feature Space for Biomarker Proposal in Age-Related Macular Degeneration’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media Deutschland GmbH (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), pp. 724–734. Available at: https://doi.org/10.1007/978-3-031-43990-2_68.
Holland, Robbie et al. (2023) ‘Clustering Disease Trajectories in Contrastive Feature Space for Biomarker Proposal in Age-Related Macular Degeneration’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media Deutschland GmbH (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), pp. 724–734. Available at: https://doi.org/10.1007/978-3-031-43990-2_68.
Pfau, M. et al. (2023) ‘Genotype–Phenotype Association in ABCA4-Associated Retinopathy’, in Advances in Experimental Medicine and Biology. Springer (Advances in Experimental Medicine and Biology), pp. 289–295. Available at: https://doi.org/10.1007/978-3-031-27681-1_42.
Pfau, M. et al. (2023) ‘Genotype–Phenotype Association in ABCA4-Associated Retinopathy’, in Advances in Experimental Medicine and Biology. Springer (Advances in Experimental Medicine and Biology), pp. 289–295. Available at: https://doi.org/10.1007/978-3-031-27681-1_42.
Pfau K et al. (2023) ‘[Ocular alterations in patients with Alport syndrome-An update].’, Die Ophthalmologie, 120(6), pp. 645–651. Available at: https://doi.org/10.1007/s00347-022-01805-1.
Pfau K et al. (2023) ‘[Ocular alterations in patients with Alport syndrome-An update].’, Die Ophthalmologie, 120(6), pp. 645–651. Available at: https://doi.org/10.1007/s00347-022-01805-1.
Aguilera N et al. (2022) ‘Widespread subclinical cellular changes revealed across a neural-epithelial-vascular complex in choroideremia using adaptive optics’, Communications Biology, 5(1), p. 893. Available at: https://doi.org/10.1038/s42003-022-03842-7.
Aguilera N et al. (2022) ‘Widespread subclinical cellular changes revealed across a neural-epithelial-vascular complex in choroideremia using adaptive optics’, Communications Biology, 5(1), p. 893. Available at: https://doi.org/10.1038/s42003-022-03842-7.
Dave AD et al. (2022) ‘Investigations of Renal Function and Age-Related Macular Degeneration Phenotypes’, Translational Vision Science and Technology, 11(12), p. 11. Available at: https://doi.org/10.1167/tvst.11.12.11.
Dave AD et al. (2022) ‘Investigations of Renal Function and Age-Related Macular Degeneration Phenotypes’, Translational Vision Science and Technology, 11(12), p. 11. Available at: https://doi.org/10.1167/tvst.11.12.11.
Enz TJ et al. (2022) ‘Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring’, Journal of Biophotonics, 15(12), p. e202200169. Available at: https://doi.org/10.1002/jbio.202200169.
Enz TJ et al. (2022) ‘Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring’, Journal of Biophotonics, 15(12), p. e202200169. Available at: https://doi.org/10.1002/jbio.202200169.
Goel, Sarang et al. (2022) ‘Automated Region of Interest Selection Improves Deep Learning-Based Segmentation of Hyper-Reflective Foci in Optical Coherence Tomography Images’, Journal of Clinical Medicine, 11(24). Available at: https://doi.org/10.3390/jcm11247404.
Goel, Sarang et al. (2022) ‘Automated Region of Interest Selection Improves Deep Learning-Based Segmentation of Hyper-Reflective Foci in Optical Coherence Tomography Images’, Journal of Clinical Medicine, 11(24). Available at: https://doi.org/10.3390/jcm11247404.
Hess K et al. (2022) ‘Evaluation of Cone- and Rod-Mediated Parameters in Dark Adaptation Testing as Outcome Measures in Age-Related Macular Degeneration’, Ophthalmology Retina, 6(12), pp. 1173–1184. Available at: https://doi.org/10.1016/j.oret.2022.05.018.
Hess K et al. (2022) ‘Evaluation of Cone- and Rod-Mediated Parameters in Dark Adaptation Testing as Outcome Measures in Age-Related Macular Degeneration’, Ophthalmology Retina, 6(12), pp. 1173–1184. Available at: https://doi.org/10.1016/j.oret.2022.05.018.
Judák, Linda et al. (2022) ‘Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-34520-1.
Judák, Linda et al. (2022) ‘Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-34520-1.
Maloca PM et al. (2022) ‘Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 12(1), p. 3695. Available at: https://doi.org/10.1038/s41598-022-07439-2.
Maloca PM et al. (2022) ‘Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 12(1), p. 3695. Available at: https://doi.org/10.1038/s41598-022-07439-2.
Maloca PM et al. (2022) ‘Cynomolgus monkey’s choroid reference database derived from hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 12(1), p. 13276. Available at: https://doi.org/10.1038/s41598-022-17699-7.
Maloca PM et al. (2022) ‘Cynomolgus monkey’s choroid reference database derived from hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 12(1), p. 13276. Available at: https://doi.org/10.1038/s41598-022-17699-7.
Pfau, Maximilian et al. (2022) ‘Association of complement C3 inhibitor pegcetacoplan with reduced photoreceptor degeneration beyond areas of geographic atrophy’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-22404-9.
Pfau, Maximilian et al. (2022) ‘Association of complement C3 inhibitor pegcetacoplan with reduced photoreceptor degeneration beyond areas of geographic atrophy’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-22404-9.
Saßmannshausen M et al. (2022) ‘Relative ellipsoid zone reflectivity and its association with disease severity in age-related macular degeneration: a MACUSTAR study report’, Scientific Reports, 12(1), p. 14933. Available at: https://doi.org/10.1038/s41598-022-18875-5.
Saßmannshausen M et al. (2022) ‘Relative ellipsoid zone reflectivity and its association with disease severity in age-related macular degeneration: a MACUSTAR study report’, Scientific Reports, 12(1), p. 14933. Available at: https://doi.org/10.1038/s41598-022-18875-5.
Thiele, S. et al. (2022) ‘Natural History of the Relative Ellipsoid Zone Reflectivity in Age-Related Macular Degeneration’, in Ophthalmology Retina. Elsevier Inc. (Ophthalmology Retina), pp. 1165–1172. Available at: https://doi.org/10.1016/j.oret.2022.06.001.
Thiele, S. et al. (2022) ‘Natural History of the Relative Ellipsoid Zone Reflectivity in Age-Related Macular Degeneration’, in Ophthalmology Retina. Elsevier Inc. (Ophthalmology Retina), pp. 1165–1172. Available at: https://doi.org/10.1016/j.oret.2022.06.001.
Valmaggia, Philippe et al. (2022) ‘Iris Color Matters—A Contractility Analysis With Dynamic Volume-Rendered Optical Coherence Tomography Pupillometry’, Translational Vision Science and Technology, 11(11). Available at: https://doi.org/10.1167/tvst.11.11.6.
Valmaggia, Philippe et al. (2022) ‘Iris Color Matters—A Contractility Analysis With Dynamic Volume-Rendered Optical Coherence Tomography Pupillometry’, Translational Vision Science and Technology, 11(11). Available at: https://doi.org/10.1167/tvst.11.11.6.
Balser, C., Hasler, P.W. and Camenzind-Zuche, H. (2022) ‘The Importance of Optic Coherence Tomography in Poppers Maculopathy Die Rolle der optischen Kohärenztomografie bei der Poppers-Makulopathie’, Klinische Monatsblatter fur Augenheilkunde, 240(4), pp. 528–531. Available at: https://doi.org/10.1055/a-2021-7603.
Balser, C., Hasler, P.W. and Camenzind-Zuche, H. (2022) ‘The Importance of Optic Coherence Tomography in Poppers Maculopathy Die Rolle der optischen Kohärenztomografie bei der Poppers-Makulopathie’, Klinische Monatsblatter fur Augenheilkunde, 240(4), pp. 528–531. Available at: https://doi.org/10.1055/a-2021-7603.
Birtel J et al. (2022) ‘North Carolina macular dystrophy shows a particular drusen phenotype and atrophy progression’, British Journal of Ophthalmology, 106(9), pp. 1269–1273. Available at: https://doi.org/10.1136/bjophthalmol-2021-318815.
Birtel J et al. (2022) ‘North Carolina macular dystrophy shows a particular drusen phenotype and atrophy progression’, British Journal of Ophthalmology, 106(9), pp. 1269–1273. Available at: https://doi.org/10.1136/bjophthalmol-2021-318815.
Maloca PM et al. (2022) ‘Dynamic volume-rendered optical coherence tomography pupillometry’, Acta Ophthalmologica, 100(6), pp. 654–664. Available at: https://doi.org/10.1111/aos.15063.
Maloca PM et al. (2022) ‘Dynamic volume-rendered optical coherence tomography pupillometry’, Acta Ophthalmologica, 100(6), pp. 654–664. Available at: https://doi.org/10.1111/aos.15063.
Maloca PM et al. (2022) ‘Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation’, PLoS ONE, 17(9 September), p. e0275050. Available at: https://doi.org/10.1371/journal.pone.0275050.
Maloca PM et al. (2022) ‘Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation’, PLoS ONE, 17(9 September), p. e0275050. Available at: https://doi.org/10.1371/journal.pone.0275050.
Valmaggia P et al. (2022) ‘Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning’, Translational Vision Science and Technology, 11(9), p. 25. Available at: https://doi.org/10.1167/tvst.11.9.25.
Valmaggia P et al. (2022) ‘Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning’, Translational Vision Science and Technology, 11(9), p. 25. Available at: https://doi.org/10.1167/tvst.11.9.25.
Simmen CF et al. (2022) ‘Lateral Geniculate Nucleus Volume Determined on MRI Correlates with Corresponding Ganglion Cell Layer Loss in Acquired Human Postgeniculate Lesions’, Investigative Ophthalmology and Visual Science, 63(9), p. 18. Available at: https://doi.org/10.1167/iovs.63.9.18.
Simmen CF et al. (2022) ‘Lateral Geniculate Nucleus Volume Determined on MRI Correlates with Corresponding Ganglion Cell Layer Loss in Acquired Human Postgeniculate Lesions’, Investigative Ophthalmology and Visual Science, 63(9), p. 18. Available at: https://doi.org/10.1167/iovs.63.9.18.
Spaide RF et al. (2022) ‘Imaging the vitreous with a novel boosted optical coherence tomography technique: Vitreous degeneration and cisterns’, Retina, 42(8), pp. 1433–1441. Available at: https://doi.org/10.1097/IAE.0000000000003474.
Spaide RF et al. (2022) ‘Imaging the vitreous with a novel boosted optical coherence tomography technique: Vitreous degeneration and cisterns’, Retina, 42(8), pp. 1433–1441. Available at: https://doi.org/10.1097/IAE.0000000000003474.
Zabek O et al. (2022) ‘Full-field sensitivity threshold and the relation to the oxygen metabolic retinal function in retinitis pigmentosa’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 260(8), pp. 2517–2527. Available at: https://doi.org/10.1007/s00417-022-05638-1.
Zabek O et al. (2022) ‘Full-field sensitivity threshold and the relation to the oxygen metabolic retinal function in retinitis pigmentosa’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 260(8), pp. 2517–2527. Available at: https://doi.org/10.1007/s00417-022-05638-1.
Zabek O et al. (2022) ‘[Phacolysis of a Hypermature Senile Cataract: Now a Rare Entity].’, Klinische Monatsblatter fur Augenheilkunde, 239(8), pp. 1005–1006. Available at: https://doi.org/10.1055/a-1686-9453.
Zabek O et al. (2022) ‘[Phacolysis of a Hypermature Senile Cataract: Now a Rare Entity].’, Klinische Monatsblatter fur Augenheilkunde, 239(8), pp. 1005–1006. Available at: https://doi.org/10.1055/a-1686-9453.
Bharioke A et al. (2022) ‘General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons’, Neuron, 110(12), pp. 2024–2040.e10. Available at: https://doi.org/10.1016/j.neuron.2022.03.032.
Bharioke A et al. (2022) ‘General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons’, Neuron, 110(12), pp. 2024–2040.e10. Available at: https://doi.org/10.1016/j.neuron.2022.03.032.
Janeschitz-Kriegl L, Cattaneo M and Scholl HPN (2022) ‘Baseline Levels of Retinol-Binding Protein 4 and Vitamin A in Healthy Subjects, Stargardt Disease, and Geographic Atrophy Patients’, Ophthalmic Research, 65(3), pp. 351–360. Available at: https://doi.org/10.1159/000522365.
Janeschitz-Kriegl L, Cattaneo M and Scholl HPN (2022) ‘Baseline Levels of Retinol-Binding Protein 4 and Vitamin A in Healthy Subjects, Stargardt Disease, and Geographic Atrophy Patients’, Ophthalmic Research, 65(3), pp. 351–360. Available at: https://doi.org/10.1159/000522365.
Hess K et al. (2022) ‘Choriocapillaris Flow Signal Impairment in Sorsby Fundus Dystrophy’, Ophthalmologica, 245(3), pp. 265–274. Available at: https://doi.org/10.1159/000520931.
Hess K et al. (2022) ‘Choriocapillaris Flow Signal Impairment in Sorsby Fundus Dystrophy’, Ophthalmologica, 245(3), pp. 265–274. Available at: https://doi.org/10.1159/000520931.
Zabek O et al. (2022) ‘Rare occult macular dystrophy with a pathogenic variant in the RP1L1 gene in a patient of Swiss descent’, American Journal of Ophthalmology Case Reports. Elsevier Inc., 26. Available at: https://doi.org/10.1016/j.ajoc.2022.101527.
Zabek O et al. (2022) ‘Rare occult macular dystrophy with a pathogenic variant in the RP1L1 gene in a patient of Swiss descent’, American Journal of Ophthalmology Case Reports. Elsevier Inc., 26. Available at: https://doi.org/10.1016/j.ajoc.2022.101527.
Pfau M et al. (2022) ‘Re: Trivizki et al. Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization’, Investigative Ophthalmology and Visual Science. Association for Research in Vision and Ophthalmology Inc., 63(5). Available at: https://doi.org/10.1167/iovs.63.5.10.
Pfau M et al. (2022) ‘Re: Trivizki et al. Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization’, Investigative Ophthalmology and Visual Science. Association for Research in Vision and Ophthalmology Inc., 63(5). Available at: https://doi.org/10.1167/iovs.63.5.10.
Kong X et al. (2022) ‘Longitudinal Changes in Scotopic and Mesopic Macular Function as Assessed with Microperimetry in Patients With Stargardt Disease: SMART Study Report No. 2’, American Journal of Ophthalmology, 236, pp. 32–44. Available at: https://doi.org/10.1016/j.ajo.2021.10.014.
Kong X et al. (2022) ‘Longitudinal Changes in Scotopic and Mesopic Macular Function as Assessed with Microperimetry in Patients With Stargardt Disease: SMART Study Report No. 2’, American Journal of Ophthalmology, 236, pp. 32–44. Available at: https://doi.org/10.1016/j.ajo.2021.10.014.
Reinhold A, Scholl HPN and Gatzioufas Z (2022) ‘Peripheral Sterile Corneal Ring Infiltrate after Accelerated Cross-linking’, Klinische Monatsblatter fur Augenheilkunde, 239(4), pp. 397–398. Available at: https://doi.org/10.1055/a-1766-6993.
Reinhold A, Scholl HPN and Gatzioufas Z (2022) ‘Peripheral Sterile Corneal Ring Infiltrate after Accelerated Cross-linking’, Klinische Monatsblatter fur Augenheilkunde, 239(4), pp. 397–398. Available at: https://doi.org/10.1055/a-1766-6993.
Maloca PM et al. (2022) ‘Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people’, Acta Ophthalmologica, 100(2), pp. e588–e597. Available at: https://doi.org/10.1111/aos.14900.
Maloca PM et al. (2022) ‘Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people’, Acta Ophthalmologica, 100(2), pp. e588–e597. Available at: https://doi.org/10.1111/aos.14900.
Saßmannshausen M et al. (2022) ‘Intersession Repeatability of Structural Biomarkers in Early and Intermediate Age-Related Macular Degeneration: A MACUSTAR Study Report’, Translational Vision Science and Technology, 11(3), p. 27. Available at: https://doi.org/10.1167/tvst.11.3.27.
Saßmannshausen M et al. (2022) ‘Intersession Repeatability of Structural Biomarkers in Early and Intermediate Age-Related Macular Degeneration: A MACUSTAR Study Report’, Translational Vision Science and Technology, 11(3), p. 27. Available at: https://doi.org/10.1167/tvst.11.3.27.
Schmitz-Valckenberg, S. et al. (2022) ‘Progression of Age-Related Macular Degeneration among Individuals Homozygous for Risk Alleles on Chromosome 1 (CFH-CFHR5) or Chromosome 10 (ARMS2/HTRA1) or Both’, JAMA Ophthalmology, 140(3), pp. 252–260. Available at: https://doi.org/10.1001/jamaophthalmol.2021.6072.
Schmitz-Valckenberg, S. et al. (2022) ‘Progression of Age-Related Macular Degeneration among Individuals Homozygous for Risk Alleles on Chromosome 1 (CFH-CFHR5) or Chromosome 10 (ARMS2/HTRA1) or Both’, JAMA Ophthalmology, 140(3), pp. 252–260. Available at: https://doi.org/10.1001/jamaophthalmol.2021.6072.
Scholl HPN (2022) ‘Complement Inhibition in Age-Related Macular Degeneration - Treat Early!’, JAMA Ophthalmology. American Medical Association, 140(3). Available at: https://doi.org/10.1001/jamaophthalmol.2021.6068.
Scholl HPN (2022) ‘Complement Inhibition in Age-Related Macular Degeneration - Treat Early!’, JAMA Ophthalmology. American Medical Association, 140(3). Available at: https://doi.org/10.1001/jamaophthalmol.2021.6068.
Scholl HPN and Klaver CCW (2022) ‘Pentosan and Macular Disease - A Causal Association?’, JAMA Ophthalmology, 140(3), pp. 223–224. Available at: https://doi.org/10.1001/jamaophthalmol.2021.5972.
Scholl HPN and Klaver CCW (2022) ‘Pentosan and Macular Disease - A Causal Association?’, JAMA Ophthalmology, 140(3), pp. 223–224. Available at: https://doi.org/10.1001/jamaophthalmol.2021.5972.