Environmental Geosciences (Alewell)
Publications
582 found
Show per page
Matthews, Francis et al. (2025) ‘Towards the development of bias-corrected rainfall erosivity time series for Europe’, Journal of Hydrology, 651, p. 132460. Available at: https://doi.org/10.1016/j.jhydrol.2024.132460.
Matthews, Francis et al. (2025) ‘Towards the development of bias-corrected rainfall erosivity time series for Europe’, Journal of Hydrology, 651, p. 132460. Available at: https://doi.org/10.1016/j.jhydrol.2024.132460.
Zheng, Haiyan et al. (2025) ‘The Impacts of Erosion on the Carbon Cycle’, Reviews of Geophysics, 63(1). Available at: https://doi.org/10.1029/2023rg000829.
Zheng, Haiyan et al. (2025) ‘The Impacts of Erosion on the Carbon Cycle’, Reviews of Geophysics, 63(1). Available at: https://doi.org/10.1029/2023rg000829.
Matthews, F. et al. (2025) ‘Dynamic assessment of rainfall erosivity in Europe: evaluation of EURADCLIM ground-radar data’. Copernicus GmbH. Available at: https://doi.org/10.5194/hess-2024-402.
Matthews, F. et al. (2025) ‘Dynamic assessment of rainfall erosivity in Europe: evaluation of EURADCLIM ground-radar data’. Copernicus GmbH. Available at: https://doi.org/10.5194/hess-2024-402.
Dicen, G. et al. (2024) ‘Distribution and sources of fallout 137 Cs and 239+240 Pu in Equatorial and Southern Hemisphere reference soils’. Copernicus GmbH. Available at: https://doi.org/10.5194/essd-2024-509.
Dicen, G. et al. (2024) ‘Distribution and sources of fallout 137 Cs and 239+240 Pu in Equatorial and Southern Hemisphere reference soils’. Copernicus GmbH. Available at: https://doi.org/10.5194/essd-2024-509.
Cox, Terry et al. (2024) ‘Isotopic analysis (δ13C and δ2H) of lignin methoxy groups in forest soils to identify and quantify lignin sources’, Science of The Total Environment, 949, p. 175025. Available at: https://doi.org/10.1016/j.scitotenv.2024.175025.
Cox, Terry et al. (2024) ‘Isotopic analysis (δ13C and δ2H) of lignin methoxy groups in forest soils to identify and quantify lignin sources’, Science of The Total Environment, 949, p. 175025. Available at: https://doi.org/10.1016/j.scitotenv.2024.175025.
Li, Keke et al. (2024) ‘Human-altered soil loss dominates nearly half of water erosion in China but surges in agriculture-intensive areas’, One Earth, 7(11), pp. 2008–2018. Available at: https://doi.org/10.1016/j.oneear.2024.09.001.
Li, Keke et al. (2024) ‘Human-altered soil loss dominates nearly half of water erosion in China but surges in agriculture-intensive areas’, One Earth, 7(11), pp. 2008–2018. Available at: https://doi.org/10.1016/j.oneear.2024.09.001.
Sun, Ranhao et al. (2024) ‘Global Wind Erosion Reduction Driven by Changing Climate and Land Use’, Earth’s Future, 12(10). Available at: https://doi.org/10.1029/2024ef004930.
Sun, Ranhao et al. (2024) ‘Global Wind Erosion Reduction Driven by Changing Climate and Land Use’, Earth’s Future, 12(10). Available at: https://doi.org/10.1029/2024ef004930.
Scheper, S. et al. (2024) ‘Soil loss and sedimentation rates in a subcatchment of the Yellow river Basin in China’, International Soil and Water Conservation Research, 12(3), pp. 534–547. Available at: https://doi.org/10.1016/j.iswcr.2023.11.008.
Scheper, S. et al. (2024) ‘Soil loss and sedimentation rates in a subcatchment of the Yellow river Basin in China’, International Soil and Water Conservation Research, 12(3), pp. 534–547. Available at: https://doi.org/10.1016/j.iswcr.2023.11.008.
Das, S. et al. (2024) ‘GloRESatE: A dataset for global rainfall erosivity derived from multi-source data’, Scientific Data, 11(1). Available at: https://doi.org/10.1038/s41597-024-03756-5.
Das, S. et al. (2024) ‘GloRESatE: A dataset for global rainfall erosivity derived from multi-source data’, Scientific Data, 11(1). Available at: https://doi.org/10.1038/s41597-024-03756-5.
Qiao, Baojin et al. (2024) ‘Substantial Overestimation of Terrestrial Water Storage Loss in Headwater Basins on Earth’s Third Pole’, Geophysical Research Letters, 51(15). Available at: https://doi.org/10.1029/2023gl107553.
Qiao, Baojin et al. (2024) ‘Substantial Overestimation of Terrestrial Water Storage Loss in Headwater Basins on Earth’s Third Pole’, Geophysical Research Letters, 51(15). Available at: https://doi.org/10.1029/2023gl107553.
Gholami, Hamid et al. (2024) ‘An assessment of global land susceptibility to wind erosion based on deep-active learning modelling and interpretation techniques’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-70125-y.
Gholami, Hamid et al. (2024) ‘An assessment of global land susceptibility to wind erosion based on deep-active learning modelling and interpretation techniques’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-70125-y.
Weber, T. K. D. et al. (2024) ‘Hydro-pedotransfer functions: a roadmap for future development’, Hydrol. Earth Syst. Sci., (14), p. 3391. Available at: https://doi.org/10.5194/hess-28-3391-2024.
Weber, T. K. D. et al. (2024) ‘Hydro-pedotransfer functions: a roadmap for future development’, Hydrol. Earth Syst. Sci., (14), p. 3391. Available at: https://doi.org/10.5194/hess-28-3391-2024.
Einbock, A. and Conen, F. (2024) ‘Similar freezing spectra of particles on plant canopies as in air at a high-altitude site’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2024-2067.
Einbock, A. and Conen, F. (2024) ‘Similar freezing spectra of particles on plant canopies as in air at a high-altitude site’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2024-2067.
Einbock, A. and Conen, F. (2024) ‘Frost-free zone on leaves revisited’, Proceedings of the National Academy of Sciences, 121(26). Available at: https://doi.org/10.1073/pnas.2407062121.
Einbock, A. and Conen, F. (2024) ‘Frost-free zone on leaves revisited’, Proceedings of the National Academy of Sciences, 121(26). Available at: https://doi.org/10.1073/pnas.2407062121.
Panagos, Panos et al. (2024) ‘How the EU Soil Observatory is providing solid science for healthy soils’, European Journal of Soil Science, 75(3). Available at: https://doi.org/10.1111/ejss.13507.
Panagos, Panos et al. (2024) ‘How the EU Soil Observatory is providing solid science for healthy soils’, European Journal of Soil Science, 75(3). Available at: https://doi.org/10.1111/ejss.13507.
Subhankar Das et al. (2024) ‘GloRESatE - Global Rainfall Erosivity from Reanalysis and Satellite Estimates’. Edited by https://zenodo.org/records/11078865. Available at: https://doi.org/10.5281/zenodo.8406085.
Subhankar Das et al. (2024) ‘GloRESatE - Global Rainfall Erosivity from Reanalysis and Satellite Estimates’. Edited by https://zenodo.org/records/11078865. Available at: https://doi.org/10.5281/zenodo.8406085.
Guillevic, F. et al. (2024) ‘Multi-isotope (Pb, Sb) approach to trace metallic contaminant sources at a historical mining and metallurgical site’, Chemical Geology, 649. Available at: https://doi.org/10.1016/j.chemgeo.2024.121958.
Guillevic, F. et al. (2024) ‘Multi-isotope (Pb, Sb) approach to trace metallic contaminant sources at a historical mining and metallurgical site’, Chemical Geology, 649. Available at: https://doi.org/10.1016/j.chemgeo.2024.121958.
Khodadadi, M. et al. (2024) ‘Spatial cross-correlation of surface soil physicochemical properties with soil erosion estimated by fallout radionuclides in croplands in a semi-humid region of Iran’, Catena, 237. Available at: https://doi.org/10.1016/j.catena.2024.107836.
Khodadadi, M. et al. (2024) ‘Spatial cross-correlation of surface soil physicochemical properties with soil erosion estimated by fallout radionuclides in croplands in a semi-humid region of Iran’, Catena, 237. Available at: https://doi.org/10.1016/j.catena.2024.107836.
Bernatek-Jakiel, Anita et al. (2024) A piping erosion susceptibility map of Europe. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-12976.
Bernatek-Jakiel, Anita et al. (2024) A piping erosion susceptibility map of Europe. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-12976.
Moreno Romero, G., Alewell, C. and Borrelli, P. (2024) Land degradation due to soil erosion in the Mediterranean olive groves: A comparison of 137Cs, 239+240Pu radionuclides and 3D reconstruction of surface levels. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-16310.
Moreno Romero, G., Alewell, C. and Borrelli, P. (2024) Land degradation due to soil erosion in the Mediterranean olive groves: A comparison of 137Cs, 239+240Pu radionuclides and 3D reconstruction of surface levels. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-16310.
Pravalie, R. et al. (2024) ‘Towards a unifying approach of land degradation in Europe’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-12401.
Pravalie, R. et al. (2024) ‘Towards a unifying approach of land degradation in Europe’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-12401.
Birkholz, A. and Alewell, C. (2024) ‘Aquatic microorganisms are a (potential) provider of long-chain fatty acids to lake sediments in the temperate climate zone’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-1960.
Birkholz, A. and Alewell, C. (2024) ‘Aquatic microorganisms are a (potential) provider of long-chain fatty acids to lake sediments in the temperate climate zone’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-1960.
Borrelli, P., Panagos, P. and Alewell, C. (2024) ‘Modeling multiple concurrent soil erosion processes’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-9365.
Borrelli, P., Panagos, P. and Alewell, C. (2024) ‘Modeling multiple concurrent soil erosion processes’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-9365.
Cox, T. et al. (2024) ‘Using stable carbon isotopes of lignin derived methoxy groups to investigate the impact of historical land use change on sediment/particulate matter dynamics’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-10471.
Cox, T. et al. (2024) ‘Using stable carbon isotopes of lignin derived methoxy groups to investigate the impact of historical land use change on sediment/particulate matter dynamics’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-10471.
Dicen, G. et al. (2024) ‘Spatial distribution of fallout 137Cs and 239+240Pu in Equatorial and Southern Hemisphere soils’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-3077.
Dicen, G. et al. (2024) ‘Spatial distribution of fallout 137Cs and 239+240Pu in Equatorial and Southern Hemisphere soils’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-3077.
Einbock, A. and Conen, F. (2024) Similar freezing spectra of particles in the phyllosphere as at mixed-phase cloud height. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-4172.
Einbock, A. and Conen, F. (2024) Similar freezing spectra of particles in the phyllosphere as at mixed-phase cloud height. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-4172.
Guillevic, F. et al. (2024) ‘Environmental and physical factors controlling the distribution of 137Cs in lake sediments in the Southern Hemisphere: a meta-analysis’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-6366.
Guillevic, F. et al. (2024) ‘Environmental and physical factors controlling the distribution of 137Cs in lake sediments in the Southern Hemisphere: a meta-analysis’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-6366.
Gupta, S. and Alewell, C. (2024) ‘The importance of soil structure data for soil erosion modelling and mapping’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-1561.
Gupta, S. and Alewell, C. (2024) ‘The importance of soil structure data for soil erosion modelling and mapping’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-1561.
H. Afshar, M. et al. (2024) ‘AI-driven insights into soil health and soil degradation in Europe in the face of climate and anthropogenic challenges’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-9512.
H. Afshar, M. et al. (2024) ‘AI-driven insights into soil health and soil degradation in Europe in the face of climate and anthropogenic challenges’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-9512.
Paul, S. et al. (2024) ‘Does a mineral soil coverage reduce greenhouse gas emissions from agriculturally managed peatlands?’ Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-11391.
Paul, S. et al. (2024) ‘Does a mineral soil coverage reduce greenhouse gas emissions from agriculturally managed peatlands?’ Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-11391.
Gupta, Surya, Hasler, Julia Kim and Alewell, Christine (2024) ‘Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus’, Geoderma Regional, 36, p. e00747. Available at: https://doi.org/10.1016/j.geodrs.2023.e00747.
Gupta, Surya, Hasler, Julia Kim and Alewell, Christine (2024) ‘Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus’, Geoderma Regional, 36, p. e00747. Available at: https://doi.org/10.1016/j.geodrs.2023.e00747.
Yttri, Karl Espen et al. (2024) ‘Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020)’, Atmospheric Chemistry and Physics, 24(4), pp. 2731–2758. Available at: https://doi.org/10.5194/acp-24-2731-2024.
Yttri, Karl Espen et al. (2024) ‘Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020)’, Atmospheric Chemistry and Physics, 24(4), pp. 2731–2758. Available at: https://doi.org/10.5194/acp-24-2731-2024.
von Jeetze, P. et al. (2024) ‘Dietary change is not a prerequisite for effective biodiversity conservation but reduces socioeconomic obstacles’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3914402/v1.
von Jeetze, P. et al. (2024) ‘Dietary change is not a prerequisite for effective biodiversity conservation but reduces socioeconomic obstacles’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3914402/v1.
Diodato, N. et al. (2024) ‘Sediment loss modelling framework for the Bradano River Basin, southern Italy, 1950–2020’, Theoretical and Applied Climatology, 155(2), pp. 829–843. Available at: https://doi.org/10.1007/s00704-023-04662-3.
Diodato, N. et al. (2024) ‘Sediment loss modelling framework for the Bradano River Basin, southern Italy, 1950–2020’, Theoretical and Applied Climatology, 155(2), pp. 829–843. Available at: https://doi.org/10.1007/s00704-023-04662-3.
Khodadadi, M. et al. (2024) ‘Corrigendum to “Understanding deforestation impacts in western Iran: Insights from Plutonium atom ratios for quantifying Chernobyl contributions of 137Cs reference inventory” [J. Environ. Radioact. 257 (2023) 107078] (Journal of Environmental Radioactivity (2023) 257, (S0265931X22002697), (10.1016/j.jenvrad.2022.107078))’, Journal of Environmental Radioactivity, 272. Available at: https://doi.org/10.1016/j.jenvrad.2024.107369.
Khodadadi, M. et al. (2024) ‘Corrigendum to “Understanding deforestation impacts in western Iran: Insights from Plutonium atom ratios for quantifying Chernobyl contributions of 137Cs reference inventory” [J. Environ. Radioact. 257 (2023) 107078] (Journal of Environmental Radioactivity (2023) 257, (S0265931X22002697), (10.1016/j.jenvrad.2022.107078))’, Journal of Environmental Radioactivity, 272. Available at: https://doi.org/10.1016/j.jenvrad.2024.107369.
Ringeval, Bruno et al. (2024) ‘A global dataset on phosphorus in agricultural soils’, Scientific Data, 11(1). Available at: https://doi.org/10.1038/s41597-023-02751-6.
Ringeval, Bruno et al. (2024) ‘A global dataset on phosphorus in agricultural soils’, Scientific Data, 11(1). Available at: https://doi.org/10.1038/s41597-023-02751-6.
Akça, Erhan et al. (2024) The state of soils in Europe. Publications Office of the European Union.
Akça, Erhan et al. (2024) The state of soils in Europe. Publications Office of the European Union.
Bezak , Nejc et al. (2024) ‘Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments’, CATENA, 234. Available at: https://doi.org/10.1016/j.catena.2023.107596.
Bezak , Nejc et al. (2024) ‘Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments’, CATENA, 234. Available at: https://doi.org/10.1016/j.catena.2023.107596.
Cox, Terry et al. (2024) ‘Using stable carbon isotopes of lignin-derived methoxy to improve historical apportionments of particulate organic matter and sediment sources incorporating multiple Suess corrections’, Journal of Soils and Sediments, null. Available at: https://doi.org/10.1007/s11368-024-03765-2.
Cox, Terry et al. (2024) ‘Using stable carbon isotopes of lignin-derived methoxy to improve historical apportionments of particulate organic matter and sediment sources incorporating multiple Suess corrections’, Journal of Soils and Sediments, null. Available at: https://doi.org/10.1007/s11368-024-03765-2.
Cox, T. et al. (2024) ‘Utilising the Dual Isotopic Analysis (Δ13c and Δ2h) of Lignin Methoxy Groups in Forest Soils to Identify Changing Lignin Sources and Quantify Associated Bulk 13c Enrichments’. Elsevier BV. Available at: https://doi.org/10.2139/ssrn.4820686.
Cox, T. et al. (2024) ‘Utilising the Dual Isotopic Analysis (Δ13c and Δ2h) of Lignin Methoxy Groups in Forest Soils to Identify Changing Lignin Sources and Quantify Associated Bulk 13c Enrichments’. Elsevier BV. Available at: https://doi.org/10.2139/ssrn.4820686.
Fenta, Ayele A. et al. (2024) ‘An integrated modeling approach for estimating monthly global rainfall erosivity’, Scientific Reports, 14. Available at: https://doi.org/10.1038/s41598-024-59019-1.
Fenta, Ayele A. et al. (2024) ‘An integrated modeling approach for estimating monthly global rainfall erosivity’, Scientific Reports, 14. Available at: https://doi.org/10.1038/s41598-024-59019-1.
Gupta, Surya et al. (2024) ‘An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity’, Science of The Total Environment, 908. Available at: https://doi.org/10.1016/j.scitotenv.2023.168249.
Gupta, Surya et al. (2024) ‘An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity’, Science of The Total Environment, 908. Available at: https://doi.org/10.1016/j.scitotenv.2023.168249.
Osterwalder, S. et al. (2024) ‘Spatial and seasonal dynamics of gaseous elemental mercury concentrations over Switzerland observed by a passive air sampler network’, Environmental Science: Atmospheres [Preprint]. Available at: https://doi.org/10.1039/d4ea00052h.
Osterwalder, S. et al. (2024) ‘Spatial and seasonal dynamics of gaseous elemental mercury concentrations over Switzerland observed by a passive air sampler network’, Environmental Science: Atmospheres [Preprint]. Available at: https://doi.org/10.1039/d4ea00052h.
Panagos, Panos et al. (2024) ‘A 1 billion euro mission: A Soil Deal for Europe’, European Journal of Soil Science, 75(1). Available at: https://doi.org/10.1111/ejss.13466.
Panagos, Panos et al. (2024) ‘A 1 billion euro mission: A Soil Deal for Europe’, European Journal of Soil Science, 75(1). Available at: https://doi.org/10.1111/ejss.13466.
Panagos, Panos et al. (2024) ‘Soil bulk density assessment in Europe’, Agriculture, Ecosystems & Environment, 364. Available at: https://doi.org/10.1016/j.agee.2024.108907.
Panagos, Panos et al. (2024) ‘Soil bulk density assessment in Europe’, Agriculture, Ecosystems & Environment, 364. Available at: https://doi.org/10.1016/j.agee.2024.108907.
Panagos, Panos et al. (2024) ‘How the EU Soil Observatory contributes to a stronger soil erosion community’, Environmental Research, 248. Available at: https://doi.org/10.1016/j.envres.2024.118319.
Panagos, Panos et al. (2024) ‘How the EU Soil Observatory contributes to a stronger soil erosion community’, Environmental Research, 248. Available at: https://doi.org/10.1016/j.envres.2024.118319.
Panagos, P. et al. (2024) ‘Understanding the cost of soil erosion: An assessment of the sediment removal costs from the reservoirs of the European Union’, Journal of Cleaner Production, 343. Available at: https://doi.org/10.1016/j.jclepro.2023.140183.
Panagos, P. et al. (2024) ‘Understanding the cost of soil erosion: An assessment of the sediment removal costs from the reservoirs of the European Union’, Journal of Cleaner Production, 343. Available at: https://doi.org/10.1016/j.jclepro.2023.140183.
Prăvălie, Remus et al. (2024) ‘A unifying modelling of multiple land degradation pathways in Europe’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-48252-x.
Prăvălie, Remus et al. (2024) ‘A unifying modelling of multiple land degradation pathways in Europe’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-48252-x.
Sartori, Martina et al. (2024) ‘Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security’, Ecological Economics, 219. Available at: https://doi.org/10.1016/j.ecolecon.2023.108103.
Sartori, Martina et al. (2024) ‘Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security’, Ecological Economics, 219. Available at: https://doi.org/10.1016/j.ecolecon.2023.108103.
Song, Xiaodong et al. (2024) ‘Pervasive soil phosphorus losses in terrestrial ecosystems in China’, Global Change Biology, 30(1). Available at: https://doi.org/10.1111/gcb.17108.
Song, Xiaodong et al. (2024) ‘Pervasive soil phosphorus losses in terrestrial ecosystems in China’, Global Change Biology, 30(1). Available at: https://doi.org/10.1111/gcb.17108.
Yakutin, Mikhail V. et al. (2024) ‘Oribatid mites in a succession of permafrost soils in Central Yakutia’, Arctic, Antarctic, and Alpine Research, 56(1). Available at: https://doi.org/10.1080/15230430.2024.2334815.
Yakutin, Mikhail V. et al. (2024) ‘Oribatid mites in a succession of permafrost soils in Central Yakutia’, Arctic, Antarctic, and Alpine Research, 56(1). Available at: https://doi.org/10.1080/15230430.2024.2334815.
Bouasria, Abdelkrim et al. (2023) ‘Predictive performance of machine learning model with varying sampling designs, sample sizes, and spatial extents’, Ecological Informatics, 78. Available at: https://doi.org/10.1016/j.ecoinf.2023.102294.
Bouasria, Abdelkrim et al. (2023) ‘Predictive performance of machine learning model with varying sampling designs, sample sizes, and spatial extents’, Ecological Informatics, 78. Available at: https://doi.org/10.1016/j.ecoinf.2023.102294.
Wang, Z. et al. (2023) ‘Human-altered soil loss contributes to nearly half of water erosion in China’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3531552/v1.
Wang, Z. et al. (2023) ‘Human-altered soil loss contributes to nearly half of water erosion in China’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3531552/v1.
Gupta, Surya et al. (2023) ‘Global Mapping of Potential and Climatic Plant-Available Soil Water’, Journal of Advances in Modeling Earth Systems, 15(11). Available at: https://doi.org/10.1029/2022ms003277.
Gupta, Surya et al. (2023) ‘Global Mapping of Potential and Climatic Plant-Available Soil Water’, Journal of Advances in Modeling Earth Systems, 15(11). Available at: https://doi.org/10.1029/2022ms003277.
Guillevic, F. et al. (2023) ‘The legacy of metallurgical atmospheric contamination in a mountainous catchment: A delayed response of Pb contamination’, Science of the Total Environment, 895. Available at: https://doi.org/10.1016/j.scitotenv.2023.165127.
Guillevic, F. et al. (2023) ‘The legacy of metallurgical atmospheric contamination in a mountainous catchment: A delayed response of Pb contamination’, Science of the Total Environment, 895. Available at: https://doi.org/10.1016/j.scitotenv.2023.165127.
Weber, T.K.D. et al. (2023) ‘Hydro-pedotransfer functions: A roadmap for future development’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2023-1860.
Weber, T.K.D. et al. (2023) ‘Hydro-pedotransfer functions: A roadmap for future development’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2023-1860.
Aryeh Feinberg et al. (2023) ‘Data and code for the publication: ‘Deforestation as an anthropogenic driver of mercury pollution’’. Edited by https://zenodo.org/records/8364698. Available at: https://doi.org/10.5281/zenodo.7566031.
Aryeh Feinberg et al. (2023) ‘Data and code for the publication: ‘Deforestation as an anthropogenic driver of mercury pollution’’. Edited by https://zenodo.org/records/8364698. Available at: https://doi.org/10.5281/zenodo.7566031.
Meusburger, K. et al. (2023) ‘Validating plutonium-239+240 as a novel soil redistribution tracer - a comparison to measured sediment yield’, SOIL, 9(2), pp. 399–409. Available at: https://doi.org/10.5194/soil-9-399-2023.
Meusburger, K. et al. (2023) ‘Validating plutonium-239+240 as a novel soil redistribution tracer - a comparison to measured sediment yield’, SOIL, 9(2), pp. 399–409. Available at: https://doi.org/10.5194/soil-9-399-2023.
Groß-Schmölders, M. and Leifeld, J. (2023) ‘Analyzing the degree of organic matter transformation of rewetted European peatlands in the context of their greenhouse gas emission potential’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-2244.
Groß-Schmölders, M. and Leifeld, J. (2023) ‘Analyzing the degree of organic matter transformation of rewetted European peatlands in the context of their greenhouse gas emission potential’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-2244.
Gupta, S. et al. (2023) Modified global soil risk map using soil erosion and saturated hydraulic conductivity maps. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-1892.
Gupta, S. et al. (2023) Modified global soil risk map using soil erosion and saturated hydraulic conductivity maps. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-1892.
Wang, Y. et al. (2023) Nitrogen losses from drained temperate agricultural peatland after mineral soil coverage. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-13830.
Wang, Y. et al. (2023) Nitrogen losses from drained temperate agricultural peatland after mineral soil coverage. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-13830.
Fenta, A.A. et al. (2023) ‘Improving satellite-based global rainfall erosivity estimates through merging with gauge data’, Journal of Hydrology, 620. Available at: https://doi.org/10.1016/j.jhydrol.2023.129555.
Fenta, A.A. et al. (2023) ‘Improving satellite-based global rainfall erosivity estimates through merging with gauge data’, Journal of Hydrology, 620. Available at: https://doi.org/10.1016/j.jhydrol.2023.129555.
Yttri, Karl Espen et al. (2023) ‘Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2023-615.
Yttri, Karl Espen et al. (2023) ‘Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2023-615.
Scheper, S. et al. (2023) Soil Loss and Sedimentation Rates in a Sub-Catchment of the Yellow River Basin in China. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-2510450/v1.
Scheper, S. et al. (2023) Soil Loss and Sedimentation Rates in a Sub-Catchment of the Yellow River Basin in China. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-2510450/v1.
Guillevic, F. et al. (2023) ‘Pb dispersion pathways in mountain soils contaminated by ancient mining and smelting activities’, Applied Geochemistry, 150. Available at: https://doi.org/10.1016/j.apgeochem.2022.105556.
Guillevic, F. et al. (2023) ‘Pb dispersion pathways in mountain soils contaminated by ancient mining and smelting activities’, Applied Geochemistry, 150. Available at: https://doi.org/10.1016/j.apgeochem.2022.105556.
Matthews, F. et al. (2023) ‘A field parcel-oriented approach to evaluate the crop cover-management factor and time-distributed erosion risk in Europe’, International Soil and Water Conservation Research, 11(1), pp. 43–59. Available at: https://doi.org/10.1016/j.iswcr.2022.09.005.
Matthews, F. et al. (2023) ‘A field parcel-oriented approach to evaluate the crop cover-management factor and time-distributed erosion risk in Europe’, International Soil and Water Conservation Research, 11(1), pp. 43–59. Available at: https://doi.org/10.1016/j.iswcr.2022.09.005.
Borrelli, P. et al. (2023) ‘Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland’, International Soil and Water Conservation Research, 11(4), pp. 713–725. Available at: https://doi.org/10.1016/j.iswcr.2023.07.008.
Borrelli, P. et al. (2023) ‘Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland’, International Soil and Water Conservation Research, 11(4), pp. 713–725. Available at: https://doi.org/10.1016/j.iswcr.2023.07.008.
Christopher Feeney et al. (2023) ‘Agricultural practices drive elevated rates of topsoil decline across Kenya, but terracing and reduced tillage can reverse this’, Science of The Total Environment [Preprint]. Available at: https://doi.org/10.5285/86d07d98-2956-4395-8b02-29dd5d98e6be.
Christopher Feeney et al. (2023) ‘Agricultural practices drive elevated rates of topsoil decline across Kenya, but terracing and reduced tillage can reverse this’, Science of The Total Environment [Preprint]. Available at: https://doi.org/10.5285/86d07d98-2956-4395-8b02-29dd5d98e6be.
Conen, Franz et al. (2023) ‘On coarse patterns in the atmospheric concentration of ice nucleating particles’, Atmospheric research, 285, p. ARTN 106645. Available at: https://doi.org/10.1016/j.atmosres.2023.106645.
Conen, Franz et al. (2023) ‘On coarse patterns in the atmospheric concentration of ice nucleating particles’, Atmospheric research, 285, p. ARTN 106645. Available at: https://doi.org/10.1016/j.atmosres.2023.106645.
Cox, Terry et al. (2023) ‘Less is more? A novel method for identifying and evaluating non-informative tracers in sediment source mixing models’, Journal of Soils and Sediments, 23, pp. 3241–3261. Available at: https://doi.org/10.1007/s11368-023-03573-0.
Cox, Terry et al. (2023) ‘Less is more? A novel method for identifying and evaluating non-informative tracers in sediment source mixing models’, Journal of Soils and Sediments, 23, pp. 3241–3261. Available at: https://doi.org/10.1007/s11368-023-03573-0.
de Oliveira Fagundes, Hugo et al. (2023) ‘An assessment of South American sediment fluxes under climate changes’, Science of the Total Environment, 879. Available at: https://doi.org/10.1016/j.scitotenv.2023.163056.
de Oliveira Fagundes, Hugo et al. (2023) ‘An assessment of South American sediment fluxes under climate changes’, Science of the Total Environment, 879. Available at: https://doi.org/10.1016/j.scitotenv.2023.163056.
Einbock, Annika et al. (2023) ‘Export of ice-nucleating particles from watersheds: results from the Amazon and Tocantins river plumes’, Royal Society Open Science, 10(2), p. 220878. Available at: https://doi.org/10.1098/rsos.220878.
Einbock, Annika et al. (2023) ‘Export of ice-nucleating particles from watersheds: results from the Amazon and Tocantins river plumes’, Royal Society Open Science, 10(2), p. 220878. Available at: https://doi.org/10.1098/rsos.220878.
Fagundes, H. O. et al. (2023) ‘Human-Induced Changes in South American River Sediment Fluxes From 1984 to 2019’, Water Resources Research, 59(6). Available at: https://doi.org/10.1029/2023wr034519.
Fagundes, H. O. et al. (2023) ‘Human-Induced Changes in South American River Sediment Fluxes From 1984 to 2019’, Water Resources Research, 59(6). Available at: https://doi.org/10.1029/2023wr034519.
Feinberg, Aryeh et al. (2023) ‘Deforestation as an Anthropogenic Driver of Mercury Pollution’, Environmental Science and Technology [Preprint]. Available at: https://doi.org/10.1021/acs.est.3c07851.
Feinberg, Aryeh et al. (2023) ‘Deforestation as an Anthropogenic Driver of Mercury Pollution’, Environmental Science and Technology [Preprint]. Available at: https://doi.org/10.1021/acs.est.3c07851.
Guillevic, F. et al. (2023) ‘The long-term mining legacy and remobilization of anthropogenic Pb in a mountainous catchment’. France: European Association of Geochemistry. Available at: https://doi.org/10.7185/gold2023.19481.
Guillevic, F. et al. (2023) ‘The long-term mining legacy and remobilization of anthropogenic Pb in a mountainous catchment’. France: European Association of Geochemistry. Available at: https://doi.org/10.7185/gold2023.19481.
Kukal, M.S. et al. (2023) ‘Atmospheric dryness impacts on crop yields are buffered in soils with higher available water capacity’, Geoderma, 429. Available at: https://doi.org/10.1016/j.geoderma.2022.116270.
Kukal, M.S. et al. (2023) ‘Atmospheric dryness impacts on crop yields are buffered in soils with higher available water capacity’, Geoderma, 429. Available at: https://doi.org/10.1016/j.geoderma.2022.116270.
Matthews, F. et al. (2023) ‘EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water’, Scientific data, 10(1). Available at: https://doi.org/10.1038/s41597-023-02393-8.
Matthews, F. et al. (2023) ‘EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water’, Scientific data, 10(1). Available at: https://doi.org/10.1038/s41597-023-02393-8.
Panagos, P. et al. (2023) ‘Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution’, Data in Brief, 50. Available at: https://doi.org/10.1016/j.dib.2023.109482.
Panagos, P. et al. (2023) ‘Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution’, Data in Brief, 50. Available at: https://doi.org/10.1016/j.dib.2023.109482.
Pereira Freitas, Gabriel et al. (2023) ‘Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic’, Nature communications, 14(1), p. 5997. Available at: https://doi.org/10.1038/s41467-023-41696-7.
Pereira Freitas, Gabriel et al. (2023) ‘Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic’, Nature communications, 14(1), p. 5997. Available at: https://doi.org/10.1038/s41467-023-41696-7.
Sinha, Rajiv et al. (2023) ‘The Kosi Megafan, India’, in M. Justin Wilkinson, Yanni Gunnell (ed.) Fluvial megafans on Earth and Mars . 1 edn. Cambridge: Cambridge University Press ( Fluvial megafans on Earth and Mars ), pp. 202–218. Available at: https://doi.org/https://doi.org/10.1017/9781108525923.014.
Sinha, Rajiv et al. (2023) ‘The Kosi Megafan, India’, in M. Justin Wilkinson, Yanni Gunnell (ed.) Fluvial megafans on Earth and Mars . 1 edn. Cambridge: Cambridge University Press ( Fluvial megafans on Earth and Mars ), pp. 202–218. Available at: https://doi.org/https://doi.org/10.1017/9781108525923.014.
von Jeetze, Patrick José et al. (2023) ‘Projected landscape-scale repercussions of global action for climate and biodiversity protection’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-38043-1.
von Jeetze, Patrick José et al. (2023) ‘Projected landscape-scale repercussions of global action for climate and biodiversity protection’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-38043-1.
Zhang, Fan et al. (2023) ‘Call for joint international actions to improve scientific understanding and address soil erosion and riverine sediment issues in mountainous regions’, International Soil and Water Conservation Research, 3(11), pp. 586–588. Available at: https://doi.org/10.1016/j.iswcr.2023.04.006.
Zhang, Fan et al. (2023) ‘Call for joint international actions to improve scientific understanding and address soil erosion and riverine sediment issues in mountainous regions’, International Soil and Water Conservation Research, 3(11), pp. 586–588. Available at: https://doi.org/10.1016/j.iswcr.2023.04.006.
Meusburger, K. et al. (2022) Validating Plutonium-239+240 as novel soil redistribution tracer – a comparison to measured sediment yield. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2022-1359.
Meusburger, K. et al. (2022) Validating Plutonium-239+240 as novel soil redistribution tracer – a comparison to measured sediment yield. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2022-1359.
Gupta, Surya et al. (2022) ‘Global Soil Hydraulic Properties dataset based on legacy site observations and robust parameterization’, Scientific Data, 9(1). Available at: https://doi.org/10.1038/s41597-022-01481-5.
Gupta, Surya et al. (2022) ‘Global Soil Hydraulic Properties dataset based on legacy site observations and robust parameterization’, Scientific Data, 9(1). Available at: https://doi.org/10.1038/s41597-022-01481-5.
Decock, C. et al. (2022) Process Rate Estimator: A novel model to predict total denitrification using natural abundance stable isotopes of N<sub>2</sub>O. Copernicus GmbH. Available at: https://doi.org/10.5194/bg-2022-221.
Decock, C. et al. (2022) Process Rate Estimator: A novel model to predict total denitrification using natural abundance stable isotopes of N<sub>2</sub>O. Copernicus GmbH. Available at: https://doi.org/10.5194/bg-2022-221.
Gupta, Surya et al. (2022) ‘Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates’, Remote Sensing, 14(8). Available at: https://doi.org/10.3390/rs14081947.
Gupta, Surya et al. (2022) ‘Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates’, Remote Sensing, 14(8). Available at: https://doi.org/10.3390/rs14081947.
Birkholz, A. et al. (2022) Aquatic microorganisms or reed grass as potential disturbing factors in varved sediment records when tracing terrestrial input. An example from a eutrophic Swiss lake. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-3785.
Birkholz, A. et al. (2022) Aquatic microorganisms or reed grass as potential disturbing factors in varved sediment records when tracing terrestrial input. An example from a eutrophic Swiss lake. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-3785.
Cox, T. and Alewell, C. (2022) Defining and evaluating the effect of redundant isotopic tracers in Bayesian unmixing models. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-4050.
Cox, T. and Alewell, C. (2022) Defining and evaluating the effect of redundant isotopic tracers in Bayesian unmixing models. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-4050.
Meusburger, Katrin et al. (2022) Fallout radionuclides indicate a 10% loss of European topsoil in 50 years. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-6154.
Meusburger, Katrin et al. (2022) Fallout radionuclides indicate a 10% loss of European topsoil in 50 years. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-6154.
Gupta, Surya et al. (2022) ‘Limited role of soil texture in mediating natural vegetation response to rainfall anomalies’, Environmental Research Letters, 17(3). Available at: https://doi.org/10.1088/1748-9326/ac5206.
Gupta, Surya et al. (2022) ‘Limited role of soil texture in mediating natural vegetation response to rainfall anomalies’, Environmental Research Letters, 17(3). Available at: https://doi.org/10.1088/1748-9326/ac5206.
Li, Lu et al. (2022) ‘Multistep Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder–Decoder Networks’, Journal of Hydrometeorology, 23(3), pp. 337–350. Available at: https://doi.org/10.1175/jhm-d-21-0131.1.
Li, Lu et al. (2022) ‘Multistep Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder–Decoder Networks’, Journal of Hydrometeorology, 23(3), pp. 337–350. Available at: https://doi.org/10.1175/jhm-d-21-0131.1.
Adla, Soham et al. (2022) ‘Agricultural Advisory Diagnostics Using a Data-Based Approach: Test Case in an Intensively Managed Rural Landscape in the Ganga River Basin, India’, Frontiers in Water, 3. Available at: https://doi.org/10.3389/frwa.2021.798241.
Adla, Soham et al. (2022) ‘Agricultural Advisory Diagnostics Using a Data-Based Approach: Test Case in an Intensively Managed Rural Landscape in the Ganga River Basin, India’, Frontiers in Water, 3. Available at: https://doi.org/10.3389/frwa.2021.798241.
Araujo, Beatriz Ferreira et al. (2022) ‘Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere’, Nature Communications, 13(1), p. 4956. Available at: https://doi.org/10.1038/s41467-022-32440-8.
Araujo, Beatriz Ferreira et al. (2022) ‘Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere’, Nature Communications, 13(1), p. 4956. Available at: https://doi.org/10.1038/s41467-022-32440-8.
Baccolo, Giovanni et al. (2022) ‘Pb-210(xs.) is a viable alternative to Cs-137 for tracing soil redistribution in mountain pastures affected by heterogeneous Chernobyl fallout’, Earth Surface Processes and Landforms, pp. 1–13. Available at: https://doi.org/10.1002/esp.5512.
Baccolo, Giovanni et al. (2022) ‘Pb-210(xs.) is a viable alternative to Cs-137 for tracing soil redistribution in mountain pastures affected by heterogeneous Chernobyl fallout’, Earth Surface Processes and Landforms, pp. 1–13. Available at: https://doi.org/10.1002/esp.5512.
Batista, Pedro V. G. et al. (2022) ‘A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments’, Hydrology and Earth System Sciences, 26(14), pp. 3753–3770. Available at: https://doi.org/10.5194/hess-26-3753-2022.
Batista, Pedro V. G. et al. (2022) ‘A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments’, Hydrology and Earth System Sciences, 26(14), pp. 3753–3770. Available at: https://doi.org/10.5194/hess-26-3753-2022.
Borrelli, Pasquale et al. (2022) ‘Policy implications of multiple concurrent soil erosion processes in European farmland’, Nature Sustainability, (6), pp. 103–112. Available at: https://doi.org/10.1038/s41893-022-00988-4.
Borrelli, Pasquale et al. (2022) ‘Policy implications of multiple concurrent soil erosion processes in European farmland’, Nature Sustainability, (6), pp. 103–112. Available at: https://doi.org/10.1038/s41893-022-00988-4.
Borrelli, Pasquale et al. (2022) ‘Probabilistic Land Use Allocation in the Global Soil Erosion Modelling’, pp. 3–9. Available at: https://doi.org/10.1007/978-981-16-7916-2_1.
Borrelli, Pasquale et al. (2022) ‘Probabilistic Land Use Allocation in the Global Soil Erosion Modelling’, pp. 3–9. Available at: https://doi.org/10.1007/978-981-16-7916-2_1.
Brunner, Cyril et al. (2022) ‘The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580ma.s.l.), Switzerland’, Atmospheric Chemistry and Physics, 22(11), pp. 7557–7573. Available at: https://doi.org/10.5194/acp-22-7557-2022.
Brunner, Cyril et al. (2022) ‘The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580ma.s.l.), Switzerland’, Atmospheric Chemistry and Physics, 22(11), pp. 7557–7573. Available at: https://doi.org/10.5194/acp-22-7557-2022.
Chen, Chaoyue et al. (2022) ‘The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study’, Environmental Pollution, 307(307), p. 119483. Available at: https://doi.org/10.1016/j.envpol.2022.119483.
Chen, Chaoyue et al. (2022) ‘The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study’, Environmental Pollution, 307(307), p. 119483. Available at: https://doi.org/10.1016/j.envpol.2022.119483.
Conen, Franz et al. (2022) ‘Measurement report: Ice-nucleating particles active ≥ -15 °C in free tropospheric air over western Europe’, Atmospheric chemistry and physics, 22(5), pp. 3433–3444. Available at: https://doi.org/10.5194/acp-22-3433-2022.
Conen, Franz et al. (2022) ‘Measurement report: Ice-nucleating particles active ≥ -15 °C in free tropospheric air over western Europe’, Atmospheric chemistry and physics, 22(5), pp. 3433–3444. Available at: https://doi.org/10.5194/acp-22-3433-2022.