Faculty of Science
Faculty of Science
UNIverse - Public Research Portal
Publications
568 found
Show per page
Dicen, G. et al. (2024) ‘Distribution and sources of fallout 137 Cs and 239+240 Pu in Equatorial and Southern Hemisphere reference soils’. Copernicus GmbH. Available at: https://doi.org/10.5194/essd-2024-509.
URLs
URLs
Cox, Terry et al. (2024) ‘Isotopic analysis (δ13C and δ2H) of lignin methoxy groups in forest soils to identify and quantify lignin sources’, Science of The Total Environment, 949, p. 175025. Available at: https://doi.org/10.1016/j.scitotenv.2024.175025.
URLs
URLs
Scheper, S. et al. (2024) ‘Soil loss and sedimentation rates in a subcatchment of the Yellow river Basin in China’, International Soil and Water Conservation Research, 12(3), pp. 534–547. Available at: https://doi.org/10.1016/j.iswcr.2023.11.008.
URLs
URLs
Das, S. et al. (2024) ‘GloRESatE: A dataset for global rainfall erosivity derived from multi-source data’, Scientific Data, 11(1). Available at: https://doi.org/10.1038/s41597-024-03756-5.
URLs
URLs
Weber, T. K. D. et al. (2024) ‘Hydro-pedotransfer functions: a roadmap for future development’, Hydrol. Earth Syst. Sci., (14), p. 3391. Available at: https://doi.org/10.5194/hess-28-3391-2024.
URLs
URLs
Einbock, A. and Conen, F. (2024) ‘Similar freezing spectra of particles on plant canopies as in air at a high-altitude site’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2024-2067.
URLs
URLs
Einbock, A. and Conen, F. (2024) ‘Frost-free zone on leaves revisited’, Proceedings of the National Academy of Sciences, 121(26). Available at: https://doi.org/10.1073/pnas.2407062121.
URLs
URLs
Guillevic, F. et al. (2024) ‘Multi-isotope (Pb, Sb) approach to trace metallic contaminant sources at a historical mining and metallurgical site’, Chemical Geology, 649. Available at: https://doi.org/10.1016/j.chemgeo.2024.121958.
URLs
URLs
Khodadadi, M. et al. (2024) ‘Spatial cross-correlation of surface soil physicochemical properties with soil erosion estimated by fallout radionuclides in croplands in a semi-humid region of Iran’, Catena, 237. Available at: https://doi.org/10.1016/j.catena.2024.107836.
URLs
URLs
Bernatek-Jakiel, A. et al. (2024) ‘A piping erosion susceptibility map of Europe’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-12976.
URLs
URLs
Moreno Romero, G., Alewell, C. and Borrelli, P. (2024) Land degradation due to soil erosion in the Mediterranean olive groves: A comparison of 137Cs, 239+240Pu radionuclides and 3D reconstruction of surface levels. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-16310.
URLs
URLs
Pravalie, R. et al. (2024) ‘Towards a unifying approach of land degradation in Europe’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-12401.
URLs
URLs
Birkholz, A. and Alewell, C. (2024) ‘Aquatic microorganisms are a (potential) provider of long-chain fatty acids to lake sediments in the temperate climate zone’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-1960.
URLs
URLs
Borrelli, P., Panagos, P. and Alewell, C. (2024) ‘Modeling multiple concurrent soil erosion processes’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-9365.
URLs
URLs
Cox, T. et al. (2024) ‘Using stable carbon isotopes of lignin derived methoxy groups to investigate the impact of historical land use change on sediment/particulate matter dynamics’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-10471.
URLs
URLs
Dicen, G. et al. (2024) ‘Spatial distribution of fallout 137Cs and 239+240Pu in Equatorial and Southern Hemisphere soils’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-3077.
URLs
URLs
Einbock, A. and Conen, F. (2024) Similar freezing spectra of particles in the phyllosphere as at mixed-phase cloud height. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-4172.
URLs
URLs
Guillevic, F. et al. (2024) ‘Environmental and physical factors controlling the distribution of 137Cs in lake sediments in the Southern Hemisphere: a meta-analysis’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-6366.
URLs
URLs
Gupta, S. and Alewell, C. (2024) ‘The importance of soil structure data for soil erosion modelling and mapping’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-1561.
URLs
URLs
H. Afshar, M. et al. (2024) ‘AI-driven insights into soil health and soil degradation in Europe in the face of climate and anthropogenic challenges’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-9512.
URLs
URLs
Paul, S. et al. (2024) ‘Does a mineral soil coverage reduce greenhouse gas emissions from agriculturally managed peatlands?’ Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-11391.
URLs
URLs
Gupta, Surya, Hasler, Julia Kim and Alewell, Christine (2024) ‘Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus’, Geoderma Regional, 36, p. e00747. Available at: https://doi.org/10.1016/j.geodrs.2023.e00747.
URLs
URLs
Yttri, Karl Espen et al. (2024) ‘Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020)’, Atmospheric Chemistry and Physics, 24(4), pp. 2731–2758. Available at: https://doi.org/10.5194/acp-24-2731-2024.
URLs
URLs
von Jeetze, P. et al. (2024) ‘Dietary change is not a prerequisite for effective biodiversity conservation but reduces socioeconomic obstacles’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3914402/v1.
URLs
URLs
Diodato, N. et al. (2024) ‘Sediment loss modelling framework for the Bradano River Basin, southern Italy, 1950–2020’, Theoretical and Applied Climatology, 155(2), pp. 829–843. Available at: https://doi.org/10.1007/s00704-023-04662-3.
URLs
URLs
Khodadadi, M. et al. (2024) ‘Corrigendum to “Understanding deforestation impacts in western Iran: Insights from Plutonium atom ratios for quantifying Chernobyl contributions of 137Cs reference inventory” [J. Environ. Radioact. 257 (2023) 107078] (Journal of Environmental Radioactivity (2023) 257, (S0265931X22002697), (10.1016/j.jenvrad.2022.107078))’, Journal of Environmental Radioactivity, 272. Available at: https://doi.org/10.1016/j.jenvrad.2024.107369.
URLs
URLs
Bezak , Nejc et al. (2024) ‘Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments’, CATENA, 234. Available at: https://doi.org/10.1016/j.catena.2023.107596.
URLs
URLs
Cox, Terry et al. (2024) ‘Using stable carbon isotopes of lignin-derived methoxy to improve historical apportionments of particulate organic matter and sediment sources incorporating multiple Suess corrections’, Journal of Soils and Sediments, null. Available at: https://doi.org/10.1007/s11368-024-03765-2.
URLs
URLs
Cox, T. et al. (2024) ‘Utilising the Dual Isotopic Analysis (Δ13c and Δ2h) of Lignin Methoxy Groups in Forest Soils to Identify Changing Lignin Sources and Quantify Associated Bulk 13c Enrichments’. Elsevier BV. Available at: https://doi.org/10.2139/ssrn.4820686.
URLs
URLs
Fenta, Ayele A. et al. (2024) ‘An integrated modeling approach for estimating monthly global rainfall erosivity’, Scientific Reports, 14. Available at: https://doi.org/10.1038/s41598-024-59019-1.
URLs
URLs
Gupta, Surya et al. (2024) ‘An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity’, Science of The Total Environment, 908. Available at: https://doi.org/10.1016/j.scitotenv.2023.168249.
Osterwalder, S. et al. (2024) ‘Spatial and seasonal dynamics of gaseous elemental mercury concentrations over Switzerland observed by a passive air sampler network’, Environmental Science: Atmospheres [Preprint]. Available at: https://doi.org/10.1039/d4ea00052h.
URLs
URLs
Panagos, Panos et al. (2024) ‘Soil bulk density assessment in Europe’, Agriculture, Ecosystems & Environment, 364. Available at: https://doi.org/10.1016/j.agee.2024.108907.
URLs
URLs
Panagos, Panos et al. (2024) ‘How the EU Soil Observatory contributes to a stronger soil erosion community’, Environmental Research, 248. Available at: https://doi.org/10.1016/j.envres.2024.118319.
URLs
URLs
Panagos, P. et al. (2024) ‘Understanding the cost of soil erosion: An assessment of the sediment removal costs from the reservoirs of the European Union’, Journal of Cleaner Production, 343. Available at: https://doi.org/10.1016/j.jclepro.2023.140183.
URLs
URLs
Prăvălie, Remus et al. (2024) ‘A unifying modelling of multiple land degradation pathways in Europe’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-48252-x.
URLs
URLs
Sartori, Martina et al. (2024) ‘Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security’, Ecological Economics, 219. Available at: https://doi.org/10.1016/j.ecolecon.2023.108103.
URLs
URLs
Song, Xiaodong et al. (2024) ‘Pervasive soil phosphorus losses in terrestrial ecosystems in China’, Global Change Biology, 30(1). Available at: https://doi.org/10.1111/gcb.17108.
URLs
URLs
Yakutin, Mikhail V. et al. (2024) ‘Oribatid mites in a succession of permafrost soils in Central Yakutia’, Arctic, Antarctic, and Alpine Research, 56(1). Available at: https://doi.org/10.1080/15230430.2024.2334815.
URLs
URLs
Bouasria, Abdelkrim et al. (2023) ‘Predictive performance of machine learning model with varying sampling designs, sample sizes, and spatial extents’, Ecological Informatics, 78. Available at: https://doi.org/10.1016/j.ecoinf.2023.102294.
URLs
URLs
Wang, Z. et al. (2023) ‘Human-altered soil loss contributes to nearly half of water erosion in China’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3531552/v1.
URLs
URLs
Gupta, Surya et al. (2023) ‘Global Mapping of Potential and Climatic Plant-Available Soil Water’, Journal of Advances in Modeling Earth Systems, 15(11). Available at: https://doi.org/10.1029/2022ms003277.
URLs
URLs
Guillevic, F. et al. (2023) ‘The legacy of metallurgical atmospheric contamination in a mountainous catchment: A delayed response of Pb contamination’, Science of the Total Environment, 895. Available at: https://doi.org/10.1016/j.scitotenv.2023.165127.
URLs
URLs
Weber, T.K.D. et al. (2023) ‘Hydro-pedotransfer functions: A roadmap for future development’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2023-1860.
URLs
URLs
Meusburger, K. et al. (2023) ‘Validating plutonium-239+240 as a novel soil redistribution tracer - a comparison to measured sediment yield’, SOIL, 9(2), pp. 399–409. Available at: https://doi.org/10.5194/soil-9-399-2023.
URLs
URLs
Groß-Schmölders, M. and Leifeld, J. (2023) ‘Analyzing the degree of organic matter transformation of rewetted European peatlands in the context of their greenhouse gas emission potential’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-2244.
URLs
URLs
Gupta, S. et al. (2023) Modified global soil risk map using soil erosion and saturated hydraulic conductivity maps. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-1892.
URLs
URLs
Wang, Y. et al. (2023) Nitrogen losses from drained temperate agricultural peatland after mineral soil coverage. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-13830.
URLs
URLs
Fenta, A.A. et al. (2023) ‘Improving satellite-based global rainfall erosivity estimates through merging with gauge data’, Journal of Hydrology, 620. Available at: https://doi.org/10.1016/j.jhydrol.2023.129555.
URLs
URLs
Yttri, Karl Espen et al. (2023) ‘Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2023-615.
URLs
URLs
Scheper, S. et al. (2023) Soil Loss and Sedimentation Rates in a Sub-Catchment of the Yellow River Basin in China. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-2510450/v1.
URLs
URLs
Guillevic, F. et al. (2023) ‘Pb dispersion pathways in mountain soils contaminated by ancient mining and smelting activities’, Applied Geochemistry, 150. Available at: https://doi.org/10.1016/j.apgeochem.2022.105556.
URLs
URLs
Matthews, F. et al. (2023) ‘A field parcel-oriented approach to evaluate the crop cover-management factor and time-distributed erosion risk in Europe’, International Soil and Water Conservation Research, 11(1), pp. 43–59. Available at: https://doi.org/10.1016/j.iswcr.2022.09.005.
URLs
URLs
Borrelli, P. et al. (2023) ‘Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland’, International Soil and Water Conservation Research, 11(4), pp. 713–725. Available at: https://doi.org/10.1016/j.iswcr.2023.07.008.
URLs
URLs
Conen, Franz et al. (2023) ‘On coarse patterns in the atmospheric concentration of ice nucleating particles’, Atmospheric research, 285, p. ARTN 106645. Available at: https://doi.org/10.1016/j.atmosres.2023.106645.
URLs
URLs
Cox, Terry et al. (2023) ‘Less is more? A novel method for identifying and evaluating non-informative tracers in sediment source mixing models’, Journal of Soils and Sediments, 23, pp. 3241–3261. Available at: https://doi.org/10.1007/s11368-023-03573-0.
URLs
URLs
de Oliveira Fagundes, Hugo et al. (2023) ‘An assessment of South American sediment fluxes under climate changes’, Science of the Total Environment, 879. Available at: https://doi.org/10.1016/j.scitotenv.2023.163056.
URLs
URLs
Einbock, Annika et al. (2023) ‘Export of ice-nucleating particles from watersheds: results from the Amazon and Tocantins river plumes’, Royal Society Open Science, 10(2), p. 220878. Available at: https://doi.org/10.1098/rsos.220878.
URLs
URLs
Fagundes, H. O. et al. (2023) ‘Human-Induced Changes in South American River Sediment Fluxes From 1984 to 2019’, Water Resources Research, 59(6). Available at: https://doi.org/10.1029/2023wr034519.
URLs
URLs
Feinberg, Aryeh et al. (2023) ‘Deforestation as an Anthropogenic Driver of Mercury Pollution’, Environmental Science and Technology [Preprint]. Available at: https://doi.org/10.1021/acs.est.3c07851.
URLs
URLs
Guillevic, F. et al. (2023) ‘The long-term mining legacy and remobilization of anthropogenic Pb in a mountainous catchment’. France: European Association of Geochemistry. Available at: https://doi.org/10.7185/gold2023.19481.
URLs
URLs
Kukal, M.S. et al. (2023) ‘Atmospheric dryness impacts on crop yields are buffered in soils with higher available water capacity’, Geoderma, 429. Available at: https://doi.org/10.1016/j.geoderma.2022.116270.
URLs
URLs
Matthews, F. et al. (2023) ‘EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water’, Scientific data, 10(1). Available at: https://doi.org/10.1038/s41597-023-02393-8.
URLs
URLs
Panagos, P. et al. (2023) ‘Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution’, Data in Brief, 50. Available at: https://doi.org/10.1016/j.dib.2023.109482.
URLs
URLs
Pereira Freitas, Gabriel et al. (2023) ‘Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic’, Nature communications, 14(1), p. 5997. Available at: https://doi.org/10.1038/s41467-023-41696-7.
URLs
URLs
Sinha, Rajiv et al. (2023) ‘The Kosi Megafan, India’, in M. Justin Wilkinson, Yanni Gunnell (ed.) Fluvial megafans on Earth and Mars . 1 edn. Cambridge: Cambridge University Press ( Fluvial megafans on Earth and Mars ), pp. 202–218. Available at: https://doi.org/https://doi.org/10.1017/9781108525923.014.
URLs
URLs
von Jeetze, Patrick José et al. (2023) ‘Projected landscape-scale repercussions of global action for climate and biodiversity protection’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-38043-1.
URLs
URLs
Zhang, Fan et al. (2023) ‘Call for joint international actions to improve scientific understanding and address soil erosion and riverine sediment issues in mountainous regions’, International Soil and Water Conservation Research, 3(11), pp. 586–588. Available at: https://doi.org/10.1016/j.iswcr.2023.04.006.
URLs
URLs
Meusburger, K. et al. (2022) Validating Plutonium-239+240 as novel soil redistribution tracer – a comparison to measured sediment yield. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-2022-1359.
URLs
URLs
Gupta, Surya et al. (2022) ‘Global Soil Hydraulic Properties dataset based on legacy site observations and robust parameterization’, Scientific Data, 9(1). Available at: https://doi.org/10.1038/s41597-022-01481-5.
URLs
URLs
Decock, C. et al. (2022) Process Rate Estimator: A novel model to predict total denitrification using natural abundance stable isotopes of N<sub>2</sub>O. Copernicus GmbH. Available at: https://doi.org/10.5194/bg-2022-221.
URLs
URLs
Gupta, Surya et al. (2022) ‘Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates’, Remote Sensing, 14(8). Available at: https://doi.org/10.3390/rs14081947.
URLs
URLs
Birkholz, A. et al. (2022) Aquatic microorganisms or reed grass as potential disturbing factors in varved sediment records when tracing terrestrial input. An example from a eutrophic Swiss lake. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-3785.
URLs
URLs
Cox, T. and Alewell, C. (2022) Defining and evaluating the effect of redundant isotopic tracers in Bayesian unmixing models. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-4050.
URLs
URLs
Meusburger, K. et al. (2022) Fallout radionuclides indicate a 10% loss of European topsoil in 50 years. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu22-6154.
URLs
URLs
Gupta, Surya et al. (2022) ‘Limited role of soil texture in mediating natural vegetation response to rainfall anomalies’, Environmental Research Letters, 17(3). Available at: https://doi.org/10.1088/1748-9326/ac5206.
URLs
URLs
Li, Lu et al. (2022) ‘Multistep Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder–Decoder Networks’, Journal of Hydrometeorology, 23(3), pp. 337–350. Available at: https://doi.org/10.1175/jhm-d-21-0131.1.
URLs
URLs
Adla, Soham et al. (2022) ‘Agricultural Advisory Diagnostics Using a Data-Based Approach: Test Case in an Intensively Managed Rural Landscape in the Ganga River Basin, India’, Frontiers in Water, 3. Available at: https://doi.org/10.3389/frwa.2021.798241.
URLs
URLs
Araujo, Beatriz Ferreira et al. (2022) ‘Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere’, Nature Communications, 13(1), p. 4956. Available at: https://doi.org/10.1038/s41467-022-32440-8.
URLs
URLs
Baccolo, Giovanni et al. (2022) ‘Pb-210(xs.) is a viable alternative to Cs-137 for tracing soil redistribution in mountain pastures affected by heterogeneous Chernobyl fallout’, Earth Surface Processes and Landforms, pp. 1–13. Available at: https://doi.org/10.1002/esp.5512.
URLs
URLs
Batista, Pedro V. G. et al. (2022) ‘A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments’, Hydrology and Earth System Sciences, 26(14), pp. 3753–3770. Available at: https://doi.org/10.5194/hess-26-3753-2022.
URLs
URLs
Borrelli, Pasquale et al. (2022) ‘Policy implications of multiple concurrent soil erosion processes in European farmland’, Nature Sustainability, (6), pp. 103–112. Available at: https://doi.org/10.1038/s41893-022-00988-4.
URLs
URLs
Borrelli, Pasquale et al. (2022) ‘Probabilistic Land Use Allocation in the Global Soil Erosion Modelling’, pp. 3–9. Available at: https://doi.org/10.1007/978-981-16-7916-2_1.
URLs
URLs
Brunner, Cyril et al. (2022) ‘The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580ma.s.l.), Switzerland’, Atmospheric Chemistry and Physics, 22(11), pp. 7557–7573. Available at: https://doi.org/10.5194/acp-22-7557-2022.
URLs
URLs
Chen, Chaoyue et al. (2022) ‘The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study’, Environmental Pollution, 307(307), p. 119483. Available at: https://doi.org/10.1016/j.envpol.2022.119483.
URLs
URLs
Conen, Franz et al. (2022) ‘Measurement report: Ice-nucleating particles active ≥ -15 °C in free tropospheric air over western Europe’, Atmospheric chemistry and physics, 22(5), pp. 3433–3444. Available at: https://doi.org/10.5194/acp-22-3433-2022.
URLs
URLs
Glauser, Emanuel et al. (2022) ‘Total mercury accumulation in aboveground parts of maize plants (Zea mays) throughout a growing season’, Journal of Plant Interactions, 17(1), pp. 239–243. Available at: https://doi.org/10.1080/17429145.2022.2028914.
URLs
URLs
Groß-Schmölders, Miriam et al. (2022) ‘Stable isotopes (d(13)C, d(15)N) and biomarkers as indicators of the hydrological regime of fens in a European east-west transect’, Science of the Total Environment, 838(Pt 4), p. 156603. Available at: https://doi.org/10.1016/j.scitotenv.2022.156603.
URLs
URLs
Jiskra, Martin et al. (2022) ‘Climatic Controls on a Holocene Mercury Stable Isotope Sediment Record of Lake Titicaca’, ACS Earth and Space Chemistry, 6(2), pp. 346–357. Available at: https://doi.org/10.1021/acsearthspacechem.1c00304.
URLs
URLs
Khodadadi, Maral et al. (2022) ‘Understanding deforestation impacts on soil erosion rates using Cs-137, Pu239+240, and (210)Pbex and soil physicochemical properties in western Iran’, Journal of Environmental Radioactivity, 257, p. 107078. Available at: https://doi.org/10.1016/j.jenvrad.2022.107078.
URLs
URLs
Mignani, Claudia (2022) Ice formation at moderate supercooling in mixed-phase clouds and its link to precipitation. . Translated by Alewell Christine; Conen Franz; Kalberer Markus. Dissertation.
Mignani, Claudia et al. (2022) ‘Snowfall in Northern Finland derives mostly from ice clouds’, Atmospheric chemistry and physics, 22(20), pp. 13551–13568. Available at: https://doi.org/10.5194/acp-22-13551-2022.
URLs
URLs
Scheper, Simon et al. (2022) ‘TASOW - A tool for the automated selection of potential windbreaks’, MethodsX, 9, p. 101826. Available at: https://doi.org/10.1016/j.mex.2022.101826.
URLs
URLs
Scheper, Simon et al. (2022) ‘Occurrence and erosion susceptibility of German Pelosols and international equivalents’, Journal of Plant Nutrition and Soil Science, 185(6), pp. 821–835. Available at: https://doi.org/10.1002/jpln.202200024.
URLs
URLs
Serk, Henrik et al. (2022) ‘Organochemical Characterization of Peat Reveals Decomposition of Specific Hemicellulose Structures as the Main Cause of Organic Matter Loss in the Acrotelm’, Environmental Science and Technology, 56(23), pp. 17410–17419. Available at: https://doi.org/10.1021/acs.est.2c03513.
URLs
URLs
Serk, Henrik et al. (2022) ‘Organo-Chemical Characterisation of Peat Decomposition Reveals Preferential Degradation of Hemicelluloses as Main Cause for Organic Matter Loss in the Acrotelm’, SSRN Electronic Journal [Preprint]. Available at: https://doi.org/10.2139/ssrn.4051383.
URLs
URLs
Wang, Yuqiao (2022) Ecosystem carbon and nitrogen losses from temperate agricultural peatland with mineral soil coverage. . Translated by Alewell Christine; Leifeld Jens. Dissertation.
Wang, Yuqiao et al. (2022) ‘Reduced nitrogen losses from drained temperate agricultural peatland after mineral soil coverage’, Biology and Fertility of Soils, pp. 1–13. Available at: https://doi.org/10.1007/s00374-022-01689-y.
URLs
URLs
Wang, Yuqiao et al. (2022) ‘Reduced Nitrous Oxide Emissions From Drained Temperate Agricultural Peatland After Coverage With Mineral Soil’, Frontiers in Environmental Science, 10, p. 856599. Available at: https://doi.org/10.3389/fenvs.2022.856599.
URLs
URLs
Wieder, Jörg et al. (2022) ‘Unveiling atmospheric transport and mixing mechanisms of ice-nucleating particles over the Alps’, Atmospheric chemistry and physics, 22(5), pp. 3111–3130. Available at: https://doi.org/10.5194/acp-22-3111-2022.
URLs
URLs