Publications
43 found
Show per page
Klinges, David H. et al. (2024) ‘Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions’, Global Ecology and Biogeography, p. e13884. Available at: https://doi.org/10.1111/geb.13884.
Knollová, I. et al. (2024) ‘<scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe’, Journal of Vegetation Science, 35(2). Available at: https://doi.org/10.1111/jvs.13235.
Vandvik, Vigdis et al. (2024) ‘Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú’, Scientific Data. 21.02.2024, 11(11). Available at: https://doi.org/10.1038/s41597-024-02980-3.
von Oppen, Jonathan et al. (2024) ‘Microclimate explains little variation in year-round decomposition across an Arctic tundra landscape’, Nordic Journal of Botany. 18.01.2024, 3(2024). Available at: https://doi.org/10.1111/njb.04062.
Kemppinen, J. et al. (2024) ‘Microclimate, an important part of ecology and biogeography’, Global Ecology and Biogeography [Preprint]. Available at: https://doi.org/10.1111/geb.13834.
Pacheco‐Riaño, L. Camila et al. (2024) ‘Reliability of presence‐only data for assessing plant community responses to climate warming’, Ecography [Preprint]. Available at: https://doi.org/10.1111/ecog.07213.
Rashid, Sonia et al. (2023) ‘Threatened European butterflies concentrate in areas of strong climatic change and atmospheric deposition pressure’, Biological Conservation, 288. Available at: https://doi.org/10.1016/j.biocon.2023.110352.
Weides, Sophie E. et al. (2023) ‘Belowground niche partitioning is maintained under extreme drought’, Ecology, 105(1), p. e4198. Available at: https://doi.org/10.1002/ecy.4198.
Riaño, L.C.P. et al. (2023) Reliability of presence-only data for assessing plant community responses to climate warming. Authorea, Inc. Available at: https://doi.org/10.22541/au.169906610.08944517/v1.
Johnson, Christopher A., Ren, Rachael and Buckley, Lauren B. (2023) ‘Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change’, The American Naturalist, 202(6), pp. 753–766. Available at: https://doi.org/10.1086/726896.
Essl, Franz et al. (2023) ‘Potential sources of time lags in calibrating species distribution models’, Journal of Biogeography, 51(1), pp. 89–102. Available at: https://doi.org/10.1111/jbi.14726.
Edmunds, Janet and Zschokke, Samuel (2023) ‘Niche differentiation between some species of Ghanaian orb-web spiders (Araneae: Araneidae, Tetragnathidae)’, Arachnology, 19(4), pp. 721–731. Available at: https://doi.org/10.13156/arac.2023.19.4.721.
Iseli, Evelin et al. (2023) ‘Rapid upwards spread of non-native plants in mountains across continents’, Nature ecology & evolution, 7(3), pp. 405–413. Available at: https://doi.org/10.1038/s41559-022-01979-6.
Johnson, C.A., Dutt, P. and Levine, J.M. (2022) ‘Competition for pollinators destabilizes plant coexistence’, Nature, 607(7920), pp. 721–725. Available at: https://doi.org/10.1038/s41586-022-04973-x.
Eberhard, William G. and Zschokke, Samuel (2022) ‘The primary webs of Uloboridae (Araneae)’, Journal of Arachnology, 50(3), pp. 335–350. Available at: https://doi.org/10.1636/joa-s-22-001.
Haider, Sylvia et al. (2022) ‘Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients’, Ecology and Evolution, 12(2), p. e8590. Available at: https://doi.org/10.1002/ece3.8590.
Jandt, Ute et al. (2022) ‘ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany’, Scientific Data, 9(1), p. 631. Available at: https://doi.org/10.1038/s41597-022-01688-6.
Jandt, Ute et al. (2022) ‘More losses than gains during one century of plant biodiversity change in Germany’, Nature, 611(7936), pp. 512–518. Available at: https://doi.org/10.1038/s41586-022-05320-w.
Kramp, Rosa E. et al. (2022) ‘Functional traits and their plasticity shift from tolerant to avoidant under extreme drought’, Ecology, 103(12), p. e3826. Available at: https://doi.org/10.1002/ecy.3826.
Rixen, Christian et al. (2022) ‘Intraspecific trait variation in alpine plants relates to their elevational distribution’, JOURNAL OF ECOLOGY, 110(4), pp. 860–875. Available at: https://doi.org/10.1111/1365-2745.13848.
Rumpf, Sabine B. et al. (2022) ‘From white to green: Snow cover loss and increased vegetation productivity in the European Alps’, Science, 376(6597), pp. 1119–1122. Available at: https://doi.org/10.1126/science.abn6697.
Flantua, Suzette G. A. et al. (2020) ‘Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism’, GLOBAL ECOLOGY AND BIOGEOGRAPHY, 29(10), pp. 1651–1673. Available at: https://doi.org/10.1111/geb.13155.
Futschik, Andreas et al. (2020) ‘Disentangling observer error and climate change effects in long-term monitoring of alpine plant species composition and cover’, JOURNAL OF VEGETATION SCIENCE, 31(1), pp. 14–25. Available at: https://doi.org/10.1111/jvs.12822.
Kattge, Jens et al. (2020) ‘TRY plant trait database - enhanced coverage and open access’, Global change biology, 26(1), pp. 119–188. Available at: https://doi.org/10.1111/gcb.14904.
Thomas, H. J. D. et al. (2020) ‘Global plant trait relationships extend to the climatic extremes of the tundra biome’, Nature communications, 11(1), p. 1351. Available at: https://doi.org/10.1038/s41467-020-15014-4.
Klonner, E. Guenther et al. (2019) ‘Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe’, Ecography, 42(9), pp. 1548–1557. Available at: https://doi.org/10.1111/ecog.04389.
Noroozi, Jalil et al. (2019) ‘Hotspots of vascular plant endemism in a global biodiversity hotspot in Southwest Asia suffer from significant conservation gaps’, Biological Conservation, 237, pp. 299–307. Available at: https://doi.org/10.1016/j.biocon.2019.07.005.
Prevéy, Janet S. et al. (2019) ‘Warming shortens flowering seasons of tundra plant communities’, Nature ecology & evolution, 3(1), pp. 45–52. Available at: https://doi.org/10.1038/s41559-018-0745-6.
Rumpf, Sabine B. et al. (2019) ‘Elevational rear edges shifted at least as much as leading edges over the last century’, Global Ecology and Biogeography, 28(4), pp. 533–543. Available at: https://doi.org/10.1111/geb.12865.
Rumpf, Sabine B. et al. (2019) ‘Extinction debts and colonization credits of non-forest plants in the European Alps’, NATURE COMMUNICATIONS, 10(1), p. 4293. Available at: https://doi.org/10.1038/s41467-019-12343-x.
Soler, Rosina et al. (2019) ‘Twelve-year dynamics of alien and native understorey plants following variable retention harvesting in Nothofagus pumilio forests in Southern Patagonia’, Forest Ecology and Management, 449, p. ARTN 117447. Available at: https://doi.org/10.1016/j.foreco.2019.07.001.
Thomas, Haydn J. D. et al. (2019) ‘Traditional plant functional groups explain variation in economic but not size‐related traits across the tundra biome’, Global Ecology and Biogeography, 28(2), pp. 78–95. Available at: https://doi.org/10.1111/geb.12783.
Bjorkman, Anne D. et al. (2018) ‘Plant functional trait change across a warming tundra biome’, Nature, 562(7725), pp. 57–62. Available at: https://doi.org/10.1038/s41586-018-0563-7.
Bjorkman, Anne D. et al. (2018) ‘Tundra Trait Team: A database of plant traits spanning the tundra biome’, Global Ecology and Biogeography, 27(12), pp. 1402–1411. Available at: https://doi.org/10.1111/geb.12821.
Noroozi, Jalil et al. (2018) ‘Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges’, Scientific reports, 8(1), p. 10345. Available at: https://doi.org/10.1038/s41598-018-28504-9.
Rumpf, Sabine B., Alsos, Inger Greve and Ware, Chris (2018) ‘Prevention of microbial species introductions to the Arctic: The efficacy of footwear disinfection measures on cruise ships’, NeoBiota, (37), pp. 37–49. Available at: https://doi.org/10.3897/neobiota.37.22088.
Rumpf, Sabine B. et al. (2018) ‘Range dynamics of mountain plants decrease with elevation’, Proceedings of the National Academy of Sciences of the United States of America, 115(8), pp. 1848–1853. Available at: https://doi.org/10.1073/pnas.1713936115.
Prevéy, Janet et al. (2017) ‘Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes’, Global change biology, 23(7), pp. 2660–2671. Available at: https://doi.org/10.1111/gcb.13619.
Rumpf, Sabine B. et al. (2017) ‘Climate-driven range dynamics and potential current disequilibrium in Alpine vegetation’, in 6th Symposium for Research in Protected Areas. Salzburg: Verlag der Österreichischen Akademie der Wissenschaften (6th Symposium for Research in Protected Areas), pp. 559–560. Available at: https://doi.org/10.1553/np_symposium2017.
Semenchuk, Philipp R. et al. (2016) ‘High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity’, Environmental Research Letters, 11, p. ARTN 125006. Available at: https://doi.org/10.1088/1748-9326/11/12/125006.
Pauli, Harald et al. (2015) The GLORIA field manual : Standard Multi-Summit approach, supplementary methods and extra approaches. Vienna: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences. Available at: https://doi.org/10.2777/867331.
Semenchuk, Philipp R. et al. (2015) ‘Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra’, Biogeochemistry, 124(1-3), pp. 81–94. Available at: https://doi.org/10.1007/s10533-015-0082-7.
Rumpf, Sabine B. et al. (2014) ‘Idiosyncratic responses of high Arctic plants to changing snow regimes’, PloS one, 9(2), p. e86281. Available at: https://doi.org/10.1371/journal.pone.0086281.