Publications
74 found
Show per page
Janse van Rensburg, H., Stengele, K. and Schlaeppi, K. (2024) ‘Understanding plant responsiveness to microbiome feedbacks’, Current Opinion in Plant Biology, 81, p. 102603. Available at: https://doi.org/10.1016/j.pbi.2024.102603.
Joller, C., Schlaeppi, K. and Sasse, J. (2024) ‘Time-resolved, integrated multi-omic analysis reveals central role of amino acid pathways for defense responses in Arabidopsis thaliana’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.27.609849.
Thoenen, L. et al. (2024) ‘The lactonase BxdA mediates metabolic specialisation of maize root bacteria to benzoxazinoids’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49643-w.
Guan, H. et al. (2024) ‘Soil Indigenous Microbes Interact with Maize Plants in High-Arsenic Soils to Limit the Translocation of Inorganic Arsenic Species to Maize Upper Tissues’, Exposure and Health [Preprint]. Available at: https://doi.org/10.1007/s12403-024-00655-3.
Jin, X. et al. (2024) ‘Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49218-9.
Guan, H. et al. (2024) ‘The Effects of Soil Microbial Disturbance and Plants on Arsenic Concentrations and Speciation in Soil Water and Soils’, Exposure and Health, 16(3), pp. 805–820. Available at: https://doi.org/10.1007/s12403-023-00593-6.
Wasimuddin et al. (2024) ‘Component specific responses of the microbiomes to common chemical stressors in the human food chain’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.04.20.590402.
Caggìa, Veronica et al. (2024) ‘Root-exuded specialized metabolites reduce arsenic toxicity in maize’, Proceedings of the National Academy of Sciences, 121(13). Available at: https://doi.org/10.1073/pnas.2314261121.
Gfeller, V., Thoenen, L. and Erb, M. (2024) ‘Root-exuded benzoxazinoids can alleviate negative plant–soil feedbacks’, New Phytologist, 241(6), pp. 2575–2588. Available at: https://doi.org/10.1111/nph.19401.
Pfeilmeier, S. et al. (2024) ‘Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens’, Nature Microbiology, 9(1), pp. 136–149. Available at: https://doi.org/10.1038/s41564-023-01555-z.
Emmenegger, B. et al. (2023) ‘Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-43793-z.
Hartman, K. et al. (2023) ‘A symbiotic footprint in the plant root microbiome’, Environmental Microbiome, 18(1). Available at: https://doi.org/10.1186/s40793-023-00521-w.
Lutz, S. et al. (2023) ‘Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi’, Nature Microbiology, 8(12), pp. 2277–2289. Available at: https://doi.org/10.1038/s41564-023-01520-w.
Caggìa, V. et al. (2023) ‘Glyphosate and terbuthylazine effects on soil functions, microbiome composition and crop performance’, Applied Soil Ecology, 191. Available at: https://doi.org/10.1016/j.apsoil.2023.105036.
Gross, J.J. et al. (2023) ‘Short communication: Metabolization of benzoxazinoids during silage fermentation of maize and their effects on silage quality’, Animal Feed Science and Technology, 304. Available at: https://doi.org/10.1016/j.anifeedsci.2023.115748.
Thoenen, L. et al. (2023) The lactonase BxdA mediates metabolic adaptation of maize root bacteria to benzoxazinoids. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.09.22.559061.
Bodenhausen, N. et al. (2023) ‘Predicting soil fungal communities from chemical and physical properties’, Journal of Sustainable Agriculture and Environment, 2(3), pp. 225–237. Available at: https://doi.org/10.1002/sae2.12055.
Gfeller, V. et al. (2023) ‘Soil chemical and microbial gradients determine accumulation of root-exuded secondary metabolites and plant–soil feedbacks in the field’, Journal of Sustainable Agriculture and Environment, 2(3), pp. 173–188. Available at: https://doi.org/10.1002/sae2.12063.
Thoenen, L. et al. (2023) Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.16.545238.
Gfeller, V. et al. (2023) Soil chemical and microbial gradients determine accumulation of root exuded secondary metabolites and plant-soil feedbacks in the field. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.09.544436.
Liu, X. et al. (2023) ‘Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake’, Science of the Total Environment, 875. Available at: https://doi.org/10.1016/j.scitotenv.2023.162490.
Pfeilmeier, S. et al. (2023) ‘Dysbiosis of a leaf microbiome is caused by enzyme secretion of opportunistic Xanthomonas strains’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.05.09.539948.
Gfeller, V., Thönen, L. and Erb, M. (2023) Root-exuded secondary metabolites can alleviate negative plant-soil feedbacks. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.04.09.536155.
Gfeller, V. et al. (2023) ‘Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field’, eLife, 12. Available at: https://doi.org/10.7554/elife.84988.
Thoenen, L. et al. (2023) ‘Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome’, Proceedings of the National Academy of Sciences of the United States of America, 120(44). Available at: https://doi.org/10.1073/pnas.2310134120.
van Vugt, L. et al. (2022) ‘Pollen, macrofossils and sedaDNA reveal climate and land use impacts on Holocene mountain vegetation of the Lepontine Alps, Italy’, Quaternary Science Reviews, 296. Available at: https://doi.org/10.1016/j.quascirev.2022.107749.
Gfeller, V. et al. (2022) Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.11.09.515047.
Pronk, L.J.U. et al. (2022) ‘The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts’, Environmental Microbiology, 24(8), pp. 3273–3289. Available at: https://doi.org/10.1111/1462-2920.15968.
Alguacil, María Del Mar et al. (2022) ‘Contrasting Responses of Arbuscular Mycorrhizal Fungal Families to Simulated Climate Warming and Drying in a Semiarid Shrubland’, Microbial Ecology, 84(3), pp. 941–944. Available at: https://doi.org/10.1007/s00248-021-01886-6.
Querejeta, José Ignacio et al. (2022) ‘Corrigendum’, The New phytologist, 234(3), p. 1102. Available at: https://doi.org/10.1111/nph.17986.
Depaepe, T. et al. (2021) ‘At the Crossroads of Survival and Death: The Reactive Oxygen Species–Ethylene–Sugar Triad and the Unfolded Protein Response’, Trends in Plant Science, 26(4), pp. 338–351. Available at: https://doi.org/10.1016/j.tplants.2020.12.007.
Bodenhausen, Natacha et al. (2021) ‘Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi’, Mycorrhiza, 31(2), pp. 137–148. Available at: https://doi.org/10.1007/s00572-020-01014-1.
Cadot, Selma et al. (2021) ‘Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals’, Plant, cell & environment, 44(12), pp. 3502–3514. Available at: https://doi.org/10.1111/pce.14184.
Cadot, Selma et al. (2021) ‘Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field’, Microbiome, 9(1), p. 103. Available at: https://doi.org/10.1186/s40168-021-01049-2.
Liu, Yuanhui et al. (2021) ‘Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean’, Frontiers in microbiology, 12, p. 709012. Available at: https://doi.org/10.3389/fmicb.2021.709012.
Querejeta, José Ignacio et al. (2021) ‘Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition’, The New phytologist, 232(3), pp. 1399–1413. Available at: https://doi.org/10.1111/nph.17661.
Schlaeppi, Klaus et al. (2021) ‘Plant chemistry and food web health’, New Phytologist, 231(3), pp. 957–962. Available at: https://doi.org/10.1111/nph.17385.
Wittwer, Raphaël A. et al. (2021) ‘Organic and conservation agriculture promote ecosystem multifunctionality’, Science advances, 7(34). Available at: https://doi.org/10.1126/sciadv.abg6995.
Cadot, S. et al. (2020) Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2020.05.03.075135.
Anand, Abhishek et al. (2020) ‘Contribution of Hydrogen Cyanide to the Antagonistic Activity of Pseudomonas Strains Against Phytophthora infestans’, Microorganisms, 8(8), p. 1144. Available at: https://doi.org/10.3390/microorganisms8081144.
Hohmann, Pierre, Schlaeppi, Klaus and Sessitsch, Angela (2020) ‘miCROPe 2019 - emerging research priorities towards microbe-assisted crop production’, FEMS microbiology ecology, 96(10). Available at: https://doi.org/10.1093/femsec/fiaa177.
Joller, Charlotte et al. (2020) ‘S-methyl Methanethiosulfonate: Promising Late Blight Inhibitor or Broad Range Toxin?’, Pathogens, 9(6), p. 496. Available at: https://doi.org/10.3390/pathogens9060496.
Wasimuddin et al. (2020) ‘Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework’, Molecular ecology resources, 20(6), pp. 1558–1571. Available at: https://doi.org/10.1111/1755-0998.13215.
Banerjee, Samiran, Schlaeppi, Klaus and van der Heijden, Marcel G. A. (2019) ‘Reply to “Can we predict microbial keystones?”’, Nature Reviews Microbiology, 17(3), pp. 194–194. Available at: https://doi.org/10.1038/s41579-018-0133-x.
Bender, S. Franz et al. (2019) ‘Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields’, AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 273, pp. 13–24. Available at: https://doi.org/10.1016/j.agee.2018.12.003.
Berendsen, Roeland and Schlaeppi, Klaus (2019) ‘Editorial overview: Environmental microbiology: #PlantMicrobiome’, Current Opinion in Microbiology, 49, pp. iii–v. Available at: https://doi.org/10.1016/j.mib.2019.11.002.
Bodenhausen, Natacha et al. (2019) ‘Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation’, PHYTOBIOMES JOURNAL, 3(2), pp. 112–124. Available at: https://doi.org/10.1094/pbiomes-12-18-0057-r.
Chinchilla, Delphine et al. (2019) ‘A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity’, Science Reports, 9(1), p. 18778. Available at: https://doi.org/10.1038/s41598-019-55218-3.
Wagg, Cameron et al. (2019) ‘Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning’, Nature Communications, 10(1), p. 4841. Available at: https://doi.org/10.1038/s41467-019-12798-y.
Banerjee, Samiran, Schlaeppi, Klaus and van der Heijden, Marcel G. A. (2018) ‘Keystone taxa as drivers of microbiome structure and functioning’, Nature Reviews Microbiology, 16(9), pp. 567–576. Available at: https://doi.org/10.1038/s41579-018-0024-1.
Dennert, Francesca et al. (2018) ‘Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance’, FEMS microbiology ecology, 94(8), p. fiy075. Available at: https://doi.org/10.1093/femsec/fiy075.
Hartman, Kyle et al. (2018) ‘Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming’, Microbiome, 6(1), p. 74. Available at: https://doi.org/10.1186/s40168-018-0456-x.
Hartman, Kyle et al. (2018) ‘Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming’, Microbiome, 6(1), p. 14. Available at: https://doi.org/10.1186/s40168-017-0389-9.
Hu, Lingfei et al. (2018) ‘Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota’, Nature Communications, 9(1), p. 2738. Available at: https://doi.org/10.1038/s41467-018-05122-7.
Ramirez, Kelly S. et al. (2018) ‘Detecting macroecological patterns in bacterial communities across independent studies of global soils’, Nature Microbiology, 3(2), pp. 189–196. Available at: https://doi.org/10.1038/s41564-017-0062-x.
Toju, Hirokazu et al. (2018) ‘Publisher Correction: Core microbiomes for sustainable agroecosystems’, Nature Plants. Scientific Reports, 4(9), p. 733. Available at: https://doi.org/10.1038/s41477-018-0245-3.
Toju, Hirokazu et al. (2018) ‘Core microbiomes for sustainable agroecosystems’, Nature Plants. Scientific Reports, 4(5), pp. 247–257. Available at: https://doi.org/10.1038/s41477-018-0139-4.
Dombrowski, Nina et al. (2017) ‘Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time’, ISME Journal, 11(1), pp. 43–55. Available at: https://doi.org/10.1038/ismej.2016.109.
Hartman, Kyle et al. (2017) ‘Deciphering composition and function of the root microbiome of a legume plant’, Microbiome, 5(1), p. 2. Available at: https://doi.org/10.1186/s40168-016-0220-z.
Imperiali, Nicola et al. (2017) ‘Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance’, Frontiers in Plant Science, 8, p. 1809. Available at: https://doi.org/10.3389/fpls.2017.01809.
Symanczik, Sarah et al. (2017) ‘Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla’, Frontiers in Plant Science, 8, p. 1263. Available at: https://doi.org/10.3389/fpls.2017.01263.
van der Heijden, Marcel G. A., Dombrowski, Nina and Schlaeppi, Klaus (2017) ‘Continuum of root-fungal symbioses for plant nutrition’, Proceedings of the National Academy of Sciences of the United States of America, 114(44), pp. 11574–11576. Available at: https://doi.org/10.1073/pnas.1716329114.
Walder, Florian et al. (2017) ‘Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing’, Frontiers in Plant Science, 8, p. 2019. Available at: https://doi.org/10.3389/fpls.2017.02019.
Schlaeppi, Klaus et al. (2016) ‘High-resolution community profiling of arbuscular mycorrhizal fungi’, New Phytologis, 212(3), pp. 780–791. Available at: https://doi.org/10.1111/nph.14070.
Stahl, Elia et al. (2016) ‘Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance’, Molecular plant, 9(5), pp. 662–681. Available at: https://doi.org/10.1016/j.molp.2016.01.005.
van der Heijden, Marcel G. A. et al. (2016) ‘A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment’, ISME Journal, 10(2), pp. 389–399. Available at: https://doi.org/10.1038/ismej.2015.120.
Schlaeppi, Klaus and Bulgarelli, Davide (2015) ‘The plant microbiome at work’, Molecular Plant-Microbe Interactions, 28(3), pp. 212–217. Available at: https://doi.org/10.1094/mpmi-10-14-0334-fi.
van der Heijden, Marcel G. A. and Schlaeppi, Klaus (2015) ‘Root surface as a frontier for plant microbiome research’, Proceedings of the National Academy of Sciences of the United States of America, 112(8), pp. 2299–300. Available at: https://doi.org/10.1073/pnas.1500709112.
Schlaeppi, Klaus et al. (2014) ‘Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives’, Proceedings of the National Academy of Sciences of the United States of America, 111(2), pp. 585–92. Available at: https://doi.org/10.1073/pnas.1321597111.
Bulgarelli, Davide et al. (2013) ‘Structure and functions of the bacterial microbiota of plants’, Annual Review of Plant Biology, 64, pp. 807–38. Available at: https://doi.org/10.1146/annurev-arplant-050312-120106.
Bulgarelli, Davide et al. (2012) ‘Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota’, Nature, 488(7409), pp. 91–5. Available at: https://doi.org/10.1038/nature11336.
Schlaeppi, Klaus et al. (2010) ‘Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin’, Plant Journal, 62(5), pp. 840–51. Available at: https://doi.org/10.1111/j.1365-313x.2010.04197.x.
Schlaeppi, Klaus and Mauch, Felix (2010) ‘Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae’, Plant Signaling & Behavior, 5(9), pp. 1099–101. Available at: https://doi.org/10.4161/psb.5.9.12410.
Schlaeppi, Klaus et al. (2008) ‘The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis’, The Plant journal : for cell and molecular biology, 55(5), pp. 774–786. Available at: https://doi.org/10.1111/j.1365-313x.2008.03545.x.