Theoretical Nano/Quantum Physics (Klinovaja)
Publications
158 found
Show per page
Luethi, Melina et al. (2024) ‘From perfect to imperfect poor man’s Majoranas in minimal Kitaev chains’, Physical Review B. 12.12.2024, 110(24). Available at: https://doi.org/10.1103/physrevb.110.245412.
Luethi, Melina et al. (2024) ‘From perfect to imperfect poor man’s Majoranas in minimal Kitaev chains’, Physical Review B. 12.12.2024, 110(24). Available at: https://doi.org/10.1103/physrevb.110.245412.
Miserev, Dmitry et al. (2024) ‘Microscopic mechanism of pair-, charge-, and spin-density-wave instabilities in interacting D -dimensional Fermi liquids’, Physical Review B. 12.09.2024, 110(12). Available at: https://doi.org/10.1103/physrevb.110.125128.
Miserev, Dmitry et al. (2024) ‘Microscopic mechanism of pair-, charge-, and spin-density-wave instabilities in interacting D -dimensional Fermi liquids’, Physical Review B. 12.09.2024, 110(12). Available at: https://doi.org/10.1103/physrevb.110.125128.
Szumniak, Pawel, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2404.08527.
Szumniak, Pawel, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2404.08527.
Szumniak, Paweł, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Physical Review B. 09.09.2024, 110(11). Available at: https://doi.org/10.1103/physrevb.110.115413.
Szumniak, Paweł, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Physical Review B. 09.09.2024, 110(11). Available at: https://doi.org/10.1103/physrevb.110.115413.
Nakata, Kouki et al. (2024) ‘Magnonic φ Josephson junctions and synchronized precession’, Physical Review Research. 22.08.2024, 6(3). Available at: https://doi.org/10.1103/physrevresearch.6.033207.
Nakata, Kouki et al. (2024) ‘Magnonic φ Josephson junctions and synchronized precession’, Physical Review Research. 22.08.2024, 6(3). Available at: https://doi.org/10.1103/physrevresearch.6.033207.
Miserev, Dmitry et al. (2024) ‘Microscopic Mechanism of Pair-, Charge- and Spin-Density-Wave Instabilities in Interacting D-Dimensional Fermi Liquids’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2312.17208.
Miserev, Dmitry et al. (2024) ‘Microscopic Mechanism of Pair-, Charge- and Spin-Density-Wave Instabilities in Interacting D-Dimensional Fermi Liquids’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2312.17208.
Zou, J. et al. (2024) ‘Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier’, Physical Review Letters, 132(3). Available at: https://doi.org/10.1103/physrevlett.132.036701.
Zou, J. et al. (2024) ‘Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier’, Physical Review Letters, 132(3). Available at: https://doi.org/10.1103/physrevlett.132.036701.
Legg, H.F. et al. (2023) ‘Parity-protected superconducting diode effect in topological Josephson junctions’, Physical Review B, 108(21). Available at: https://doi.org/10.1103/physrevb.108.214520.
Legg, H.F. et al. (2023) ‘Parity-protected superconducting diode effect in topological Josephson junctions’, Physical Review B, 108(21). Available at: https://doi.org/10.1103/physrevb.108.214520.
Hess, R. et al. (2023) ‘Josephson transistor from the superconducting diode effect in domain wall and skyrmion magnetic racetracks’, Physical Review B, 108(17). Available at: https://doi.org/10.1103/physrevb.108.174516.
Hess, R. et al. (2023) ‘Josephson transistor from the superconducting diode effect in domain wall and skyrmion magnetic racetracks’, Physical Review B, 108(17). Available at: https://doi.org/10.1103/physrevb.108.174516.
Laubscher, K. et al. (2023) ‘RKKY interaction in one-dimensional flat-band lattices’, Physical Review B, 108(15). Available at: https://doi.org/10.1103/physrevb.108.155429.
Laubscher, K. et al. (2023) ‘RKKY interaction in one-dimensional flat-band lattices’, Physical Review B, 108(15). Available at: https://doi.org/10.1103/physrevb.108.155429.
Hsu, C.-H., Loss, D. and Klinovaja, J. (2023) ‘General scattering and electronic states in a quantum-wire network of moiré systems’, Physical Review B, 108(12). Available at: https://doi.org/10.1103/physrevb.108.l121409.
Hsu, C.-H., Loss, D. and Klinovaja, J. (2023) ‘General scattering and electronic states in a quantum-wire network of moiré systems’, Physical Review B, 108(12). Available at: https://doi.org/10.1103/physrevb.108.l121409.
Vlasiuk, E. et al. (2023) ‘Cavity-induced charge transfer in periodic systems: Length-gauge formalism’, Physical Review B, 108(8). Available at: https://doi.org/10.1103/physrevb.108.085410.
Vlasiuk, E. et al. (2023) ‘Cavity-induced charge transfer in periodic systems: Length-gauge formalism’, Physical Review B, 108(8). Available at: https://doi.org/10.1103/physrevb.108.085410.
Zou, J. et al. (2023) ‘Quantum computing on magnetic racetracks with flying domain wall qubits’, Physical Review Research, 5(3). Available at: https://doi.org/10.1103/physrevresearch.5.033166.
Zou, J. et al. (2023) ‘Quantum computing on magnetic racetracks with flying domain wall qubits’, Physical Review Research, 5(3). Available at: https://doi.org/10.1103/physrevresearch.5.033166.
Dantas, R.M.A. et al. (2023) ‘Determination of spin-orbit interaction in semiconductor nanostructures via nonlinear transport’, Physical Review B, 107(24). Available at: https://doi.org/10.1103/physrevb.107.l241202.
Dantas, R.M.A. et al. (2023) ‘Determination of spin-orbit interaction in semiconductor nanostructures via nonlinear transport’, Physical Review B, 107(24). Available at: https://doi.org/10.1103/physrevb.107.l241202.
Weber, C.S. et al. (2023) ‘Second-order topology and supersymmetry in two-dimensional topological insulators’, Physical Review B, 107(23). Available at: https://doi.org/10.1103/physrevb.107.235402.
Weber, C.S. et al. (2023) ‘Second-order topology and supersymmetry in two-dimensional topological insulators’, Physical Review B, 107(23). Available at: https://doi.org/10.1103/physrevb.107.235402.
Hess, R. et al. (2023) ‘Trivial Andreev Band Mimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of Long Rashba Nanowires’, Physical Review Letters, 130(20). Available at: https://doi.org/10.1103/physrevlett.130.207001.
Hess, R. et al. (2023) ‘Trivial Andreev Band Mimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of Long Rashba Nanowires’, Physical Review Letters, 130(20). Available at: https://doi.org/10.1103/physrevlett.130.207001.
Svetogorov, A.E., Loss, D. and Klinovaja, J. (2023) ‘Enhancement of the Kondo effect in a quantum dot formed in a full-shell nanowire’, Physical Review B, 107(13). Available at: https://doi.org/10.1103/physrevb.107.134505.
Svetogorov, A.E., Loss, D. and Klinovaja, J. (2023) ‘Enhancement of the Kondo effect in a quantum dot formed in a full-shell nanowire’, Physical Review B, 107(13). Available at: https://doi.org/10.1103/physrevb.107.134505.
Laubscher, K., Keizer, P. and Klinovaja, J. (2023) ‘Fractional second-order topological insulator from a three-dimensional coupled-wires construction’, Physical Review B, 107(4). Available at: https://doi.org/10.1103/physrevb.107.045409.
Laubscher, K., Keizer, P. and Klinovaja, J. (2023) ‘Fractional second-order topological insulator from a three-dimensional coupled-wires construction’, Physical Review B, 107(4). Available at: https://doi.org/10.1103/physrevb.107.045409.
Adelsberger, Christoph et al. (2022) ‘Hole-spin qubits in Ge nanowire quantum dots: Interplay of orbital magnetic field, strain, and growth direction’, Physical review B: Condensed matter and materials physics, 105(7), p. 075308. Available at: https://doi.org/10.1103/physrevb.105.075308.
Adelsberger, Christoph et al. (2022) ‘Hole-spin qubits in Ge nanowire quantum dots: Interplay of orbital magnetic field, strain, and growth direction’, Physical review B: Condensed matter and materials physics, 105(7), p. 075308. Available at: https://doi.org/10.1103/physrevb.105.075308.
Adelsberger, Christoph et al. (2022) ‘Enhanced orbital magnetic field effects in Ge hole nanowires’, Physical review B: Condensed matter and materials physics, 106(23), p. 235408. Available at: https://doi.org/10.1103/physrevb.106.235408.
Adelsberger, Christoph et al. (2022) ‘Enhanced orbital magnetic field effects in Ge hole nanowires’, Physical review B: Condensed matter and materials physics, 106(23), p. 235408. Available at: https://doi.org/10.1103/physrevb.106.235408.
Bosco, Stefano et al. (2022) ‘Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots’, Physical Review Letters, 129(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.129.066801.
Bosco, Stefano et al. (2022) ‘Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots’, Physical Review Letters, 129(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.129.066801.
Galambos, Tamás Haidekker et al. (2022) ‘Crossed Andreev reflection in spin-polarized chiral edge states due to the Meissner effect’, Physical review B: Condensed matter and materials physics, 106(7), p. 075410. Available at: https://doi.org/10.1103/physrevb.106.075410.
Galambos, Tamás Haidekker et al. (2022) ‘Crossed Andreev reflection in spin-polarized chiral edge states due to the Meissner effect’, Physical review B: Condensed matter and materials physics, 106(7), p. 075410. Available at: https://doi.org/10.1103/physrevb.106.075410.
Hess, Richard et al. (2022) ‘Prevalence of trivial zero-energy subgap states in nonuniform helical spin chains on the surface of superconductors’, Physical review B: Condensed matter and materials physics, 106(10), p. 104503. Available at: https://doi.org/10.1103/physrevb.106.104503.
Hess, Richard et al. (2022) ‘Prevalence of trivial zero-energy subgap states in nonuniform helical spin chains on the surface of superconductors’, Physical review B: Condensed matter and materials physics, 106(10), p. 104503. Available at: https://doi.org/10.1103/physrevb.106.104503.
Hetényi, Bence et al. (2022) ‘Long-distance coupling of spin qubits via topological magnons’, Physical review B: Condensed matter and materials physics, 106(23), p. 235409. Available at: https://doi.org/10.1103/physrevb.106.235409.
Hetényi, Bence et al. (2022) ‘Long-distance coupling of spin qubits via topological magnons’, Physical review B: Condensed matter and materials physics, 106(23), p. 235409. Available at: https://doi.org/10.1103/physrevb.106.235409.
Hirosawa, Tomoki et al. (2022) ‘Laser-Controlled Real- and Reciprocal-Space Topology in Multiferroic Insulators’, Physical Review Letters, 128(3), p. 037201. Available at: https://doi.org/10.1103/physrevlett.128.037201.
Hirosawa, Tomoki et al. (2022) ‘Laser-Controlled Real- and Reciprocal-Space Topology in Multiferroic Insulators’, Physical Review Letters, 128(3), p. 037201. Available at: https://doi.org/10.1103/physrevlett.128.037201.
Hirosawa, Tomoki et al. (2022) ‘Magnetoelectric Cavity Magnonics in Skyrmion Crystals’, PRX Quantum, 3(4), p. 040321. Available at: https://doi.org/10.1103/prxquantum.3.040321.
Hirosawa, Tomoki et al. (2022) ‘Magnetoelectric Cavity Magnonics in Skyrmion Crystals’, PRX Quantum, 3(4), p. 040321. Available at: https://doi.org/10.1103/prxquantum.3.040321.
Küster, Felix et al. (2022) ‘Non-Majorana modes in diluted spin chains proximitized to a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 119(42), p. e2210589119. Available at: https://doi.org/10.1073/pnas.2210589119.
Küster, Felix et al. (2022) ‘Non-Majorana modes in diluted spin chains proximitized to a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 119(42), p. e2210589119. Available at: https://doi.org/10.1073/pnas.2210589119.
Laubscher, Katharina (2022) Topological systems with strong electron-electron interactions. . Translated by Klinovaja Jelena. Dissertation. Universität Basel.
Laubscher, Katharina (2022) Topological systems with strong electron-electron interactions. . Translated by Klinovaja Jelena. Dissertation. Universität Basel.
Legg, Henry F., Loss, Daiene and Klinovaja, Jelena (2022) ‘Superconducting diode effect due to magnetochiral anisotropy in topological insulators and Rashba nanowires’, Physical review B: Condensed matter and materials physics, 106(10), p. 104501. Available at: https://doi.org/10.1103/physrevb.106.104501.
Legg, Henry F., Loss, Daiene and Klinovaja, Jelena (2022) ‘Superconducting diode effect due to magnetochiral anisotropy in topological insulators and Rashba nanowires’, Physical review B: Condensed matter and materials physics, 106(10), p. 104501. Available at: https://doi.org/10.1103/physrevb.106.104501.
Legg, Henry F., Loss, Daniel and Klinovaja, Jelena (2022) ‘Metallization and proximity superconductivity in topological insulator nanowires’, Physical review B: Condensed matter and materials physics, 105(15), p. 155413. Available at: https://doi.org/10.1103/physrevb.105.155413.
Legg, Henry F., Loss, Daniel and Klinovaja, Jelena (2022) ‘Metallization and proximity superconductivity in topological insulator nanowires’, Physical review B: Condensed matter and materials physics, 105(15), p. 155413. Available at: https://doi.org/10.1103/physrevb.105.155413.
Legg, Henry F. et al. (2022) ‘Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires’, Nature Nanotechnology, 17(7), pp. 696–700. Available at: https://doi.org/10.1038/s41565-022-01124-1.
Legg, Henry F. et al. (2022) ‘Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires’, Nature Nanotechnology, 17(7), pp. 696–700. Available at: https://doi.org/10.1038/s41565-022-01124-1.
Miserev, Dmitry, Loss, Daniel and Klinovaja, Jelena (2022) ‘Instability of the ferromagnetic quantum critical point and symmetry of the ferromagnetic ground state in two-dimensional and three-dimensional electron gases with arbitrary spin-orbit splitting’, Physical review B: Condensed matter and materials physics, 106(13), p. 134417. Available at: https://doi.org/10.1103/physrevb.106.134417.
Miserev, Dmitry, Loss, Daniel and Klinovaja, Jelena (2022) ‘Instability of the ferromagnetic quantum critical point and symmetry of the ferromagnetic ground state in two-dimensional and three-dimensional electron gases with arbitrary spin-orbit splitting’, Physical review B: Condensed matter and materials physics, 106(13), p. 134417. Available at: https://doi.org/10.1103/physrevb.106.134417.
Ronetti, Flavio, Loss, Daniel and Klinovaja, Jelena (2022) ‘Fractional spin excitations and conductance in the spiral-staircase Heisenberg ladder’, Physical review B: Condensed matter and materials physics, 105(13), p. 134413. Available at: https://doi.org/10.1103/physrevb.105.134413.
Ronetti, Flavio, Loss, Daniel and Klinovaja, Jelena (2022) ‘Fractional spin excitations and conductance in the spiral-staircase Heisenberg ladder’, Physical review B: Condensed matter and materials physics, 105(13), p. 134413. Available at: https://doi.org/10.1103/physrevb.105.134413.
Spethmann, Maria et al. (2022) ‘Coupled superconducting spin qubits with spin-orbit interaction’, Physical review B: Condensed matter and materials physics, 106(11), p. 115411. Available at: https://doi.org/10.1103/physrevb.106.115411.
Spethmann, Maria et al. (2022) ‘Coupled superconducting spin qubits with spin-orbit interaction’, Physical review B: Condensed matter and materials physics, 106(11), p. 115411. Available at: https://doi.org/10.1103/physrevb.106.115411.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2022) ‘Quasiparticle poisoning in trivial and topological Josephson junctions’, Physical review B: Condensed matter and materials physics, 105(17), p. 174519. Available at: https://doi.org/10.1103/physrevb.105.174519.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2022) ‘Quasiparticle poisoning in trivial and topological Josephson junctions’, Physical review B: Condensed matter and materials physics, 105(17), p. 174519. Available at: https://doi.org/10.1103/physrevb.105.174519.
Deb, Oindrila et al. (2021) ‘Yu-Shiba-Rusinov states and ordering of magnetic impurities near the boundary of a superconducting nanowire’, Physical Review B, 103(16), p. 165403. Available at: https://doi.org/10.1103/physrevb.103.165403.
Deb, Oindrila et al. (2021) ‘Yu-Shiba-Rusinov states and ordering of magnetic impurities near the boundary of a superconducting nanowire’, Physical Review B, 103(16), p. 165403. Available at: https://doi.org/10.1103/physrevb.103.165403.
Díaz, Sebastián A. et al. (2021) ‘Majorana bound states induced by antiferromagnetic skyrmion textures’, Physical review B: Condensed matter and materials physics, 104(21), p. 214501. Available at: https://doi.org/10.1103/physrevb.104.214501.
Díaz, Sebastián A. et al. (2021) ‘Majorana bound states induced by antiferromagnetic skyrmion textures’, Physical review B: Condensed matter and materials physics, 104(21), p. 214501. Available at: https://doi.org/10.1103/physrevb.104.214501.
Ding, Hao et al. (2021) ‘Tuning interactions between spins in a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 118(14), p. e2024837118. Available at: https://doi.org/10.1073/pnas.2024837118.
Ding, Hao et al. (2021) ‘Tuning interactions between spins in a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 118(14), p. e2024837118. Available at: https://doi.org/10.1073/pnas.2024837118.
Hess, Richard et al. (2021) ‘Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires with superconducting and normal sections’, Physical Review B, 104(7), p. 075405. Available at: https://doi.org/10.1103/physrevb.104.075405.
Hess, Richard et al. (2021) ‘Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires with superconducting and normal sections’, Physical Review B, 104(7), p. 075405. Available at: https://doi.org/10.1103/physrevb.104.075405.
Hsu, Chen-Hsuan et al. (2021) ‘Helical liquids in semiconductors’, Semiconductor Science and Technology, 36(12), p. 123003. Available at: https://doi.org/10.1088/1361-6641/ac2c27.
Hsu, Chen-Hsuan et al. (2021) ‘Helical liquids in semiconductors’, Semiconductor Science and Technology, 36(12), p. 123003. Available at: https://doi.org/10.1088/1361-6641/ac2c27.
Laubscher, Katharina and Klinovaja, Jelena (2021) ‘Majorana bound states in semiconducting nanostructures’, Journal of Applied Physics, 130(8), p. 081101. Available at: https://doi.org/10.1063/5.0055997.
Laubscher, Katharina and Klinovaja, Jelena (2021) ‘Majorana bound states in semiconducting nanostructures’, Journal of Applied Physics, 130(8), p. 081101. Available at: https://doi.org/10.1063/5.0055997.
Laubscher, Katharina et al. (2021) ‘Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems’, Physical Review B, 104(3), p. 035432. Available at: https://doi.org/10.1103/physrevb.104.035432.
Laubscher, Katharina et al. (2021) ‘Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems’, Physical Review B, 104(3), p. 035432. Available at: https://doi.org/10.1103/physrevb.104.035432.
Legg, Henry F., Loss, Daniel and Klinovaja, Jelena (2021) ‘Majorana bound states in topological insulators without a vortex’, Physical Review B, 104(16), p. 165405. Available at: https://doi.org/10.1103/physrevb.104.165405.
Legg, Henry F., Loss, Daniel and Klinovaja, Jelena (2021) ‘Majorana bound states in topological insulators without a vortex’, Physical Review B, 104(16), p. 165405. Available at: https://doi.org/10.1103/physrevb.104.165405.
Miserev, Dmitry, Klinovaja, Jelena and Loss, Daniel (2021) ‘Fermi surface resonance and quantum criticality in strongly interacting Fermi gases’, Physical Review B, 103(7), p. 075104. Available at: https://doi.org/10.1103/physrevb.103.075104.
Miserev, Dmitry, Klinovaja, Jelena and Loss, Daniel (2021) ‘Fermi surface resonance and quantum criticality in strongly interacting Fermi gases’, Physical Review B, 103(7), p. 075104. Available at: https://doi.org/10.1103/physrevb.103.075104.
Miserev, Dmitry, Klinovaja, Jelena and Loss, Daniel (2021) ‘Magnetic phase transitions in two-dimensional two-valley semiconductors with in-plane magnetic field’, Physical Review B, 103(2), p. 024401. Available at: https://doi.org/10.1103/physrevb.103.024401.
Miserev, Dmitry, Klinovaja, Jelena and Loss, Daniel (2021) ‘Magnetic phase transitions in two-dimensional two-valley semiconductors with in-plane magnetic field’, Physical Review B, 103(2), p. 024401. Available at: https://doi.org/10.1103/physrevb.103.024401.
Mook, Alexander et al. (2021) ‘Chiral hinge magnons in second-order topological magnon insulators’, Physical Review B, 104(2), p. 024406. Available at: https://doi.org/10.1103/physrevb.104.024406.
Mook, Alexander et al. (2021) ‘Chiral hinge magnons in second-order topological magnon insulators’, Physical Review B, 104(2), p. 024406. Available at: https://doi.org/10.1103/physrevb.104.024406.
Mook, Alexander et al. (2021) ‘Interaction-Stabilized Topological Magnon Insulator in Ferromagnets’, Physical Review X, 11(2), p. 021061. Available at: https://doi.org/10.1103/physrevx.11.021061.
Mook, Alexander et al. (2021) ‘Interaction-Stabilized Topological Magnon Insulator in Ferromagnets’, Physical Review X, 11(2), p. 021061. Available at: https://doi.org/10.1103/physrevx.11.021061.
Piasotski, Kiryl et al. (2021) ‘Universality of Abelian and non-Abelian Wannier functions in generalized one-dimensional Aubry-Andre-Harper models’, Physical Review Research, 3(3), p. 033167. Available at: https://doi.org/10.1103/physrevresearch.3.033167.
Piasotski, Kiryl et al. (2021) ‘Universality of Abelian and non-Abelian Wannier functions in generalized one-dimensional Aubry-Andre-Harper models’, Physical Review Research, 3(3), p. 033167. Available at: https://doi.org/10.1103/physrevresearch.3.033167.
Plekhanov, Kirill et al. (2021) ‘Quadrupole spin polarization as signature of second-order topological superconductors’, Physical Review B, 103(4), p. L041401. Available at: https://doi.org/10.1103/physrevb.103.l041401.
Plekhanov, Kirill et al. (2021) ‘Quadrupole spin polarization as signature of second-order topological superconductors’, Physical Review B, 103(4), p. L041401. Available at: https://doi.org/10.1103/physrevb.103.l041401.
Ronetti, Flavio, Loss, Daniel and Klinovaja, Jelena (2021) ‘Clock model and parafermions in Rashba nanowires’, Physical Review B, 103(23), p. 235410. Available at: https://doi.org/10.1103/physrevb.103.235410.
Ronetti, Flavio, Loss, Daniel and Klinovaja, Jelena (2021) ‘Clock model and parafermions in Rashba nanowires’, Physical Review B, 103(23), p. 235410. Available at: https://doi.org/10.1103/physrevb.103.235410.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2021) ‘Insulating regime of an underdamped current-biased Josephson junction supporting Z(3) and Z(4) parafermions’, Physical Review B, 103(18), p. 180505. Available at: https://doi.org/10.1103/physrevb.103.l180505.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2021) ‘Insulating regime of an underdamped current-biased Josephson junction supporting Z(3) and Z(4) parafermions’, Physical Review B, 103(18), p. 180505. Available at: https://doi.org/10.1103/physrevb.103.l180505.
Weber, Clara S. et al. (2021) ‘Universality of Boundary Charge Fluctuations’, Physical Review Letters, 126(1), p. 016803. Available at: https://doi.org/10.1103/physrevlett.126.016803.
Weber, Clara S. et al. (2021) ‘Universality of Boundary Charge Fluctuations’, Physical Review Letters, 126(1), p. 016803. Available at: https://doi.org/10.1103/physrevlett.126.016803.
Chua, Victor et al. (2020) ‘Majorana zero modes and their bosonization’, Physical Review B, 102(15), p. 155416. Available at: https://doi.org/10.1103/physrevb.102.155416.
Chua, Victor et al. (2020) ‘Majorana zero modes and their bosonization’, Physical Review B, 102(15), p. 155416. Available at: https://doi.org/10.1103/physrevb.102.155416.
Díaz, Sebastián A. et al. (2020) ‘Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields’, Physical Review Research, 2(1), p. 013231. Available at: https://doi.org/10.1103/physrevresearch.2.013231.
Díaz, Sebastián A. et al. (2020) ‘Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields’, Physical Review Research, 2(1), p. 013231. Available at: https://doi.org/10.1103/physrevresearch.2.013231.
Dmytruk, Olesia, Loss, Daniel and Klinovaja, Jelena (2020) ‘Pinning of Andreev bound states to zero energy in two-dimensional superconductor- semiconductor Rashba heterostructures’, Physical Review B, 102(24), p. 245431. Available at: https://doi.org/10.1103/physrevb.102.245431.
Dmytruk, Olesia, Loss, Daniel and Klinovaja, Jelena (2020) ‘Pinning of Andreev bound states to zero energy in two-dimensional superconductor- semiconductor Rashba heterostructures’, Physical Review B, 102(24), p. 245431. Available at: https://doi.org/10.1103/physrevb.102.245431.
Galambos, Tamás Haidekker et al. (2020) ‘Superconducting Quantum Interference in Edge State Josephson Junctions’, Physical Review Letters, 125(15), p. 157701. Available at: https://doi.org/10.1103/physrevlett.125.157701.
Galambos, Tamás Haidekker et al. (2020) ‘Superconducting Quantum Interference in Edge State Josephson Junctions’, Physical Review Letters, 125(15), p. 157701. Available at: https://doi.org/10.1103/physrevlett.125.157701.
Hirosawa, Tomoki et al. (2020) ‘Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals’, Physical Review Letters, 125(20), p. 207204. Available at: https://doi.org/10.1103/physrevlett.125.207204.
Hirosawa, Tomoki et al. (2020) ‘Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals’, Physical Review Letters, 125(20), p. 207204. Available at: https://doi.org/10.1103/physrevlett.125.207204.
Hsu, Chen-Hsuan et al. (2020) ‘Universal conductance dips and fractional excitations in a two-subband quantum wire’, Physical Review Research, 2(4), p. 043208. Available at: https://doi.org/10.1103/physrevresearch.2.043208.
Hsu, Chen-Hsuan et al. (2020) ‘Universal conductance dips and fractional excitations in a two-subband quantum wire’, Physical Review Research, 2(4), p. 043208. Available at: https://doi.org/10.1103/physrevresearch.2.043208.
Juenger, Christian et al. (2020) ‘Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires’, Physical Review Letters, 125(1), p. 017701. Available at: https://doi.org/10.1103/physrevlett.125.017701.
Juenger, Christian et al. (2020) ‘Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires’, Physical Review Letters, 125(1), p. 017701. Available at: https://doi.org/10.1103/physrevlett.125.017701.
Laubscher, Katharina et al. (2020) ‘Kramers pairs of Majorana corner states in a topological insulator bilayer’, Physical Review B, 102(19), p. 195401. Available at: https://doi.org/10.1103/physrevb.102.195401.
Laubscher, Katharina et al. (2020) ‘Kramers pairs of Majorana corner states in a topological insulator bilayer’, Physical Review B, 102(19), p. 195401. Available at: https://doi.org/10.1103/physrevb.102.195401.
Laubscher, Katharina, Loss, Daniel and Klinovaja, Jelena (2020) ‘Majorana and parafermion corner states from two coupled sheets of bilayer graphene’, Physical Review Research, 2(1), p. 013330. Available at: https://doi.org/10.1103/physrevresearch.2.013330.
Laubscher, Katharina, Loss, Daniel and Klinovaja, Jelena (2020) ‘Majorana and parafermion corner states from two coupled sheets of bilayer graphene’, Physical Review Research, 2(1), p. 013330. Available at: https://doi.org/10.1103/physrevresearch.2.013330.
Mook, Alexander, Klinovaja, Jelena and Loss, Daniel (2020) ‘Quantum damping of skyrmion crystal eigenmodes due to spontaneous quasiparticle decay’, Physical Review Research, 2(3), p. 033491. Available at: https://doi.org/10.1103/physrevresearch.2.033491.
Mook, Alexander, Klinovaja, Jelena and Loss, Daniel (2020) ‘Quantum damping of skyrmion crystal eigenmodes due to spontaneous quasiparticle decay’, Physical Review Research, 2(3), p. 033491. Available at: https://doi.org/10.1103/physrevresearch.2.033491.
Müller, Niclas et al. (2020) ‘Electronic transport in one-dimensional Floquet topological insulators via topological and nontopological edge states’, Physical Review B, 101(15), p. 155417. Available at: https://doi.org/10.1103/physrevb.101.155417.
Müller, Niclas et al. (2020) ‘Electronic transport in one-dimensional Floquet topological insulators via topological and nontopological edge states’, Physical Review B, 101(15), p. 155417. Available at: https://doi.org/10.1103/physrevb.101.155417.
Plekhanov, Kirill et al. (2020) ‘Hinge states in a system of coupled Rashba layers’, Physical Review Research, 2(1), p. 013083. Available at: https://doi.org/10.1103/physrevresearch.2.013083.
Plekhanov, Kirill et al. (2020) ‘Hinge states in a system of coupled Rashba layers’, Physical Review Research, 2(1), p. 013083. Available at: https://doi.org/10.1103/physrevresearch.2.013083.
Pletyukhov, Mikhail et al. (2020) ‘Topological invariants to characterize universality of boundary charge in one-dimensional insulators beyond symmetry constraints’, Physical Review B, 101(16), p. 161106. Available at: https://doi.org/10.1103/physrevb.101.161106.
Pletyukhov, Mikhail et al. (2020) ‘Topological invariants to characterize universality of boundary charge in one-dimensional insulators beyond symmetry constraints’, Physical Review B, 101(16), p. 161106. Available at: https://doi.org/10.1103/physrevb.101.161106.
Pletyukhov, Mikhail et al. (2020) ‘Surface charge theorem and topological constraints for edge states: Analytical study of one-dimensional nearest-neighbor tight-binding models’, Physical Review B, 101(16), p. 165304. Available at: https://doi.org/10.1103/physrevb.101.165304.
Pletyukhov, Mikhail et al. (2020) ‘Surface charge theorem and topological constraints for edge states: Analytical study of one-dimensional nearest-neighbor tight-binding models’, Physical Review B, 101(16), p. 165304. Available at: https://doi.org/10.1103/physrevb.101.165304.
Pletyukhov, Mikhail et al. (2020) ‘Rational boundary charge in one-dimensional systems with interaction and disorder’, Physical Review Research, 2(3), p. 033345. Available at: https://doi.org/10.1103/physrevresearch.2.033345.
Pletyukhov, Mikhail et al. (2020) ‘Rational boundary charge in one-dimensional systems with interaction and disorder’, Physical Review Research, 2(3), p. 033345. Available at: https://doi.org/10.1103/physrevresearch.2.033345.
Prada, Elsa et al. (2020) ‘From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires’, Nature Reviews Physics, 2(10), pp. 575–594. Available at: https://doi.org/10.1038/s42254-020-0228-y.
Prada, Elsa et al. (2020) ‘From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires’, Nature Reviews Physics, 2(10), pp. 575–594. Available at: https://doi.org/10.1038/s42254-020-0228-y.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Ronetti, Flavio et al. (2020) ‘Magnetically confined bound states in Rashba systems’, Physical Review Research, 2(2), p. 022052. Available at: https://doi.org/10.1103/physrevresearch.2.022052.
Ronetti, Flavio et al. (2020) ‘Magnetically confined bound states in Rashba systems’, Physical Review Research, 2(2), p. 022052. Available at: https://doi.org/10.1103/physrevresearch.2.022052.
Schulz, Ferdinand et al. (2020) ‘Majorana bound states in topological insulators with hidden Dirac points’, Physical Review Research, 2(3), p. 033215. Available at: https://doi.org/10.1103/physrevresearch.2.033215.
Schulz, Ferdinand et al. (2020) ‘Majorana bound states in topological insulators with hidden Dirac points’, Physical Review Research, 2(3), p. 033215. Available at: https://doi.org/10.1103/physrevresearch.2.033215.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2020) ‘Critical current for an insulating regime of an underdamped current-biased topological Josephson junction’, Physical Review Research, 2(3), p. 033448. Available at: https://doi.org/10.1103/physrevresearch.2.033448.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2020) ‘Critical current for an insulating regime of an underdamped current-biased topological Josephson junction’, Physical Review Research, 2(3), p. 033448. Available at: https://doi.org/10.1103/physrevresearch.2.033448.
Szumniak, Paweł, Loss, Daniel and Klinovaja, Jelena (2020) ‘Hinge modes and surface states in second-order topological three-dimensional quantum Hall systems induced by charge density modulation’, Physical Review B, 102(12), p. 125126. Available at: https://doi.org/10.1103/physrevb.102.125126.
Szumniak, Paweł, Loss, Daniel and Klinovaja, Jelena (2020) ‘Hinge modes and surface states in second-order topological three-dimensional quantum Hall systems induced by charge density modulation’, Physical Review B, 102(12), p. 125126. Available at: https://doi.org/10.1103/physrevb.102.125126.
Thakurathi, Manisha et al. (2020) ‘Interaction-driven Floquet engineering of topological superconductivity in Rashba nanowires’, Physical Review Research, 2(1), p. 013292. Available at: https://doi.org/10.1103/physrevresearch.2.013292.
Thakurathi, Manisha et al. (2020) ‘Interaction-driven Floquet engineering of topological superconductivity in Rashba nanowires’, Physical Review Research, 2(1), p. 013292. Available at: https://doi.org/10.1103/physrevresearch.2.013292.
Thakurathi, Manisha et al. (2020) ‘Transport signatures of bulk topological phases in double Rashba nanowires probed by spin-polarized STM’, Physical Review Research, 2(2), p. 023197. Available at: https://doi.org/10.1103/physrevresearch.2.023197.
Thakurathi, Manisha et al. (2020) ‘Transport signatures of bulk topological phases in double Rashba nanowires probed by spin-polarized STM’, Physical Review Research, 2(2), p. 023197. Available at: https://doi.org/10.1103/physrevresearch.2.023197.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2020) ‘Time-reversal invariant topological superconductivity in planar Josephson bijunction’, Physical Review Research, 2(2), p. 023415. Available at: https://doi.org/10.1103/physrevresearch.2.023415.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2020) ‘Time-reversal invariant topological superconductivity in planar Josephson bijunction’, Physical Review Research, 2(2), p. 023415. Available at: https://doi.org/10.1103/physrevresearch.2.023415.
Aseev, Pavel P. et al. (2019) ‘Degeneracy lifting of Majorana bound states due to electron-phonon interactions’, Physical Review B, 99(20), p. 205435. Available at: https://doi.org/10.1103/physrevb.99.205435.
Aseev, Pavel P. et al. (2019) ‘Degeneracy lifting of Majorana bound states due to electron-phonon interactions’, Physical Review B, 99(20), p. 205435. Available at: https://doi.org/10.1103/physrevb.99.205435.
Díaz, Sebastián A., Klinovaja, Jelena and Loss, Daniel (2019) ‘Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals’, Physical Review Letters, 122(18), p. 187203. Available at: https://doi.org/10.1103/physrevlett.122.187203.
Díaz, Sebastián A., Klinovaja, Jelena and Loss, Daniel (2019) ‘Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals’, Physical Review Letters, 122(18), p. 187203. Available at: https://doi.org/10.1103/physrevlett.122.187203.
Dmytruk, Olesia et al. (2019) ‘Majorana bound states in double nanowires with reduced Zeeman thresholds due to supercurrents’, Physical Review B, 99(24), p. 245416. Available at: https://doi.org/10.1103/physrevb.99.245416.
Dmytruk, Olesia et al. (2019) ‘Majorana bound states in double nanowires with reduced Zeeman thresholds due to supercurrents’, Physical Review B, 99(24), p. 245416. Available at: https://doi.org/10.1103/physrevb.99.245416.
Kennes, Dante M. et al. (2019) ‘Chiral one-dimensional Floquet topological insulators beyond the rotating wave approximation’, Physical Review B, 100(4), p. 041103. Available at: https://doi.org/10.1103/physrevb.100.041103.
Kennes, Dante M. et al. (2019) ‘Chiral one-dimensional Floquet topological insulators beyond the rotating wave approximation’, Physical Review B, 100(4), p. 041103. Available at: https://doi.org/10.1103/physrevb.100.041103.
Laubscher, Katharina, Loss, Daniel and Klinovaja, Jelena (2019) ‘Fractional topological superconductivity and parafermion corner states’, Physical Review Research, 1, p. 6 pp., supl. 3 pp. Available at: https://doi.org/10.1103/physrevresearch.1.032017.
Laubscher, Katharina, Loss, Daniel and Klinovaja, Jelena (2019) ‘Fractional topological superconductivity and parafermion corner states’, Physical Review Research, 1, p. 6 pp., supl. 3 pp. Available at: https://doi.org/10.1103/physrevresearch.1.032017.
Matern, Stephanie et al. (2019) ‘Coherent backaction between spins and an electronic bath: Non-Markovian dynamics and low-temperature quantum thermodynamic electron cooling’, Physical Review B, 100(13), p. 134308. Available at: https://doi.org/10.1103/physrevb.100.134308.
Matern, Stephanie et al. (2019) ‘Coherent backaction between spins and an electronic bath: Non-Markovian dynamics and low-temperature quantum thermodynamic electron cooling’, Physical Review B, 100(13), p. 134308. Available at: https://doi.org/10.1103/physrevb.100.134308.
Miserev, Dmitry, Klinovaja, Jelena and Loss, Daniel (2019) ‘Exchange scattering and magnetic phase diagram of transition metal dichalcogenide monolayers’, Physical Review B, 100(1), p. 014428. Available at: https://doi.org/10.1103/physrevb.100.014428.
Miserev, Dmitry, Klinovaja, Jelena and Loss, Daniel (2019) ‘Exchange scattering and magnetic phase diagram of transition metal dichalcogenide monolayers’, Physical Review B, 100(1), p. 014428. Available at: https://doi.org/10.1103/physrevb.100.014428.
Pawlak, Remy et al. (2019) ‘Majorana Fermions in magnetic chains’, Progress in particle and nuclear physics, 107, pp. 1–19. Available at: https://doi.org/10.1016/j.ppnp.2019.04.004.
Pawlak, Remy et al. (2019) ‘Majorana Fermions in magnetic chains’, Progress in particle and nuclear physics, 107, pp. 1–19. Available at: https://doi.org/10.1016/j.ppnp.2019.04.004.
Plekhanov, Kirill et al. (2019) ‘Floquet second-order topological superconductor driven via ferromagnetic resonance’, Physical Review Research, 1(3), p. 6 pp., supl. 7 pp. Available at: https://doi.org/10.1103/physrevresearch.1.032013.
Plekhanov, Kirill et al. (2019) ‘Floquet second-order topological superconductor driven via ferromagnetic resonance’, Physical Review Research, 1(3), p. 6 pp., supl. 7 pp. Available at: https://doi.org/10.1103/physrevresearch.1.032013.
Rancic, Marko J. et al. (2019) ‘Entangling spins in double quantum dots and Majorana bound states’, Physical Review B, 99(16), p. 165306. Available at: https://doi.org/10.1103/physrevb.99.165306.
Rancic, Marko J. et al. (2019) ‘Entangling spins in double quantum dots and Majorana bound states’, Physical Review B, 99(16), p. 165306. Available at: https://doi.org/10.1103/physrevb.99.165306.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2019) ‘Second-Order Topological Superconductivity in π-Junction Rashba Layers’, Physical Review Letters, 122(12), p. 126402. Available at: https://doi.org/10.1103/physrevlett.122.126402.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2019) ‘Second-Order Topological Superconductivity in π-Junction Rashba Layers’, Physical Review Letters, 122(12), p. 126402. Available at: https://doi.org/10.1103/physrevlett.122.126402.
Aseev, Pavel P., Klinovaja, Jelena and Loss, Daniel (2018) ‘Lifetime of Majorana qubits in Rashba nanowires with nonuniform chemical potential’, Physical review B: Condensed matter and materials physics, 98(15), p. 155414. Available at: https://doi.org/10.1103/physrevb.98.155414.
Aseev, Pavel P., Klinovaja, Jelena and Loss, Daniel (2018) ‘Lifetime of Majorana qubits in Rashba nanowires with nonuniform chemical potential’, Physical review B: Condensed matter and materials physics, 98(15), p. 155414. Available at: https://doi.org/10.1103/physrevb.98.155414.
Aseev, Pavel P., Loss, Daniel and Klinovaja, Jelena (2018) ‘Conductance of fractional Luttinger liquids at finite temperatures’, Physical review B: Condensed matter and materials physics, 98(4), p. 045416. Available at: https://doi.org/10.1103/physrevb.98.045416.
Aseev, Pavel P., Loss, Daniel and Klinovaja, Jelena (2018) ‘Conductance of fractional Luttinger liquids at finite temperatures’, Physical review B: Condensed matter and materials physics, 98(4), p. 045416. Available at: https://doi.org/10.1103/physrevb.98.045416.
Chevallier, Denis et al. (2018) ‘Topological phase detection in Rashba nanowires with a quantum dot’, Physical Review B, 97(4), p. 045404. Available at: https://doi.org/10.1103/physrevb.97.045404.
Chevallier, Denis et al. (2018) ‘Topological phase detection in Rashba nanowires with a quantum dot’, Physical Review B, 97(4), p. 045404. Available at: https://doi.org/10.1103/physrevb.97.045404.
Chevallier, D. et al. (2018) ‘Superconductor spintronics: modeling spin and charge accumulation in out-of-equilibrium NIS junctions subjected to Zeeman magnetic fields’, New Journal of Physics, 20, p. 013014. Available at: https://doi.org/10.1088/1367-2630/aa9cc7.
Chevallier, D. et al. (2018) ‘Superconductor spintronics: modeling spin and charge accumulation in out-of-equilibrium NIS junctions subjected to Zeeman magnetic fields’, New Journal of Physics, 20, p. 013014. Available at: https://doi.org/10.1088/1367-2630/aa9cc7.
Dmytruk, Olesia et al. (2018) ‘Renormalization of the quantum dot g-factor in superconducting Rashba nanowires’, Physical review B: Condensed matter and materials physics, 98(16), p. 165403. Available at: https://doi.org/10.1103/physrevb.98.165403.
Dmytruk, Olesia et al. (2018) ‘Renormalization of the quantum dot g-factor in superconducting Rashba nanowires’, Physical review B: Condensed matter and materials physics, 98(16), p. 165403. Available at: https://doi.org/10.1103/physrevb.98.165403.
Dmytruk, Olesia and Klinovaja, Jelena (2018) ‘Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires’, Physical review B: Condensed matter and materials physics, 97(15), p. 155409. Available at: https://doi.org/10.1103/physrevb.97.155409.
Dmytruk, Olesia and Klinovaja, Jelena (2018) ‘Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires’, Physical review B: Condensed matter and materials physics, 97(15), p. 155409. Available at: https://doi.org/10.1103/physrevb.97.155409.
Hsu, Chen-Hsuan et al. (2018) ‘Majorana Kramers Pairs in Higher-Order Topological Insulators’, Physical Review Letters, 121(19), p. 196801. Available at: https://doi.org/10.1103/physrevlett.121.196801.
Hsu, Chen-Hsuan et al. (2018) ‘Majorana Kramers Pairs in Higher-Order Topological Insulators’, Physical Review Letters, 121(19), p. 196801. Available at: https://doi.org/10.1103/physrevlett.121.196801.
Hsu, Chen-Hsuan et al. (2018) ‘Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators’, Physical review B: Condensed matter and materials physics, 97(12), p. 125432. Available at: https://doi.org/10.1103/physrevb.97.125432.
Hsu, Chen-Hsuan et al. (2018) ‘Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators’, Physical review B: Condensed matter and materials physics, 97(12), p. 125432. Available at: https://doi.org/10.1103/physrevb.97.125432.
Reeg, Christopher et al. (2018) ‘Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires’, Physical review B: Condensed matter and materials physics, 98(24), p. 245407. Available at: https://doi.org/10.1103/physrevb.98.245407.
Reeg, Christopher et al. (2018) ‘Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires’, Physical review B: Condensed matter and materials physics, 98(24), p. 245407. Available at: https://doi.org/10.1103/physrevb.98.245407.
Reeg, Christopher, Loss, Daniel and Klinovaja, Jelena (2018) ‘Proximity effect in a two-dimensional electron gas coupled to a thin superconducting layer’, Beilstein Journal of Nanotechnology, 9, pp. 1263–1271. Available at: https://doi.org/10.3762/bjnano.9.118.
Reeg, Christopher, Loss, Daniel and Klinovaja, Jelena (2018) ‘Proximity effect in a two-dimensional electron gas coupled to a thin superconducting layer’, Beilstein Journal of Nanotechnology, 9, pp. 1263–1271. Available at: https://doi.org/10.3762/bjnano.9.118.
Reeg, Christopher, Loss, Daniel and Klinovaja, Jelena (2018) ‘Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime’, Physical review B: Condensed matter and materials physics, 97(16), p. 165425. Available at: https://doi.org/10.1103/physrevb.97.165425.
Reeg, Christopher, Loss, Daniel and Klinovaja, Jelena (2018) ‘Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime’, Physical review B: Condensed matter and materials physics, 97(16), p. 165425. Available at: https://doi.org/10.1103/physrevb.97.165425.
Serina, Marcel, Loss, Daniel and Klinovaja, Jelena (2018) ‘Boundary spin polarization as a robust signature of a topological phase transition in Majorana nanowires’, Physical review B: Condensed matter and materials physics, 98(3), p. 035419. Available at: https://doi.org/10.1103/physrevb.98.035419.
Serina, Marcel, Loss, Daniel and Klinovaja, Jelena (2018) ‘Boundary spin polarization as a robust signature of a topological phase transition in Majorana nanowires’, Physical review B: Condensed matter and materials physics, 98(3), p. 035419. Available at: https://doi.org/10.1103/physrevb.98.035419.
Thakurathi, Manisha, Klinovaja, Jelena and Loss, Daniel (2018) ‘From fractional boundary charges to quantized Hall conductance’, Physical review B: Condensed matter and materials physics, 98(24), p. 245404. Available at: https://doi.org/10.1103/physrevb.98.245404.
Thakurathi, Manisha, Klinovaja, Jelena and Loss, Daniel (2018) ‘From fractional boundary charges to quantized Hall conductance’, Physical review B: Condensed matter and materials physics, 98(24), p. 245404. Available at: https://doi.org/10.1103/physrevb.98.245404.