Experimental Quantum Computing with Semiconductors (Hofmann)
Publications
21 found
Show per page
Ruggiero, Luigi et al. (2024) ‘A Backgate for Enhanced Tunability of Holes in Planar Germanium’, Nano Letters. 14.10.2024, 24(42), pp. 13263–13268. Available at: https://doi.org/10.1021/acs.nanolett.4c03493.
Ruggiero, Luigi et al. (2024) ‘A Backgate for Enhanced Tunability of Holes in Planar Germanium’, Nano Letters. 14.10.2024, 24(42), pp. 13263–13268. Available at: https://doi.org/10.1021/acs.nanolett.4c03493.
Jirovec, Daniel et al. (2022) ‘Dynamics of Hole Singlet-Triplet Qubits with Large g-Factor Differences’, Physical Review Letters, 128(12), p. 126803. Available at: https://doi.org/10.1103/physrevlett.128.126803.
Jirovec, Daniel et al. (2022) ‘Dynamics of Hole Singlet-Triplet Qubits with Large g-Factor Differences’, Physical Review Letters, 128(12), p. 126803. Available at: https://doi.org/10.1103/physrevlett.128.126803.
Valentini, Marco et al. (2022) ‘Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks’, Nature, 612(7940), pp. 442–447. Available at: https://doi.org/10.1038/s41586-022-05382-w.
Valentini, Marco et al. (2022) ‘Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks’, Nature, 612(7940), pp. 442–447. Available at: https://doi.org/10.1038/s41586-022-05382-w.
Aggarwal, Kushagra et al. (2021) ‘Enhancement of proximity-induced superconductivity in a planar Ge hole gas’, Physical Review Research, 3(2), p. L022005. Available at: https://doi.org/10.1103/physrevresearch.3.l022005.
Aggarwal, Kushagra et al. (2021) ‘Enhancement of proximity-induced superconductivity in a planar Ge hole gas’, Physical Review Research, 3(2), p. L022005. Available at: https://doi.org/10.1103/physrevresearch.3.l022005.
Jirovec, Daniel et al. (2021) ‘A singlet-triplet hole spin qubit in planar Ge’, Nature Materials, 20(8), pp. 1106–1112. Available at: https://doi.org/10.1038/s41563-021-01022-2.
Jirovec, Daniel et al. (2021) ‘A singlet-triplet hole spin qubit in planar Ge’, Nature Materials, 20(8), pp. 1106–1112. Available at: https://doi.org/10.1038/s41563-021-01022-2.
Valentini, Marco et al. (2021) ‘Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states’, Science, 373(6550), pp. 82–88. Available at: https://doi.org/10.1126/science.abf1513.
Valentini, Marco et al. (2021) ‘Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states’, Science, 373(6550), pp. 82–88. Available at: https://doi.org/10.1126/science.abf1513.
Hofmann, Andrea et al. (2020) ‘Phonon spectral density in a GaAs/AlGaAs double quantum dot’, Physical Review Research, 2(3), p. 033230. Available at: https://doi.org/10.1103/physrevresearch.2.033230.
Hofmann, Andrea et al. (2020) ‘Phonon spectral density in a GaAs/AlGaAs double quantum dot’, Physical Review Research, 2(3), p. 033230. Available at: https://doi.org/10.1103/physrevresearch.2.033230.
Hofmann, Andrea et al. (2019) ‘Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.1910.05841.
Hofmann, Andrea et al. (2019) ‘Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.1910.05841.
Nicoli, Giorgio et al. (2019) ‘Quantum dot thermometry at ultra-low temperature in a dilution refrigerator with a 4 He immersion cell’, Review of Scientific Instruments, 90(11), p. 113901. Available at: https://doi.org/10.1063/1.5127830.
Nicoli, Giorgio et al. (2019) ‘Quantum dot thermometry at ultra-low temperature in a dilution refrigerator with a 4 He immersion cell’, Review of Scientific Instruments, 90(11), p. 113901. Available at: https://doi.org/10.1063/1.5127830.
Hennel, Szymon et al. (2018) ‘Quasiparticle tunneling in the lowest Landau level’, Physical Review B, 97(24), p. 245305. Available at: https://doi.org/10.1103/physrevb.97.245305.
Hennel, Szymon et al. (2018) ‘Quasiparticle tunneling in the lowest Landau level’, Physical Review B, 97(24), p. 245305. Available at: https://doi.org/10.1103/physrevb.97.245305.
Steinacher, R. et al. (2018) ‘Scanning gate experiments: From strongly to weakly invasive probes’, Physical Review B, 98(7), p. 075426. Available at: https://doi.org/10.1103/physrevb.98.075426.
Steinacher, R. et al. (2018) ‘Scanning gate experiments: From strongly to weakly invasive probes’, Physical Review B, 98(7), p. 075426. Available at: https://doi.org/10.1103/physrevb.98.075426.
Hofmann, A. et al. (2017) ‘Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot’, Physical Review Letters, 119(17), p. 176807. Available at: https://doi.org/10.1103/physrevlett.119.176807.
Hofmann, A. et al. (2017) ‘Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot’, Physical Review Letters, 119(17), p. 176807. Available at: https://doi.org/10.1103/physrevlett.119.176807.
Hofmann, Andrea et al. (2017) ‘Heat dissipation and fluctuations in a driven quantum dot’, Physica Status Solidi (B) - Basic Solid State Physics, 254(3), p. 1600546. Available at: https://doi.org/10.1002/pssb.201600546.
Hofmann, Andrea et al. (2017) ‘Heat dissipation and fluctuations in a driven quantum dot’, Physica Status Solidi (B) - Basic Solid State Physics, 254(3), p. 1600546. Available at: https://doi.org/10.1002/pssb.201600546.
Hennel, Szymon et al. (2016) ‘Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet’, Physical Review Letters, 116(13), p. 136804. Available at: https://doi.org/10.1103/physrevlett.116.136804.
Hennel, Szymon et al. (2016) ‘Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet’, Physical Review Letters, 116(13), p. 136804. Available at: https://doi.org/10.1103/physrevlett.116.136804.
Hofmann, A. et al. (2016) ‘Measuring the Degeneracy of Discrete Energy Levels Using a GaAs / AlGaAs Quantum Dot’, Physical Review Letters, 117(20), p. 206803. Available at: https://doi.org/10.1103/physrevlett.117.206803.
Hofmann, A. et al. (2016) ‘Measuring the Degeneracy of Discrete Energy Levels Using a GaAs / AlGaAs Quantum Dot’, Physical Review Letters, 117(20), p. 206803. Available at: https://doi.org/10.1103/physrevlett.117.206803.
Hofmann, A. et al. (2016) ‘Equilibrium free energy measurement of a confined electron driven out of equilibrium’, Physical Review B, 93(3), p. 035425. Available at: https://doi.org/10.1103/physrevb.93.035425.
Hofmann, A. et al. (2016) ‘Equilibrium free energy measurement of a confined electron driven out of equilibrium’, Physical Review B, 93(3), p. 035425. Available at: https://doi.org/10.1103/physrevb.93.035425.
Maisi, V. F. et al. (2016) ‘Spin-Orbit Coupling at the Level of a Single Electron’, Physical Review Letters, 116(13), p. 136803. Available at: https://doi.org/10.1103/physrevlett.116.136803.
Maisi, V. F. et al. (2016) ‘Spin-Orbit Coupling at the Level of a Single Electron’, Physical Review Letters, 116(13), p. 136803. Available at: https://doi.org/10.1103/physrevlett.116.136803.
Rössler, C. et al. (2015) ‘Transport Spectroscopy of Spin-Coherent Dot-Cavity Systema’, Physical Review Letters, 115(16), p. 166603. Available at: https://doi.org/10.1103/physrevlett.115.166603.
Rössler, C. et al. (2015) ‘Transport Spectroscopy of Spin-Coherent Dot-Cavity Systema’, Physical Review Letters, 115(16), p. 166603. Available at: https://doi.org/10.1103/physrevlett.115.166603.
Banks, Hunter B. et al. (2014) ‘Antenna-boosted mixing of terahertz and near-infrared radiation’, Applied Physics Letters, 105(9), p. 092102. Available at: https://doi.org/10.1063/1.4894634.
Banks, Hunter B. et al. (2014) ‘Antenna-boosted mixing of terahertz and near-infrared radiation’, Applied Physics Letters, 105(9), p. 092102. Available at: https://doi.org/10.1063/1.4894634.
Hofmann, A. and Salman, Z. (2014) ‘Tuning the spin dynamics of single molecule magnets via dipolar interactions’, Journal of Physics: Conference Series, 551, p. 012055. Available at: https://doi.org/10.1088/1742-6596/551/1/012055.
Hofmann, A. and Salman, Z. (2014) ‘Tuning the spin dynamics of single molecule magnets via dipolar interactions’, Journal of Physics: Conference Series, 551, p. 012055. Available at: https://doi.org/10.1088/1742-6596/551/1/012055.
Hofmann, Andrea et al. (2012) ‘Depth-Dependent Spin Dynamics in Thin Films of TbPc 2 Nanomagnets Explored by Low-Energy Implanted Muons’, ACS Nano, 6(9), pp. 8390–8396. Available at: https://doi.org/10.1021/nn3031673.
Hofmann, Andrea et al. (2012) ‘Depth-Dependent Spin Dynamics in Thin Films of TbPc 2 Nanomagnets Explored by Low-Energy Implanted Muons’, ACS Nano, 6(9), pp. 8390–8396. Available at: https://doi.org/10.1021/nn3031673.