Experimentelle Nanophysik (Treutlein)
Publications
122 found
Show per page
Buser, Gianni (2024) ‘Switching, amplifying, and chirping diode lasers with current pulses for high bandwidth quantum technologies’, Review of Scientific Instruments. 03.12.2024, 95(12). Available at: https://doi.org/10.1063/5.0230870.
Buser, Gianni (2024) ‘Switching, amplifying, and chirping diode lasers with current pulses for high bandwidth quantum technologies’, Review of Scientific Instruments. 03.12.2024, 95(12). Available at: https://doi.org/10.1063/5.0230870.
Shi, Yongqi et al. (2024) ‘Broad Instantaneous Bandwidth Microwave Spectrum Analyzer with a Microfabricated Atomic Vapor Cell’, Physical Review X. 13.11.2024, 14(4). Available at: https://doi.org/10.1103/physrevx.14.041043.
Shi, Yongqi et al. (2024) ‘Broad Instantaneous Bandwidth Microwave Spectrum Analyzer with a Microfabricated Atomic Vapor Cell’, Physical Review X. 13.11.2024, 14(4). Available at: https://doi.org/10.1103/physrevx.14.041043.
Fadel, Matteo, Treutlein, Philipp and Sinatra, Alice (2024) ‘Effective Faraday interaction between light and nuclear spins of helium-3 in its ground state: a semiclassical study’, New Journal of Physics. 30.10.2024, 26(10). Available at: https://doi.org/10.1088/1367-2630/ad8953.
Fadel, Matteo, Treutlein, Philipp and Sinatra, Alice (2024) ‘Effective Faraday interaction between light and nuclear spins of helium-3 in its ground state: a semiclassical study’, New Journal of Physics. 30.10.2024, 26(10). Available at: https://doi.org/10.1088/1367-2630/ad8953.
Mottola, Roberto, Buser, Gianni and Treutlein, Philipp (2024) ‘Scalable optical memories in MEMS vapor cells for quantum networking’, SPG Mitteilungen - Communications de la SSP. 01.07.2024, (73), pp. 29–33. Available at: https://doi.org/10.5281/zenodo.13208931.
Mottola, Roberto, Buser, Gianni and Treutlein, Philipp (2024) ‘Scalable optical memories in MEMS vapor cells for quantum networking’, SPG Mitteilungen - Communications de la SSP. 01.07.2024, (73), pp. 29–33. Available at: https://doi.org/10.5281/zenodo.13208931.
Abend, S. et al. (2024) ‘Terrestrial very-long-baseline atom interferometry: Workshop summary’, AVS Quantum Science, 6(2). Available at: https://doi.org/10.1116/5.0185291.
Abend, S. et al. (2024) ‘Terrestrial very-long-baseline atom interferometry: Workshop summary’, AVS Quantum Science, 6(2). Available at: https://doi.org/10.1116/5.0185291.
Mottola, R. (2024) Room temperature single-photon sources and atomic quantum memories for broadband quantum networks.
Mottola, R. (2024) Room temperature single-photon sources and atomic quantum memories for broadband quantum networks.
Mottola, R., Buser, G. and Treutlein, P. (2023) ‘Optical Memory in a Microfabricated Rubidium Vapor Cell’, Physical Review Letters, 131(26). Available at: https://doi.org/10.1103/PhysRevLett.131.260801.
Mottola, R., Buser, G. and Treutlein, P. (2023) ‘Optical Memory in a Microfabricated Rubidium Vapor Cell’, Physical Review Letters, 131(26). Available at: https://doi.org/10.1103/PhysRevLett.131.260801.
Mottola, R., Buser, G. and Treutlein, P. (2023) ‘Electromagnetically induced transparency and optical pumping in the hyperfine Paschen-Back regime’, Physical Review A, 108(6). Available at: https://doi.org/10.1103/PhysRevA.108.062820.
Mottola, R., Buser, G. and Treutlein, P. (2023) ‘Electromagnetically induced transparency and optical pumping in the hyperfine Paschen-Back regime’, Physical Review A, 108(6). Available at: https://doi.org/10.1103/PhysRevA.108.062820.
Lu, Yuan-Tian et al. (2023) ‘A High-Sensitivity Cesium Atomic Magnetometer Based on A Cesium Spectral Lamp’, Applied Sciences. 15.07.2023, 13(14), p. 8225. Available at: https://doi.org/10.3390/app13148225.
Lu, Yuan-Tian et al. (2023) ‘A High-Sensitivity Cesium Atomic Magnetometer Based on A Cesium Spectral Lamp’, Applied Sciences. 15.07.2023, 13(14), p. 8225. Available at: https://doi.org/10.3390/app13148225.
Colciaghi, P. et al. (2023) ‘Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates’, Physical Review X, 13(2). Available at: https://doi.org/10.1103/PhysRevX.13.021031.
Colciaghi, P. et al. (2023) ‘Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates’, Physical Review X, 13(2). Available at: https://doi.org/10.1103/PhysRevX.13.021031.
Antoniadis, N.O. (2023) A quantum dot in a microcavity as a coherent spin-photon interface.
Antoniadis, N.O. (2023) A quantum dot in a microcavity as a coherent spin-photon interface.
Buser, G.C. (2023) Storing single photons in broadband vapor cell quantum memories.
Buser, G.C. (2023) Storing single photons in broadband vapor cell quantum memories.
Colciaghi, P. (2023) Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates.
Colciaghi, P. (2023) Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates.
Ernzer, M. (2023) Optical coherent feedback control of
a mechanical oscillator.
Ernzer, M. (2023) Optical coherent feedback control of
a mechanical oscillator.
Ernzer, Maryse et al. (2023) ‘Optical Coherent Feedback Control of a Mechanical Oscillator’, Physical Review X. 15.05.2023, 13(2), p. 021023. Available at: https://doi.org/10.1103/physrevx.13.021023.
Ernzer, Maryse et al. (2023) ‘Optical Coherent Feedback Control of a Mechanical Oscillator’, Physical Review X. 15.05.2023, 13(2), p. 021023. Available at: https://doi.org/10.1103/physrevx.13.021023.
Ngai, C.T. (2023) Coherent feedback cooling of a nanomechanical membrane with
atomic spins.
Ngai, C.T. (2023) Coherent feedback cooling of a nanomechanical membrane with
atomic spins.
Alonso, Ivan et al. (2022) ‘Cold atoms in space: community workshop summary and proposed road-map’, EPJ Quantum Technology, 9(1), p. 30. Available at: https://doi.org/10.1140/epjqt/s40507-022-00147-w.
Alonso, Ivan et al. (2022) ‘Cold atoms in space: community workshop summary and proposed road-map’, EPJ Quantum Technology, 9(1), p. 30. Available at: https://doi.org/10.1140/epjqt/s40507-022-00147-w.
Buser, Gianni et al. (2022) ‘Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory’, PRX Quantum, 3(2), p. 020349. Available at: https://doi.org/10.1103/prxquantum.3.020349.
Buser, Gianni et al. (2022) ‘Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory’, PRX Quantum, 3(2), p. 020349. Available at: https://doi.org/10.1103/prxquantum.3.020349.
Fadel, Matteo and Gessner, Manuel (2022) ‘Entanglement of Local Hidden States’, Quantum, 6, p. 651. Available at: https://doi.org/10.22331/q-2022-02-15-651.
Fadel, Matteo and Gessner, Manuel (2022) ‘Entanglement of Local Hidden States’, Quantum, 6, p. 651. Available at: https://doi.org/10.22331/q-2022-02-15-651.
Ngai, Chun Tat (2022) Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins. Dissertation. Universität Basel.
Ngai, Chun Tat (2022) Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins. Dissertation. Universität Basel.
Schmid, Gian-Luca et al. (2022) ‘Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins’, Physical Review X, 12(1), p. 011020. Available at: https://doi.org/10.1103/physrevx.12.011020.
Schmid, Gian-Luca et al. (2022) ‘Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins’, Physical Review X, 12(1), p. 011020. Available at: https://doi.org/10.1103/physrevx.12.011020.
Teh, Run Yan et al. (2022) ‘Full multipartite steering inseparability, genuine multipartite steering, and monogamy for continuous-variable systems’, Physical Review A, 105(1), p. 012202. Available at: https://doi.org/10.1103/physreva.105.012202.
Teh, Run Yan et al. (2022) ‘Full multipartite steering inseparability, genuine multipartite steering, and monogamy for continuous-variable systems’, Physical Review A, 105(1), p. 012202. Available at: https://doi.org/10.1103/physreva.105.012202.
Tian, Mingsheng et al. (2022) ‘Characterizing Multipartite non-Gaussian Entanglement for a Three-Mode Spontaneous Parametric Down-Conversion Process’, Physical Review Applied, 18(2), p. 024065. Available at: https://doi.org/10.1103/physrevapplied.18.024065.
Tian, Mingsheng et al. (2022) ‘Characterizing Multipartite non-Gaussian Entanglement for a Three-Mode Spontaneous Parametric Down-Conversion Process’, Physical Review Applied, 18(2), p. 024065. Available at: https://doi.org/10.1103/physrevapplied.18.024065.
Aloy, Albert, Fadel, Matteo and Tura, Jordi (2021) ‘The quantum marginal problem for symmetric states: applications to variational optimization, nonlocality and self-testing’, New journal of physics, 23(3), p. 033026. Available at: https://doi.org/10.1088/1367-2630/abe15e.
Aloy, Albert, Fadel, Matteo and Tura, Jordi (2021) ‘The quantum marginal problem for symmetric states: applications to variational optimization, nonlocality and self-testing’, New journal of physics, 23(3), p. 033026. Available at: https://doi.org/10.1088/1367-2630/abe15e.
Buser, Gianni Carlo (2021) Storing single photons in broadband vapor cell quantum memories. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-ep94369.
Buser, Gianni Carlo (2021) Storing single photons in broadband vapor cell quantum memories. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-ep94369.
Chaudhary, Manish et al. (2021) ‘Remote state preparation of two-component Bose-Einstein condensates’, Physical Review A, 103(6), p. 062417. Available at: https://doi.org/10.1103/physreva.103.062417.
Chaudhary, Manish et al. (2021) ‘Remote state preparation of two-component Bose-Einstein condensates’, Physical Review A, 103(6), p. 062417. Available at: https://doi.org/10.1103/physreva.103.062417.
Fadel, Matteo and Maccone, Lorenzo (2021) ‘Time-energy uncertainty relation for quantum events’, Physical Review A, 104(5), p. L050204. Available at: https://doi.org/10.1103/physreva.104.l050204.
Fadel, Matteo and Maccone, Lorenzo (2021) ‘Time-energy uncertainty relation for quantum events’, Physical Review A, 104(5), p. L050204. Available at: https://doi.org/10.1103/physreva.104.l050204.
Fadel, Matteo et al. (2021) ‘Entanglement Quantification in Atomic Ensembles’, Physical Review Letters, 127(1), p. 010401. Available at: https://doi.org/10.1103/physrevlett.127.010401.
Fadel, Matteo et al. (2021) ‘Entanglement Quantification in Atomic Ensembles’, Physical Review Letters, 127(1), p. 010401. Available at: https://doi.org/10.1103/physrevlett.127.010401.
Kitzinger, Jonas et al. (2021) ‘Bell correlations in a split two-mode-squeezed Bose-Einstein condensate’, Physical Review A, 104(4), p. 043323. Available at: https://doi.org/10.1103/physreva.104.043323.
Kitzinger, Jonas et al. (2021) ‘Bell correlations in a split two-mode-squeezed Bose-Einstein condensate’, Physical Review A, 104(4), p. 043323. Available at: https://doi.org/10.1103/physreva.104.043323.
Schmidt, Jonathan, Fadel, Matteo and Benavides-Riveros, Carlos L. (2021) ‘Machine learning universal bosonic functionals’, Physical Review Research, 3(3), p. L032063. Available at: https://doi.org/10.1103/physrevresearch.3.l032063.
Schmidt, Jonathan, Fadel, Matteo and Benavides-Riveros, Carlos L. (2021) ‘Machine learning universal bosonic functionals’, Physical Review Research, 3(3), p. L032063. Available at: https://doi.org/10.1103/physrevresearch.3.l032063.
Serafin, Alan et al. (2021) ‘Nuclear spin squeezing by continuous quantum non-demolition measurement : a theoretical study’, Comptes rendus physique, 22(1), pp. 1–35. Available at: https://doi.org/10.5802/crphys.71.
Serafin, Alan et al. (2021) ‘Nuclear spin squeezing by continuous quantum non-demolition measurement : a theoretical study’, Comptes rendus physique, 22(1), pp. 1–35. Available at: https://doi.org/10.5802/crphys.71.
Serafin, Alan et al. (2021) ‘Nuclear Spin Squeezing in Helium-3 by Continuous Quantum Nondemolition Measurement’, Physical Review Letters, 127(1), p. 013601. Available at: https://doi.org/10.1103/physrevlett.127.013601.
Serafin, Alan et al. (2021) ‘Nuclear Spin Squeezing in Helium-3 by Continuous Quantum Nondemolition Measurement’, Physical Review Letters, 127(1), p. 013601. Available at: https://doi.org/10.1103/physrevlett.127.013601.
Yadin, Benjamin, Fadel, Matteo and Gessner, Manuel (2021) ‘Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox’, Nature Communications, 12(1), p. 2410. Available at: https://doi.org/10.1038/s41467-021-22353-3.
Yadin, Benjamin, Fadel, Matteo and Gessner, Manuel (2021) ‘Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox’, Nature Communications, 12(1), p. 2410. Available at: https://doi.org/10.1038/s41467-021-22353-3.
Zhai, L. (2021) Low-noise GaAs Quantum Dots.
Zhai, L. (2021) Low-noise GaAs Quantum Dots.
Corazza, Giulio and Fadel, Matteo (2020) ‘Normalized Gaussian path integrals’, Physical Review E, 102(2-1), p. 022135. Available at: https://doi.org/10.1103/physreve.102.022135.
Corazza, Giulio and Fadel, Matteo (2020) ‘Normalized Gaussian path integrals’, Physical Review E, 102(2-1), p. 022135. Available at: https://doi.org/10.1103/physreve.102.022135.
Fadel, Matteo, Aloy, Albert and Tura, Jordi (2020) ‘Bounding the fidelity of quantum many-body states from partial information’, Physical Review A, 102, p. 020401. Available at: https://doi.org/10.1103/physreva.102.020401.
Fadel, Matteo, Aloy, Albert and Tura, Jordi (2020) ‘Bounding the fidelity of quantum many-body states from partial information’, Physical Review A, 102, p. 020401. Available at: https://doi.org/10.1103/physreva.102.020401.
Fadel, Matteo et al. (2020) ‘Number-phase entanglement and Einstein-Podolsky-Rosen steering’, Physical Review A, 101, p. 052117. Available at: https://doi.org/10.1103/physreva.101.052117.
Fadel, Matteo et al. (2020) ‘Number-phase entanglement and Einstein-Podolsky-Rosen steering’, Physical Review A, 101, p. 052117. Available at: https://doi.org/10.1103/physreva.101.052117.
Fadel, Matteo and Gessner, Manuel (2020) ‘Relating spin squeezing to multipartite entanglement criteria for particles and modes’, Physical Review A, 102, p. 012412. Available at: https://doi.org/10.1103/physreva.102.012412.
Fadel, Matteo and Gessner, Manuel (2020) ‘Relating spin squeezing to multipartite entanglement criteria for particles and modes’, Physical Review A, 102, p. 012412. Available at: https://doi.org/10.1103/physreva.102.012412.
Karg, Thomas (2020) Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble. Dissertation. Universität Basel.
Karg, Thomas (2020) Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble. Dissertation. Universität Basel.
Karg, Thomas M. et al. (2020) ‘Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart’, Science, 369(6500), pp. 174–179. Available at: https://doi.org/10.1126/science.abb0328.
Karg, Thomas M. et al. (2020) ‘Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart’, Science, 369(6500), pp. 174–179. Available at: https://doi.org/10.1126/science.abb0328.
Karg, Thomas Michael (2020) Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble. Dissertation. Universität Basel.
Karg, Thomas Michael (2020) Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble. Dissertation. Universität Basel.
Karg, T.M. (2020) Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble. Available at: https://doi.org/10.5451/unibas-007229206.
Karg, T.M. (2020) Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble. Available at: https://doi.org/10.5451/unibas-007229206.
Li, Yifan et al. (2020) ‘Fundamental Limit of Phase Coherence in Two-Component Bose-Einstein Condensates’, Physical Review Letters, 125(12), p. 123402. Available at: https://doi.org/10.1103/physrevlett.125.123402.
Li, Yifan et al. (2020) ‘Fundamental Limit of Phase Coherence in Two-Component Bose-Einstein Condensates’, Physical Review Letters, 125(12), p. 123402. Available at: https://doi.org/10.1103/physrevlett.125.123402.
Morris, Benjamin et al. (2020) ‘Entanglement between Identical Particles Is a Useful and Consistent Resource’, Physical Review X, 10(4), p. 041012. Available at: https://doi.org/10.1103/physrevx.10.041012.
Morris, Benjamin et al. (2020) ‘Entanglement between Identical Particles Is a Useful and Consistent Resource’, Physical Review X, 10(4), p. 041012. Available at: https://doi.org/10.1103/physrevx.10.041012.
Mottola, Roberto et al. (2020) ‘An efficient, tunable, and robust source of narrow-band photon pairs at the 87 Rb D1 line’, Optics express, 28(3), p. 3159. Available at: https://doi.org/10.1364/oe.384081.
Mottola, Roberto et al. (2020) ‘An efficient, tunable, and robust source of narrow-band photon pairs at the 87 Rb D1 line’, Optics express, 28(3), p. 3159. Available at: https://doi.org/10.1364/oe.384081.
Zhai, Liang et al. (2020) ‘Large-range frequency tuning of a narrow-linewidth quantum emitter’, Applied Physics Letters, 117(8), p. 083106. Available at: https://doi.org/10.1063/5.0017995.
Zhai, Liang et al. (2020) ‘Large-range frequency tuning of a narrow-linewidth quantum emitter’, Applied Physics Letters, 117(8), p. 083106. Available at: https://doi.org/10.1063/5.0017995.
Treutlein, Philipp (2020) ‘Atom Optomechanics Optomechanics’, in Cohadon, Pierre-François; Harris, Jack; Marquardt, Florian; Cugliandolo, Letizia (ed.) Quantum Optomechanics and Nanomechanics. Oxford, United Kingdom: Oxford University Press (Lecture Notes of the Les Houches Summer School), pp. 329–368. Available at: https://doi.org/10.1093/oso/9780198828143.003.0009.
Treutlein, Philipp (2020) ‘Atom Optomechanics Optomechanics’, in Cohadon, Pierre-François; Harris, Jack; Marquardt, Florian; Cugliandolo, Letizia (ed.) Quantum Optomechanics and Nanomechanics. Oxford, United Kingdom: Oxford University Press (Lecture Notes of the Les Houches Summer School), pp. 329–368. Available at: https://doi.org/10.1093/oso/9780198828143.003.0009.
Wolters, Janik et al. (2019) ‘Rb vapor cell quantum memory for single photons’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: Institute of Electrical and Electronics Engineers ( 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference). Available at: https://doi.org/10.1109/CLEOE-EQEC.2019.8872182.
Wolters, Janik et al. (2019) ‘Rb vapor cell quantum memory for single photons’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: Institute of Electrical and Electronics Engineers ( 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference). Available at: https://doi.org/10.1109/CLEOE-EQEC.2019.8872182.
Baccari, F. et al. (2019) ‘Bell correlation depth in many-body systems’, Physical Review A, 100(2), p. 022121. Available at: https://doi.org/10.1103/physreva.100.022121.
Baccari, F. et al. (2019) ‘Bell correlation depth in many-body systems’, Physical Review A, 100(2), p. 022121. Available at: https://doi.org/10.1103/physreva.100.022121.
Froewis, Florian et al. (2019) ‘Does large quantum Fisher information imply Bell correlations?’, Physical Review A, 99(4), p. 040101. Available at: https://doi.org/10.1103/physreva.99.040101.
Froewis, Florian et al. (2019) ‘Does large quantum Fisher information imply Bell correlations?’, Physical Review A, 99(4), p. 040101. Available at: https://doi.org/10.1103/physreva.99.040101.
Jing, Yumang et al. (2019) ‘Split spin-squeezed Bose-Einstein condensates’, New Journal of Physics, 21, p. 093038. Available at: https://doi.org/10.1088/1367-2630/ab3fcf.
Jing, Yumang et al. (2019) ‘Split spin-squeezed Bose-Einstein condensates’, New Journal of Physics, 21, p. 093038. Available at: https://doi.org/10.1088/1367-2630/ab3fcf.
Karg, Thomas M. et al. (2019) ‘Remote Hamiltonian interactions mediated by light’, Physical Review A, 99(6), p. 063829. Available at: https://doi.org/10.1103/physreva.99.063829.
Karg, Thomas M. et al. (2019) ‘Remote Hamiltonian interactions mediated by light’, Physical Review A, 99(6), p. 063829. Available at: https://doi.org/10.1103/physreva.99.063829.
Wagner, S. (2019) Complex system and untrusted device certification from Bell’s inequality. Available at: https://doi.org/10.5451/unibas-007094461.
Wagner, S. (2019) Complex system and untrusted device certification from Bell’s inequality. Available at: https://doi.org/10.5451/unibas-007094461.
Zibold, T. et al. (2019) ‘Spatial entanglement and Einstein-podolsky-rosen steering in a bose-Einstein condensate’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1364/QIM.2019.S2D.4.
Zibold, T. et al. (2019) ‘Spatial entanglement and Einstein-podolsky-rosen steering in a bose-Einstein condensate’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1364/QIM.2019.S2D.4.
Béguin, Lucas et al. (2018) ‘On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets’, Physical Review B, 97(20), p. 205304. Available at: https://doi.org/10.1103/physrevb.97.205304.
Béguin, Lucas et al. (2018) ‘On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets’, Physical Review B, 97(20), p. 205304. Available at: https://doi.org/10.1103/physrevb.97.205304.
Fadel, Matteo (2018) Many-particle entanglement, Einstein-Podolsky-Rosen steering and Bell correlations in Bose-Einstein condensates. Dissertation. Universität Basel.
Fadel, Matteo (2018) Many-particle entanglement, Einstein-Podolsky-Rosen steering and Bell correlations in Bose-Einstein condensates. Dissertation. Universität Basel.
Fadel, M. (2018) Many-particle entanglement, Einstein-Podolsky-Rosen steering and Bell correlations in Bose-Einstein condensates. Available at: https://doi.org/10.5451/unibas-007074222.
Fadel, M. (2018) Many-particle entanglement, Einstein-Podolsky-Rosen steering and Bell correlations in Bose-Einstein condensates. Available at: https://doi.org/10.5451/unibas-007074222.
Fadel, Matteo and Tura, Jordi (2018) ‘Bell Correlations at finite temperature’, Quantum, 2, p. 107. Available at: https://doi.org/10.22331/q-2018-11-19-107.
Fadel, Matteo and Tura, Jordi (2018) ‘Bell Correlations at finite temperature’, Quantum, 2, p. 107. Available at: https://doi.org/10.22331/q-2018-11-19-107.
Fadel, Matteo et al. (2018) ‘Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates’, Science, 360(6387), pp. 409–413. Available at: https://doi.org/10.1126/science.aao1850.
Fadel, Matteo et al. (2018) ‘Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates’, Science, 360(6387), pp. 409–413. Available at: https://doi.org/10.1126/science.aao1850.
Horsley, Andrew et al. (2018) ‘Microwave Device Characterization Using a Widefield Diamond Microscope’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044039.
Horsley, Andrew et al. (2018) ‘Microwave Device Characterization Using a Widefield Diamond Microscope’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044039.
Pezze, Luca et al. (2018) ‘Quantum metrology with nonclassical states of atomic ensembles’, Reviews of Modern Physics, 90(3), p. 035005. Available at: https://doi.org/10.1103/revmodphys.90.035005.
Pezze, Luca et al. (2018) ‘Quantum metrology with nonclassical states of atomic ensembles’, Reviews of Modern Physics, 90(3), p. 035005. Available at: https://doi.org/10.1103/revmodphys.90.035005.
Vochezer, Aline et al. (2018) ‘Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane’, Physical review letters, 120(7), p. 073602. Available at: https://doi.org/10.1103/physrevlett.120.073602.
Vochezer, Aline et al. (2018) ‘Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane’, Physical review letters, 120(7), p. 073602. Available at: https://doi.org/10.1103/physrevlett.120.073602.
Fadel, Matteo and Tura, Jordi (2017) ‘Bounding the Set of Classical Correlations of a Many-Body System’, Physical Review Letters, 119(23), p. 230402. Available at: https://doi.org/10.1103/physrevlett.119.230402.
Fadel, Matteo and Tura, Jordi (2017) ‘Bounding the Set of Classical Correlations of a Many-Body System’, Physical Review Letters, 119(23), p. 230402. Available at: https://doi.org/10.1103/physrevlett.119.230402.
Horsley, Andrew et al. (2017) ‘Widefield microwave imaging using NV centres’. IEEE: IEEE. Available at: https://doi.org/10.1109/cleoe-eqec.2017.8087309.
Horsley, Andrew et al. (2017) ‘Widefield microwave imaging using NV centres’. IEEE: IEEE. Available at: https://doi.org/10.1109/cleoe-eqec.2017.8087309.
Oudot, Enky et al. (2017) ‘Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate’, Physical Review A, 95(5), p. 052347. Available at: https://doi.org/10.1103/physreva.95.052347.
Oudot, Enky et al. (2017) ‘Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate’, Physical Review A, 95(5), p. 052347. Available at: https://doi.org/10.1103/physreva.95.052347.
Pawlowski, Krzysztof et al. (2017) ‘Mesoscopic quantum superpositions in bimodal Bose-Einstein condensates: Decoherence and strategies to counteract it’, Physical Review A, 95(6), p. 063609. Available at: https://doi.org/10.1103/physreva.95.063609.
Pawlowski, Krzysztof et al. (2017) ‘Mesoscopic quantum superpositions in bimodal Bose-Einstein condensates: Decoherence and strategies to counteract it’, Physical Review A, 95(6), p. 063609. Available at: https://doi.org/10.1103/physreva.95.063609.
Treutlein, Philipp (2017) ‘Hybrid atom-membrane optomechanics’. IEEE: IEEE. Available at: https://doi.org/10.1364/cleo_at.2017.jth4g.4.
Treutlein, Philipp (2017) ‘Hybrid atom-membrane optomechanics’. IEEE: IEEE. Available at: https://doi.org/10.1364/cleo_at.2017.jth4g.4.
Wagner, Sebastian et al. (2017) ‘Bell Correlations in a Many-Body System with Finite Statistics’, Physical Review Letters, 119(17), p. 170403. Available at: https://doi.org/10.1103/physrevlett.119.170403.
Wagner, Sebastian et al. (2017) ‘Bell Correlations in a Many-Body System with Finite Statistics’, Physical Review Letters, 119(17), p. 170403. Available at: https://doi.org/10.1103/physrevlett.119.170403.
Wolters, Janik et al. (2017) ‘An atomic memory suitable for semiconductor quantum dot single photons’. IEEE: IEEE. Available at: https://doi.org/10.1109/cleoe-eqec.2017.8087439.
Wolters, Janik et al. (2017) ‘An atomic memory suitable for semiconductor quantum dot single photons’. IEEE: IEEE. Available at: https://doi.org/10.1109/cleoe-eqec.2017.8087439.
Wolters, Janik et al. (2017) ‘Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons’, Physical Review Letters, 119(6), p. 060502. Available at: https://doi.org/10.1103/physrevlett.119.060502.
Wolters, Janik et al. (2017) ‘Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons’, Physical Review Letters, 119(6), p. 060502. Available at: https://doi.org/10.1103/physrevlett.119.060502.
Jahn, J.-P. et al. (2016) ‘Erratum: An artificial Rb atom in a semiconductor with lifetime-limited linewidth (Physical Review B - Condensed Matter and Materials Physics (2015) 92 (245439))’, Physical Review B, 93(15). Available at: https://doi.org/10.1103/PhysRevB.93.159905.
Jahn, J.-P. et al. (2016) ‘Erratum: An artificial Rb atom in a semiconductor with lifetime-limited linewidth (Physical Review B - Condensed Matter and Materials Physics (2015) 92 (245439))’, Physical Review B, 93(15). Available at: https://doi.org/10.1103/PhysRevB.93.159905.
Allard, Baptiste et al. (2016) ‘Sideband Rabi spectroscopy of finite-temperature trapped Bose gases’, Physical Review A, 93(4), p. 043624. Available at: https://doi.org/10.1103/physreva.93.043624.
Allard, Baptiste et al. (2016) ‘Sideband Rabi spectroscopy of finite-temperature trapped Bose gases’, Physical Review A, 93(4), p. 043624. Available at: https://doi.org/10.1103/physreva.93.043624.
Faber, A. (2016) Sympathetic cooling and self-oscillations in a hybrid atom-membrane system. Available at: https://doi.org/10.5451/unibas-006638801.
Faber, A. (2016) Sympathetic cooling and self-oscillations in a hybrid atom-membrane system. Available at: https://doi.org/10.5451/unibas-006638801.
Horsley, Andrew and Treutlein, Philipp (2016) ‘Frequency-tunable microwave field detection in an atomic vapor cell’, Applied Physics Letters, 108(21), p. 211102. Available at: https://doi.org/10.1063/1.4950805.
Horsley, Andrew and Treutlein, Philipp (2016) ‘Frequency-tunable microwave field detection in an atomic vapor cell’, Applied Physics Letters, 108(21), p. 211102. Available at: https://doi.org/10.1063/1.4950805.
Mielenz, Manuel et al. (2016) ‘Arrays of individually controlled ions suitable for two-dimensional quantum simulations’, Nature Communications, 7, p. ncomms11839. Available at: https://doi.org/10.1038/ncomms11839.
Mielenz, Manuel et al. (2016) ‘Arrays of individually controlled ions suitable for two-dimensional quantum simulations’, Nature Communications, 7, p. ncomms11839. Available at: https://doi.org/10.1038/ncomms11839.
Schmied, Roman (2016) ‘Quantum state tomography of a single qubit: comparison of methods’, Journal of Modern Optics, 63(18), pp. 1744–1758. Available at: https://doi.org/10.1080/09500340.2016.1142018.
Schmied, Roman (2016) ‘Quantum state tomography of a single qubit: comparison of methods’, Journal of Modern Optics, 63(18), pp. 1744–1758. Available at: https://doi.org/10.1080/09500340.2016.1142018.
Schmied, Roman et al. (2016) ‘Bell correlations in a Bose-Einstein condensate’, Science, 352(6284), pp. 441–4. Available at: https://doi.org/10.1126/science.aad8665.
Schmied, Roman et al. (2016) ‘Bell correlations in a Bose-Einstein condensate’, Science, 352(6284), pp. 441–4. Available at: https://doi.org/10.1126/science.aad8665.
Treutlein, Philipp (2016) ‘Photon Qubit is Made of Two Colors’, Physics - Spotlighting Exceptional Research, 9, p. 135. Available at: https://doi.org/10.1103/physics.9.135.
Treutlein, Philipp (2016) ‘Photon Qubit is Made of Two Colors’, Physics - Spotlighting Exceptional Research, 9, p. 135. Available at: https://doi.org/10.1103/physics.9.135.
Affolderbach, Christoph et al. (2015) ‘Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock’, IEEE transactions on instrumentation and measurement, 64(12), pp. 3629–3637. Available at: https://doi.org/10.1109/tim.2015.2444261.
Affolderbach, Christoph et al. (2015) ‘Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock’, IEEE transactions on instrumentation and measurement, 64(12), pp. 3629–3637. Available at: https://doi.org/10.1109/tim.2015.2444261.
Affolderbach, Christoph et al. (2015) ‘Imaging the static magnetic field distribution in a vapor cell atomic clock’. IEEE: IEEE. Available at: https://doi.org/10.1109/fcs.2015.7138785.
Affolderbach, Christoph et al. (2015) ‘Imaging the static magnetic field distribution in a vapor cell atomic clock’. IEEE: IEEE. Available at: https://doi.org/10.1109/fcs.2015.7138785.
Fröwis, Florian, Schmied, Roman and Gisin, Nicolas (2015) ‘Tighter quantum uncertainty relations following from a general probabilistic bound’, Physical Review A, 92(1), p. 012102. Available at: https://doi.org/10.1103/physreva.92.012102.
Fröwis, Florian, Schmied, Roman and Gisin, Nicolas (2015) ‘Tighter quantum uncertainty relations following from a general probabilistic bound’, Physical Review A, 92(1), p. 012102. Available at: https://doi.org/10.1103/physreva.92.012102.
Horsley, Andrew (2015) High Resolution Field Imaging with Atomic Vapor Cells. Dissertation. Universität Basel.
Horsley, Andrew (2015) High Resolution Field Imaging with Atomic Vapor Cells. Dissertation. Universität Basel.
Horsley, A. (2015) High resolution field imaging with atomic vapor cells. Available at: https://doi.org/10.5451/unibas-006504997.
Horsley, A. (2015) High resolution field imaging with atomic vapor cells. Available at: https://doi.org/10.5451/unibas-006504997.
Horsley, Andrew, Du, Guan-Xiang and Treutlein, Philipp (2015) ‘Widefield microwave imaging in alkali vapor cells with sub-100 mum resolution’, New journal of physics, 17, p. 112002. Available at: https://doi.org/10.1088/1367-2630/17/11/112002.
Horsley, Andrew, Du, Guan-Xiang and Treutlein, Philipp (2015) ‘Widefield microwave imaging in alkali vapor cells with sub-100 mum resolution’, New journal of physics, 17, p. 112002. Available at: https://doi.org/10.1088/1367-2630/17/11/112002.
Jahn, Jan-Philipp et al. (2015) ‘An artificial Rb atom in a semiconductor with lifetime-limited linewidth’, Physical Review B, 92(24), p. 245439. Available at: https://doi.org/10.1103/physrevb.92.245439.
Jahn, Jan-Philipp et al. (2015) ‘An artificial Rb atom in a semiconductor with lifetime-limited linewidth’, Physical Review B, 92(24), p. 245439. Available at: https://doi.org/10.1103/physrevb.92.245439.
Jöckel, Andreas et al. (2015) ‘Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system’, Nature nanotechnology, 10(1), pp. 55–9. Available at: https://doi.org/10.1038/nnano.2014.278.
Jöckel, Andreas et al. (2015) ‘Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system’, Nature nanotechnology, 10(1), pp. 55–9. Available at: https://doi.org/10.1038/nnano.2014.278.
Treutlein, Philipp (2015) ‘Matter-wave interference. Nanomechanical answer to Einstein’, Nature Nanotechnology, 10(10), pp. 832–3. Available at: https://doi.org/10.1038/nnano.2015.241.
Treutlein, Philipp (2015) ‘Matter-wave interference. Nanomechanical answer to Einstein’, Nature Nanotechnology, 10(10), pp. 832–3. Available at: https://doi.org/10.1038/nnano.2015.241.
Vogell, B. et al. (2015) ‘Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble’, New journal of physics, 17, p. 043044. Available at: https://doi.org/10.1088/1367-2630/17/4/043044.
Vogell, B. et al. (2015) ‘Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble’, New journal of physics, 17, p. 043044. Available at: https://doi.org/10.1088/1367-2630/17/4/043044.
Ivanov, A. et al. (2014) ‘Experimental and numerical study of the microwave field distribution in a compact magnetron-type microwave cavity’. IEEE: IEEE. Available at: https://doi.org/10.1109/eftf.2014.7331467.
Ivanov, A. et al. (2014) ‘Experimental and numerical study of the microwave field distribution in a compact magnetron-type microwave cavity’. IEEE: IEEE. Available at: https://doi.org/10.1109/eftf.2014.7331467.
Jöckel, Andreas (2014) Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Dissertation. Universität Basel.
Jöckel, Andreas (2014) Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Dissertation. Universität Basel.
Jöckel, A. (2014) Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Available at: https://doi.org/10.5451/unibas-006315283.
Jöckel, A. (2014) Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Available at: https://doi.org/10.5451/unibas-006315283.
Korppi, M. (2014) Optomechanical coupling between ultracold atoms and a membrane oscillator. Available at: https://doi.org/10.5451/unibas-006244041.
Korppi, M. (2014) Optomechanical coupling between ultracold atoms and a membrane oscillator. Available at: https://doi.org/10.5451/unibas-006244041.
Lebedev, A. V., Treutlein, Philipp and Blatter, Gianni (2014) ‘Sequential quantum-enhanced measurement with an atomic ensemble’, Physical review. A, Atomic, Molecular, and Optical Physics, 89(1), p. 012118. Available at: https://doi.org/10.1103/physreva.89.012118.
Lebedev, A. V., Treutlein, Philipp and Blatter, Gianni (2014) ‘Sequential quantum-enhanced measurement with an atomic ensemble’, Physical review. A, Atomic, Molecular, and Optical Physics, 89(1), p. 012118. Available at: https://doi.org/10.1103/physreva.89.012118.
Ockeloen, Caspar (2014) Quantum Metrology with a Scanning Probe Atom Interferometer. Dissertation. Universität Basel.
Ockeloen, Caspar (2014) Quantum Metrology with a Scanning Probe Atom Interferometer. Dissertation. Universität Basel.
Ockeloen, C.F. (2014) Quantum metrology with a scanning probe atom interferometer. Available at: https://doi.org/10.5451/unibas-006268635.
Ockeloen, C.F. (2014) Quantum metrology with a scanning probe atom interferometer. Available at: https://doi.org/10.5451/unibas-006268635.
Treutlein, Philipp (2014) ‘Optomechanics: a strained couple’, Nature nanotechnology, 9(2), pp. 99–100. Available at: https://doi.org/10.1038/nnano.2014.3.
Treutlein, Philipp (2014) ‘Optomechanics: a strained couple’, Nature nanotechnology, 9(2), pp. 99–100. Available at: https://doi.org/10.1038/nnano.2014.3.
Treutlein, Philipp et al. (2014) ‘Hybrid mechanical systems’, in Cavity optomechanics : nano- and micromechanical resonators interacting with light. Berlin: Springer (Cavity optomechanics : nano- and micromechanical resonators interacting with light), pp. 327–351. Available at: https://doi.org/10.1007/978-3-642-55312-7_14.
Treutlein, Philipp et al. (2014) ‘Hybrid mechanical systems’, in Cavity optomechanics : nano- and micromechanical resonators interacting with light. Berlin: Springer (Cavity optomechanics : nano- and micromechanical resonators interacting with light), pp. 327–351. Available at: https://doi.org/10.1007/978-3-642-55312-7_14.
Horsley, Andrew et al. (2013) ‘Imaging of relaxation times and microwave field strength in a microfabricated vapor cell’, Physical review. A, Atomic, Molecular, and Optical Physics, 88(6), p. 063407. Available at: https://doi.org/10.1103/physreva.88.063407.
Horsley, Andrew et al. (2013) ‘Imaging of relaxation times and microwave field strength in a microfabricated vapor cell’, Physical review. A, Atomic, Molecular, and Optical Physics, 88(6), p. 063407. Available at: https://doi.org/10.1103/physreva.88.063407.
Horsley, Andrew et al. (2013) ‘Spatially resolved measurement of relaxation times in a microfabricated vapor cell’. IEEE: IEEE. Available at: https://doi.org/10.1109/eftf-ifc.2013.6702085.
Horsley, Andrew et al. (2013) ‘Spatially resolved measurement of relaxation times in a microfabricated vapor cell’. IEEE: IEEE. Available at: https://doi.org/10.1109/eftf-ifc.2013.6702085.
Korppi, Maria (2013) Optomechanical Coupling between Ultracold Atoms and a Membrane Oscillator. Dissertation. Universität Basel.
Korppi, Maria (2013) Optomechanical Coupling between Ultracold Atoms and a Membrane Oscillator. Dissertation. Universität Basel.