Experimental Material Physics (Zardo)
Publications
66 found
Show per page
Kaur, Yashpreet et al. (2025) ‘Thermal Rectification in Telescopic Nanowires: Impact of Thermal Boundary Resistance’, ACS Applied Materials and Interfaces. 18.12.2024, 17(1), pp. 1883–1891. Available at: https://doi.org/10.1021/acsami.4c14920.
Kaur, Yashpreet et al. (2025) ‘Thermal Rectification in Telescopic Nanowires: Impact of Thermal Boundary Resistance’, ACS Applied Materials and Interfaces. 18.12.2024, 17(1), pp. 1883–1891. Available at: https://doi.org/10.1021/acsami.4c14920.
Balduini, F. (2025) Electrical transport and fermiology in microstructured topological semimetals.
Balduini, F. (2025) Electrical transport and fermiology in microstructured topological semimetals.
Carballido, M. (2025) Fixing the holes in holes - on optimizing and scaling the operation of hot hole spin qubits.
Carballido, M. (2025) Fixing the holes in holes - on optimizing and scaling the operation of hot hole spin qubits.
Huang, W. (2025) Electronic transport properties in hexagonal boron nitride encapsulated carbon FETs.
Huang, W. (2025) Electronic transport properties in hexagonal boron nitride encapsulated carbon FETs.
Ruggiero, Luigi et al. (2024) ‘A Backgate for Enhanced Tunability of Holes in Planar Germanium’, Nano Letters. 14.10.2024, 24(42), pp. 13263–13268. Available at: https://doi.org/10.1021/acs.nanolett.4c03493.
Ruggiero, Luigi et al. (2024) ‘A Backgate for Enhanced Tunability of Holes in Planar Germanium’, Nano Letters. 14.10.2024, 24(42), pp. 13263–13268. Available at: https://doi.org/10.1021/acs.nanolett.4c03493.
Nigro, Arianna et al. (2024) ‘Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures’, ACS Applied Electronic Materials. 26.06.2024, 6(7), pp. 5094–5100. Available at: https://doi.org/10.1021/acsaelm.4c00654.
Nigro, Arianna et al. (2024) ‘Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures’, ACS Applied Electronic Materials. 26.06.2024, 6(7), pp. 5094–5100. Available at: https://doi.org/10.1021/acsaelm.4c00654.
de Vito, G. et al. (2024) ‘Suspended micro thermometer for anisotropic thermal transport measurements’, International Journal of Heat and Mass Transfer, 224. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125302.
de Vito, G. et al. (2024) ‘Suspended micro thermometer for anisotropic thermal transport measurements’, International Journal of Heat and Mass Transfer, 224. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125302.
Nigro, Arianna et al. (2024) ‘High quality Ge layers for Ge/SiGe quantum well heterostructures using chemical vapor deposition’, Physical Review Materials. 05.06.2024, 8(6). Available at: https://doi.org/10.1103/PhysRevMaterials.8.066201.
Nigro, Arianna et al. (2024) ‘High quality Ge layers for Ge/SiGe quantum well heterostructures using chemical vapor deposition’, Physical Review Materials. 05.06.2024, 8(6). Available at: https://doi.org/10.1103/PhysRevMaterials.8.066201.
Zannier, Valentina et al. (2024) ‘InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies’, Advanced Physics Research. 27.03.2024, 3(6). Available at: https://doi.org/10.1002/apxr.202300157.
Zannier, Valentina et al. (2024) ‘InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies’, Advanced Physics Research. 27.03.2024, 3(6). Available at: https://doi.org/10.1002/apxr.202300157.
De Matteis, D. (2024) Phonon engineering in nanowire heterostructures.
De Matteis, D. (2024) Phonon engineering in nanowire heterostructures.
de Vito, G. (2024) Four terminal devices for anisotropic thermal transport experiments.
de Vito, G. (2024) Four terminal devices for anisotropic thermal transport experiments.
Sivan, Aswathi K. and Galán-González, Alejandro (2024) ‘Exploring Ultrafast Carrier Dynamics in Photoelectrochemical Water Splitting Using Transient Absorption Spectroscopy’, Particle and Particle Systems Characterization. 06.11.2024, (n/a), p. Online ahead of print. Available at: https://doi.org/10.1002/ppsc.202400164.
Sivan, Aswathi K. and Galán-González, Alejandro (2024) ‘Exploring Ultrafast Carrier Dynamics in Photoelectrochemical Water Splitting Using Transient Absorption Spectroscopy’, Particle and Particle Systems Characterization. 06.11.2024, (n/a), p. Online ahead of print. Available at: https://doi.org/10.1002/ppsc.202400164.
Sojo-Gordillo, Jose M. et al. (2024) ‘TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires’, Nanoscale Horizons. 08.05.2024, 9(7), p. 1200–1210 . Available at: https://doi.org/10.1039/d4nh00114a.
Sojo-Gordillo, Jose M. et al. (2024) ‘TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires’, Nanoscale Horizons. 08.05.2024, 9(7), p. 1200–1210 . Available at: https://doi.org/10.1039/d4nh00114a.
Svab, S. (2024) Readout of spins in semiconductor quantum dots.
Svab, S. (2024) Readout of spins in semiconductor quantum dots.
Forrer, Nicolas et al. (2023) ‘Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires’, Nanomaterials. 30.10.2023, 13(21). Available at: https://doi.org/10.3390/nano13212879.
Forrer, Nicolas et al. (2023) ‘Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires’, Nanomaterials. 30.10.2023, 13(21). Available at: https://doi.org/10.3390/nano13212879.
Abad, Begoña et al. (2023) ‘The 2022 applied physics by pioneering women: a roadmap’, Journal of Physics D: Applied Physics, 56(7), p. 073001. Available at: https://doi.org/10.1088/1361-6463/ac82f9.
Abad, Begoña et al. (2023) ‘The 2022 applied physics by pioneering women: a roadmap’, Journal of Physics D: Applied Physics, 56(7), p. 073001. Available at: https://doi.org/10.1088/1361-6463/ac82f9.
Arif, Omer et al. (2023) ‘GaAs/GaP superlattice nanowires: growth, vibrational and optical properties’, Nanoscale, 15(3), pp. 1145–1153. Available at: https://doi.org/10.1039/d2nr02350d.
Arif, Omer et al. (2023) ‘GaAs/GaP superlattice nanowires: growth, vibrational and optical properties’, Nanoscale, 15(3), pp. 1145–1153. Available at: https://doi.org/10.1039/d2nr02350d.
K. Sivan, Aswathi et al. (2023) ‘GaAs/GaP Superlattice Nanowires for Tailoring Phononic Properties at the Nanoscale: Implications for Thermal Engineering’, ACS Applied Nano Materials, 6(19), pp. 18602–18613. Available at: https://doi.org/10.1021/acsanm.3c04245.
K. Sivan, Aswathi et al. (2023) ‘GaAs/GaP Superlattice Nanowires for Tailoring Phononic Properties at the Nanoscale: Implications for Thermal Engineering’, ACS Applied Nano Materials, 6(19), pp. 18602–18613. Available at: https://doi.org/10.1021/acsanm.3c04245.
Xu, Kai et al. (2023) ‘In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source’, International journal of heat and mass transfer, 214, p. 124376. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124376.
Xu, Kai et al. (2023) ‘In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source’, International journal of heat and mass transfer, 214, p. 124376. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124376.
Braun, Oliver et al. (2022) ‘Spatially mapping thermal transport in graphene by an opto-thermal method’, npj 2D Materials and Applications, 6(11), p. 6. Available at: https://doi.org/10.1038/s41699-021-00277-2.
Braun, Oliver et al. (2022) ‘Spatially mapping thermal transport in graphene by an opto-thermal method’, npj 2D Materials and Applications, 6(11), p. 6. Available at: https://doi.org/10.1038/s41699-021-00277-2.
López-Güell, Kim et al. (2022) ‘Phonon Transport in GaAs and InAs Twinning Superlattices’, Journal of Physical Chemistry C, 126(39), pp. 16851–16858. Available at: https://doi.org/10.1021/acs.jpcc.2c04859.
López-Güell, Kim et al. (2022) ‘Phonon Transport in GaAs and InAs Twinning Superlattices’, Journal of Physical Chemistry C, 126(39), pp. 16851–16858. Available at: https://doi.org/10.1021/acs.jpcc.2c04859.
Umar, M. (2022) Deposition and Characterization of Wide Band Gap P-Type Metal Oxides for Photovoltaic Applications.
Umar, M. (2022) Deposition and Characterization of Wide Band Gap P-Type Metal Oxides for Photovoltaic Applications.
Braun, O. (2021) Thermoelectric Effects in Nanoscale Devices.
Braun, O. (2021) Thermoelectric Effects in Nanoscale Devices.
Fadaly, Elham M. T. et al. (2021) ‘Unveiling Planar Defects in Hexagonal Group IV Materials’, Nano Letters, 21(8), pp. 3619–3625. Available at: https://doi.org/10.1021/acs.nanolett.1c00683.
Fadaly, Elham M. T. et al. (2021) ‘Unveiling Planar Defects in Hexagonal Group IV Materials’, Nano Letters, 21(8), pp. 3619–3625. Available at: https://doi.org/10.1021/acs.nanolett.1c00683.
Gubser, Lukas (2021) Phonon detection by double quantum dots. Dissertation. Universität Basel.
Gubser, Lukas (2021) Phonon detection by double quantum dots. Dissertation. Universität Basel.
Gubser, L. (2021) Phonon detection by double quantum dots.
Gubser, L. (2021) Phonon detection by double quantum dots.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Fasolato, Claudia, Zardo, Ilaria and De Luca, Marta (2021) ‘Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer Singapore (Fundamental Properties of Semiconductor Nanowires), pp. 307–348. Available at: https://doi.org/10.1007/978-981-15-9050-4_7.
Fasolato, Claudia, Zardo, Ilaria and De Luca, Marta (2021) ‘Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer Singapore (Fundamental Properties of Semiconductor Nanowires), pp. 307–348. Available at: https://doi.org/10.1007/978-981-15-9050-4_7.
Tedeschi, Davide, De Luca, Marta and Polimeni, Antonio (2021) ‘Photoluminescence Spectroscopy Applied to Semiconducting Nanowires: A Valuable Probe for Assessing Lattice Defects, Crystal Structures, and Carriers” Temperature’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer (Fundamental Properties of Semiconductor Nanowires), pp. 289–306. Available at: https://doi.org/10.1007/978-981-15-9050-4_6.
Tedeschi, Davide, De Luca, Marta and Polimeni, Antonio (2021) ‘Photoluminescence Spectroscopy Applied to Semiconducting Nanowires: A Valuable Probe for Assessing Lattice Defects, Crystal Structures, and Carriers” Temperature’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer (Fundamental Properties of Semiconductor Nanowires), pp. 289–306. Available at: https://doi.org/10.1007/978-981-15-9050-4_6.
De Luca, Marta et al. (2020) ‘Experimental demonstration of the suppression of optical phonon splitting in 2D materials by Raman spectroscopy’, 2D Materials, 7(3), p. 035017. Available at: https://doi.org/10.1088/2053-1583/ab81b1.
De Luca, Marta et al. (2020) ‘Experimental demonstration of the suppression of optical phonon splitting in 2D materials by Raman spectroscopy’, 2D Materials, 7(3), p. 035017. Available at: https://doi.org/10.1088/2053-1583/ab81b1.
De Luca, Marta et al. (2020) ‘New insights in the lattice dynamics of monolayers, bilayers, and trilayers of WSe2 and unambiguous determination of few-layer-flakes” thickness’, 2D Materials, 7(2), p. 025004. Available at: https://doi.org/10.1088/2053-1583/ab5dec.
De Luca, Marta et al. (2020) ‘New insights in the lattice dynamics of monolayers, bilayers, and trilayers of WSe2 and unambiguous determination of few-layer-flakes” thickness’, 2D Materials, 7(2), p. 025004. Available at: https://doi.org/10.1088/2053-1583/ab5dec.
de Matteis, Diego et al. (2020) ‘Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1-x Alloys in Nanowires by Raman Spectroscopy’, ACS Nano, 14(6), pp. 6845–6856. Available at: https://doi.org/10.1021/acsnano.0c00762.
de Matteis, Diego et al. (2020) ‘Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1-x Alloys in Nanowires by Raman Spectroscopy’, ACS Nano, 14(6), pp. 6845–6856. Available at: https://doi.org/10.1021/acsnano.0c00762.
Gadea Díez, Gerard et al. (2020) ‘Enhanced thermoelectric figure of merit of individual Si nanowires with ultralow contact resistances’, Nano Energy, 67, p. 104191. Available at: https://doi.org/10.1016/j.nanoen.2019.104191.
Gadea Díez, Gerard et al. (2020) ‘Enhanced thermoelectric figure of merit of individual Si nanowires with ultralow contact resistances’, Nano Energy, 67, p. 104191. Available at: https://doi.org/10.1016/j.nanoen.2019.104191.
Swinkels, Milo Yaro et al. (2020) ‘Measuring the Optical Absorption of Single Nanowires’, Physical Review Applied, 14, p. 024045. Available at: https://doi.org/10.1103/physrevapplied.14.024045.
Swinkels, Milo Yaro et al. (2020) ‘Measuring the Optical Absorption of Single Nanowires’, Physical Review Applied, 14, p. 024045. Available at: https://doi.org/10.1103/physrevapplied.14.024045.
Tedeschi, Davide et al. (2020) ‘Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction’, ACS Nano, 14(9), pp. 11613–11622. Available at: https://doi.org/10.1021/acsnano.0c04174.
Tedeschi, Davide et al. (2020) ‘Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction’, ACS Nano, 14(9), pp. 11613–11622. Available at: https://doi.org/10.1021/acsnano.0c04174.
Vakulov, Daniel et al. (2020) ‘Ballistic phonons in ultrathin nanowires’, Nano Letters, 20(4), pp. 2703–2709. Available at: https://doi.org/10.1021/acs.nanolett.0c00320.
Vakulov, Daniel et al. (2020) ‘Ballistic phonons in ultrathin nanowires’, Nano Letters, 20(4), pp. 2703–2709. Available at: https://doi.org/10.1021/acs.nanolett.0c00320.
Benter, S. et al. (2019) ‘Quasi 1D Metal-Semiconductor Heterostructures’, Nano Letters, 19(6), pp. 3892–3897. Available at: https://doi.org/10.1021/acs.nanolett.9b01076.
Benter, S. et al. (2019) ‘Quasi 1D Metal-Semiconductor Heterostructures’, Nano Letters, 19(6), pp. 3892–3897. Available at: https://doi.org/10.1021/acs.nanolett.9b01076.
De Luca, Marta et al. (2019) ‘Phonon Engineering in Twinning Superlattice Nanowires’, Nano letters, 19(7), pp. 4702–4711. Available at: https://doi.org/10.1021/acs.nanolett.9b01775.
De Luca, Marta et al. (2019) ‘Phonon Engineering in Twinning Superlattice Nanowires’, Nano letters, 19(7), pp. 4702–4711. Available at: https://doi.org/10.1021/acs.nanolett.9b01775.
Faria Junior, Paulo E. et al. (2019) ‘Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel wurtzite materials’, Physical Review B, 99(19), p. 195205. Available at: https://doi.org/10.1103/physrevb.99.195205.
Faria Junior, Paulo E. et al. (2019) ‘Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel wurtzite materials’, Physical Review B, 99(19), p. 195205. Available at: https://doi.org/10.1103/physrevb.99.195205.
Overbeck, Jan et al. (2019) ‘A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons’, ACS Nano, 13(11), pp. 13083–13091. Available at: https://doi.org/10.1021/acsnano.9b05817.
Overbeck, Jan et al. (2019) ‘A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons’, ACS Nano, 13(11), pp. 13083–13091. Available at: https://doi.org/10.1021/acsnano.9b05817.
Tedeschi, D. et al. (2019) ‘Unusual spin properties of InP wurtzite nanowires revealed by Zeeman splitting spectroscopy’, Physical Review B, 99(16), p. 161204. Available at: https://doi.org/10.1103/physrevb.99.161204.
Tedeschi, D. et al. (2019) ‘Unusual spin properties of InP wurtzite nanowires revealed by Zeeman splitting spectroscopy’, Physical Review B, 99(16), p. 161204. Available at: https://doi.org/10.1103/physrevb.99.161204.
Zardo, Ilaria and Rurali, Riccardo (2019) ‘Manipulating phonons at the nanoscale: Impurities and boundaries’, Current Opinion in Green and Sustainable Chemistry, 17, pp. 1–7. Available at: https://doi.org/10.1016/j.cogsc.2018.12.006.
Zardo, Ilaria and Rurali, Riccardo (2019) ‘Manipulating phonons at the nanoscale: Impurities and boundaries’, Current Opinion in Green and Sustainable Chemistry, 17, pp. 1–7. Available at: https://doi.org/10.1016/j.cogsc.2018.12.006.
Fasolato, Claudia et al. (2018) ‘Crystalline, Phononic and Electronic properties of Heterostructured Polytypic Ge Nanowires by Raman Spectroscopy’, Nano letters, 18(11), pp. 7075–7084. Available at: https://doi.org/10.1021/acs.nanolett.8b03073.
Fasolato, Claudia et al. (2018) ‘Crystalline, Phononic and Electronic properties of Heterostructured Polytypic Ge Nanowires by Raman Spectroscopy’, Nano letters, 18(11), pp. 7075–7084. Available at: https://doi.org/10.1021/acs.nanolett.8b03073.
Rurali, Riccardo, Yu, Choongho and Zardo, Ilaria (2018) ‘thermoelectric properties of nanostructured materials Preface’, Journal of Physics D: Applied Physics, 51(43). Available at: https://doi.org/10.1088/1361-6463/aadf4f.
Rurali, Riccardo, Yu, Choongho and Zardo, Ilaria (2018) ‘thermoelectric properties of nanostructured materials Preface’, Journal of Physics D: Applied Physics, 51(43). Available at: https://doi.org/10.1088/1361-6463/aadf4f.
Swinkels, Milo Yaro and Zardo, Ilaria (2018) ‘Nanowires for heat conversion’, Journal of Physics D: Applied Physics, 51(35), p. 353001. Available at: https://doi.org/10.1088/1361-6463/aad25f.
Swinkels, Milo Yaro and Zardo, Ilaria (2018) ‘Nanowires for heat conversion’, Journal of Physics D: Applied Physics, 51(35), p. 353001. Available at: https://doi.org/10.1088/1361-6463/aad25f.
Baumberg, Jeremy et al. (2017) ‘SERS in biology/biomedical SERS: general discussion’. Royal Society of Chemistry: Royal Society of Chemistry. Available at: https://doi.org/10.1039/c7fd90089a.
Baumberg, Jeremy et al. (2017) ‘SERS in biology/biomedical SERS: general discussion’. Royal Society of Chemistry: Royal Society of Chemistry. Available at: https://doi.org/10.1039/c7fd90089a.
Cecchini, Raimondo et al. (2017) ‘Single-step Au-catalysed synthesis and microstructural characterization of core-shell Ge/In-Te nanowires by MOCVD’, Materials Research Letters, 6, pp. 29–35. Available at: https://doi.org/10.1080/21663831.2017.1384409.
Cecchini, Raimondo et al. (2017) ‘Single-step Au-catalysed synthesis and microstructural characterization of core-shell Ge/In-Te nanowires by MOCVD’, Materials Research Letters, 6, pp. 29–35. Available at: https://doi.org/10.1080/21663831.2017.1384409.
De Luca, Marta (2017) ‘Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy’, Journal of Physics D: Applied Physics, 50(5), p. 054001. Available at: https://doi.org/10.1088/1361-6463/50/5/054001.
De Luca, Marta (2017) ‘Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy’, Journal of Physics D: Applied Physics, 50(5), p. 054001. Available at: https://doi.org/10.1088/1361-6463/50/5/054001.
De Luca, Marta and Polimeni, Antonio (2017) ‘Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy’, Applied Physics Reviews, 4(4), p. 041102. Available at: https://doi.org/10.1063/1.5006183.
De Luca, Marta and Polimeni, Antonio (2017) ‘Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy’, Applied Physics Reviews, 4(4), p. 041102. Available at: https://doi.org/10.1063/1.5006183.
De Luca, Marta et al. (2017) ‘Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy’, Nano Letters, 17(11), pp. 6540–6547. Available at: https://doi.org/10.1021/acs.nanolett.7b02189.
De Luca, Marta et al. (2017) ‘Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy’, Nano Letters, 17(11), pp. 6540–6547. Available at: https://doi.org/10.1021/acs.nanolett.7b02189.
Fasolato, Claudio et al. (2017) ‘Temperature dependence of the surface plasmon resonance in small electron gas fragments, self consistent field approximation’, Solid State Communications, 260, pp. 30–33. Available at: https://doi.org/10.1016/j.ssc.2017.05.014.
Fasolato, Claudio et al. (2017) ‘Temperature dependence of the surface plasmon resonance in small electron gas fragments, self consistent field approximation’, Solid State Communications, 260, pp. 30–33. Available at: https://doi.org/10.1016/j.ssc.2017.05.014.
Fonseka, H. A. et al. (2017) ‘InP-InxGa1−xAs core-multi-shell nanowire quantum wells with tunable emission in the 1.3-1.55 μm wavelength range’, Nanoscale, 9, pp. 13554–13562. Available at: https://doi.org/10.1039/c7nr04598k.
Fonseka, H. A. et al. (2017) ‘InP-InxGa1−xAs core-multi-shell nanowire quantum wells with tunable emission in the 1.3-1.55 μm wavelength range’, Nanoscale, 9, pp. 13554–13562. Available at: https://doi.org/10.1039/c7nr04598k.
Graham, Duncan et al. (2017) ‘Theory of SERS enhancement: general discussion’. Available at: https://doi.org/10.1039/c7fd90095c.
Graham, Duncan et al. (2017) ‘Theory of SERS enhancement: general discussion’. Available at: https://doi.org/10.1039/c7fd90095c.
Martín-Sánchez, Javier et al. (2017) ‘Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers’, Nano Research, 11(3), pp. 1399–1414. Available at: https://doi.org/10.1007/s12274-017-1755-4.
Martín-Sánchez, Javier et al. (2017) ‘Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers’, Nano Research, 11(3), pp. 1399–1414. Available at: https://doi.org/10.1007/s12274-017-1755-4.
Rojo, Miquel et al. (2017) ‘A review on III-V core-multishell nanowires: growth, properties, and applications’, Journal of Physics D: Applied Physics, 50(14), p. 143001. Available at: https://doi.org/10.1088/1361-6463/aa5d8e.
Rojo, Miquel et al. (2017) ‘A review on III-V core-multishell nanowires: growth, properties, and applications’, Journal of Physics D: Applied Physics, 50(14), p. 143001. Available at: https://doi.org/10.1088/1361-6463/aa5d8e.
De Luca, Marta and Zardo, Ilaria (2017) ‘Semiconductor Nanowires: Raman Spectroscopy Studies’, in Khan, Maaz (ed.) Raman Spectroscopy and applications. Rijeka, Croatia: InTech (Raman Spectroscopy and applications), pp. 81–101. Available at: https://doi.org/10.5772/65113.
De Luca, Marta and Zardo, Ilaria (2017) ‘Semiconductor Nanowires: Raman Spectroscopy Studies’, in Khan, Maaz (ed.) Raman Spectroscopy and applications. Rijeka, Croatia: InTech (Raman Spectroscopy and applications), pp. 81–101. Available at: https://doi.org/10.5772/65113.
Assali, Simone et al. (2016) ‘Optical study of the band structure of wurtzite GaP nanowires’, Journal of Applied Physics, 120(4), p. 044304. Available at: https://doi.org/10.1063/1.4959147.
Assali, Simone et al. (2016) ‘Optical study of the band structure of wurtzite GaP nanowires’, Journal of Applied Physics, 120(4), p. 044304. Available at: https://doi.org/10.1063/1.4959147.
Tedeschi, Davide et al. (2016) ‘Long-Lived Hot Carriers in III-V Nanowires’, Nano Letters, 16(5), pp. 3085–93. Available at: https://doi.org/10.1021/acs.nanolett.6b00251.
Tedeschi, Davide et al. (2016) ‘Long-Lived Hot Carriers in III-V Nanowires’, Nano Letters, 16(5), pp. 3085–93. Available at: https://doi.org/10.1021/acs.nanolett.6b00251.
Tedeschi, Davide et al. (2016) ‘Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires’, Nano Letters, 16(10), pp. 6213–6221. Available at: https://doi.org/10.1021/acs.nanolett.6b02469.
Tedeschi, Davide et al. (2016) ‘Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires’, Nano Letters, 16(10), pp. 6213–6221. Available at: https://doi.org/10.1021/acs.nanolett.6b02469.
Yazji, Sara et al. (2016) ‘Assessing the thermoelectric properties of single InSb nanowires: the role of thermal contact resistance’, Semiconductor Science and Technology, 31(6), p. 064001. Available at: https://doi.org/10.1088/0268-1242/31/6/064001.
Yazji, Sara et al. (2016) ‘Assessing the thermoelectric properties of single InSb nanowires: the role of thermal contact resistance’, Semiconductor Science and Technology, 31(6), p. 064001. Available at: https://doi.org/10.1088/0268-1242/31/6/064001.
Yazji, Sara et al. (2016) ‘Surface-directed molecular assembly of pentacene on aromatic organophosphonate self-assembled monolayers explored by polarized Raman spectroscopy’, Journal of Raman Spectroscopy, 48(2), pp. 235–242. Available at: https://doi.org/10.1002/jrs.5007.
Yazji, Sara et al. (2016) ‘Surface-directed molecular assembly of pentacene on aromatic organophosphonate self-assembled monolayers explored by polarized Raman spectroscopy’, Journal of Raman Spectroscopy, 48(2), pp. 235–242. Available at: https://doi.org/10.1002/jrs.5007.
De Luca, M. et al. (2015) ‘Polarized Light Absorption in Wurtzite InP Nanowire Ensembles’, Nano Letters, 15(2), pp. 998–1005. Available at: https://doi.org/10.1021/nl5038374.
De Luca, M. et al. (2015) ‘Polarized Light Absorption in Wurtzite InP Nanowire Ensembles’, Nano Letters, 15(2), pp. 998–1005. Available at: https://doi.org/10.1021/nl5038374.
Hauge, Håkon Ikaros T. et al. (2015) ‘Hexagonal Silicon Realized’, Nano Letters, 15(9), pp. 5855–5860. Available at: https://doi.org/10.1021/acs.nanolett.5b01939.
Hauge, Håkon Ikaros T. et al. (2015) ‘Hexagonal Silicon Realized’, Nano Letters, 15(9), pp. 5855–5860. Available at: https://doi.org/10.1021/acs.nanolett.5b01939.
Swinkels, M Y et al. (2015) ‘Diameter dependence of the thermal conductivity of InAs nanowires’, Nanotechnology, 26(38), p. 385401. Available at: https://doi.org/10.1088/0957-4484/26/38/385401.
Swinkels, M Y et al. (2015) ‘Diameter dependence of the thermal conductivity of InAs nanowires’, Nanotechnology, 26(38), p. 385401. Available at: https://doi.org/10.1088/0957-4484/26/38/385401.
Yazji, Sara et al. (2015) ‘Complete thermoelectric benchmarking of individual InSb nanowires by combined micro-Raman and electric transport analysis’, Nano Research, 8(12), pp. 4048–4060. Available at: https://doi.org/10.1007/s12274-015-0906-8.
Yazji, Sara et al. (2015) ‘Complete thermoelectric benchmarking of individual InSb nanowires by combined micro-Raman and electric transport analysis’, Nano Research, 8(12), pp. 4048–4060. Available at: https://doi.org/10.1007/s12274-015-0906-8.
Zilli, Attilio et al. (2015) ‘Temperature Dependence of Interband Transitions in Wurtzite InP nanowires’, ACS Nano, 9(4), pp. 4277–87. Available at: https://doi.org/10.1021/acsnano.5b00699.
Zilli, Attilio et al. (2015) ‘Temperature Dependence of Interband Transitions in Wurtzite InP nanowires’, ACS Nano, 9(4), pp. 4277–87. Available at: https://doi.org/10.1021/acsnano.5b00699.