Experimental Material Physics (Zardo)
Publications
57 found
Show per page
Kaur, Yashpreet et al. (2024) ‘Thermal Rectification in Telescopic Nanowires: Impact of Thermal Boundary Resistance’, ACS Applied Materials and Interfaces [Preprint]. Available at: https://doi.org/10.1021/acsami.4c14920.
Kaur, Yashpreet et al. (2024) ‘Thermal Rectification in Telescopic Nanowires: Impact of Thermal Boundary Resistance’, ACS Applied Materials and Interfaces [Preprint]. Available at: https://doi.org/10.1021/acsami.4c14920.
Sivan, Aswathi K. and Galán-González, Alejandro (2024) ‘Exploring Ultrafast Carrier Dynamics in Photoelectrochemical Water Splitting Using Transient Absorption Spectroscopy’, Particle & Particle Systems Characterization. 06.11.2024, (n/a), p. Online ahead of print. Available at: https://doi.org/10.1002/ppsc.202400164.
Sivan, Aswathi K. and Galán-González, Alejandro (2024) ‘Exploring Ultrafast Carrier Dynamics in Photoelectrochemical Water Splitting Using Transient Absorption Spectroscopy’, Particle & Particle Systems Characterization. 06.11.2024, (n/a), p. Online ahead of print. Available at: https://doi.org/10.1002/ppsc.202400164.
Ruggiero, Luigi et al. (2024) ‘A Backgate for Enhanced Tunability of Holes in Planar Germanium’, Nano Letters. 14.10.2024, 24(42), pp. 13263–13268. Available at: https://doi.org/10.1021/acs.nanolett.4c03493.
Ruggiero, Luigi et al. (2024) ‘A Backgate for Enhanced Tunability of Holes in Planar Germanium’, Nano Letters. 14.10.2024, 24(42), pp. 13263–13268. Available at: https://doi.org/10.1021/acs.nanolett.4c03493.
Nigro, Arianna et al. (2024) ‘Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures’, ACS Applied Electronic Materials. 26.06.2024, 6(7), pp. 5094–5100. Available at: https://doi.org/10.1021/acsaelm.4c00654.
Nigro, Arianna et al. (2024) ‘Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures’, ACS Applied Electronic Materials. 26.06.2024, 6(7), pp. 5094–5100. Available at: https://doi.org/10.1021/acsaelm.4c00654.
de Vito, G. et al. (2024) ‘Suspended micro thermometer for anisotropic thermal transport measurements’, International Journal of Heat and Mass Transfer, 224. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125302.
de Vito, G. et al. (2024) ‘Suspended micro thermometer for anisotropic thermal transport measurements’, International Journal of Heat and Mass Transfer, 224. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125302.
Nigro, Arianna et al. (2024) ‘High quality Ge layers for Ge/SiGe quantum well heterostructures using chemical vapor deposition’, Physical Review Materials. 05.06.2024, 8(6). Available at: https://doi.org/10.1103/PhysRevMaterials.8.066201.
Nigro, Arianna et al. (2024) ‘High quality Ge layers for Ge/SiGe quantum well heterostructures using chemical vapor deposition’, Physical Review Materials. 05.06.2024, 8(6). Available at: https://doi.org/10.1103/PhysRevMaterials.8.066201.
Sojo-Gordillo, Jose M. et al. (2024) ‘TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires’, Nanoscale Horizons. 08.05.2024, 9(7), p. 1200–1210 . Available at: https://doi.org/10.1039/d4nh00114a.
Sojo-Gordillo, Jose M. et al. (2024) ‘TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires’, Nanoscale Horizons. 08.05.2024, 9(7), p. 1200–1210 . Available at: https://doi.org/10.1039/d4nh00114a.
Zannier, Valentina et al. (2024) ‘InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies’, Advanced Physics Research. 27.03.2024, 3(6). Available at: https://doi.org/10.1002/apxr.202300157.
Zannier, Valentina et al. (2024) ‘InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies’, Advanced Physics Research. 27.03.2024, 3(6). Available at: https://doi.org/10.1002/apxr.202300157.
Forrer, Nicolas et al. (2023) ‘Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires’, Nanomaterials. 30.10.2023, 13(21). Available at: https://doi.org/10.3390/nano13212879.
Forrer, Nicolas et al. (2023) ‘Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires’, Nanomaterials. 30.10.2023, 13(21). Available at: https://doi.org/10.3390/nano13212879.
Abad, Begoña et al. (2023) ‘The 2022 applied physics by pioneering women: a roadmap’, Journal of Physics D: Applied Physics, 56(7), p. 073001. Available at: https://doi.org/10.1088/1361-6463/ac82f9.
Abad, Begoña et al. (2023) ‘The 2022 applied physics by pioneering women: a roadmap’, Journal of Physics D: Applied Physics, 56(7), p. 073001. Available at: https://doi.org/10.1088/1361-6463/ac82f9.
Arif, Omer et al. (2023) ‘GaAs/GaP superlattice nanowires: growth, vibrational and optical properties’, Nanoscale, 15(3), pp. 1145–1153. Available at: https://doi.org/10.1039/d2nr02350d.
Arif, Omer et al. (2023) ‘GaAs/GaP superlattice nanowires: growth, vibrational and optical properties’, Nanoscale, 15(3), pp. 1145–1153. Available at: https://doi.org/10.1039/d2nr02350d.
K. Sivan, Aswathi et al. (2023) ‘GaAs/GaP Superlattice Nanowires for Tailoring Phononic Properties at the Nanoscale: Implications for Thermal Engineering’, ACS Applied Nano Materials, 6(19), pp. 18602–18613. Available at: https://doi.org/10.1021/acsanm.3c04245.
K. Sivan, Aswathi et al. (2023) ‘GaAs/GaP Superlattice Nanowires for Tailoring Phononic Properties at the Nanoscale: Implications for Thermal Engineering’, ACS Applied Nano Materials, 6(19), pp. 18602–18613. Available at: https://doi.org/10.1021/acsanm.3c04245.
Xu, Kai et al. (2023) ‘In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source’, International journal of heat and mass transfer, 214, p. 124376. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124376.
Xu, Kai et al. (2023) ‘In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source’, International journal of heat and mass transfer, 214, p. 124376. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124376.
Braun, Oliver et al. (2022) ‘Spatially mapping thermal transport in graphene by an opto-thermal method’, npj 2D Materials and Applications, 6(11), p. 6. Available at: https://doi.org/10.1038/s41699-021-00277-2.
Braun, Oliver et al. (2022) ‘Spatially mapping thermal transport in graphene by an opto-thermal method’, npj 2D Materials and Applications, 6(11), p. 6. Available at: https://doi.org/10.1038/s41699-021-00277-2.
López-Güell, Kim et al. (2022) ‘Phonon Transport in GaAs and InAs Twinning Superlattices’, Journal of Physical Chemistry C, 126(39), pp. 16851–16858. Available at: https://doi.org/10.1021/acs.jpcc.2c04859.
López-Güell, Kim et al. (2022) ‘Phonon Transport in GaAs and InAs Twinning Superlattices’, Journal of Physical Chemistry C, 126(39), pp. 16851–16858. Available at: https://doi.org/10.1021/acs.jpcc.2c04859.
Fadaly, Elham M. T. et al. (2021) ‘Unveiling Planar Defects in Hexagonal Group IV Materials’, Nano Letters, 21(8), pp. 3619–3625. Available at: https://doi.org/10.1021/acs.nanolett.1c00683.
Fadaly, Elham M. T. et al. (2021) ‘Unveiling Planar Defects in Hexagonal Group IV Materials’, Nano Letters, 21(8), pp. 3619–3625. Available at: https://doi.org/10.1021/acs.nanolett.1c00683.
Gubser, Lukas (2021) Phonon detection by double quantum dots. . Translated by Zardo Ilaria. Dissertation. Universität Basel.
Gubser, Lukas (2021) Phonon detection by double quantum dots. . Translated by Zardo Ilaria. Dissertation. Universität Basel.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Fasolato, Claudia, Zardo, Ilaria and De Luca, Marta (2021) ‘Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer Singapore (Fundamental Properties of Semiconductor Nanowires), pp. 307–348. Available at: https://doi.org/10.1007/978-981-15-9050-4_7.
Fasolato, Claudia, Zardo, Ilaria and De Luca, Marta (2021) ‘Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer Singapore (Fundamental Properties of Semiconductor Nanowires), pp. 307–348. Available at: https://doi.org/10.1007/978-981-15-9050-4_7.
Tedeschi, Davide, De Luca, Marta and Polimeni, Antonio (2021) ‘Photoluminescence Spectroscopy Applied to Semiconducting Nanowires: A Valuable Probe for Assessing Lattice Defects, Crystal Structures, and Carriers” Temperature’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer (Fundamental Properties of Semiconductor Nanowires), pp. 289–306. Available at: https://doi.org/10.1007/978-981-15-9050-4_6.
Tedeschi, Davide, De Luca, Marta and Polimeni, Antonio (2021) ‘Photoluminescence Spectroscopy Applied to Semiconducting Nanowires: A Valuable Probe for Assessing Lattice Defects, Crystal Structures, and Carriers” Temperature’, in Fukata, Naoki; Rurali, Riccardo (ed.) Fundamental Properties of Semiconductor Nanowires. Singapore: Springer (Fundamental Properties of Semiconductor Nanowires), pp. 289–306. Available at: https://doi.org/10.1007/978-981-15-9050-4_6.
De Luca, Marta et al. (2020) ‘Experimental demonstration of the suppression of optical phonon splitting in 2D materials by Raman spectroscopy’, 2D Materials, 7(3), p. 035017. Available at: https://doi.org/10.1088/2053-1583/ab81b1.
De Luca, Marta et al. (2020) ‘Experimental demonstration of the suppression of optical phonon splitting in 2D materials by Raman spectroscopy’, 2D Materials, 7(3), p. 035017. Available at: https://doi.org/10.1088/2053-1583/ab81b1.
De Luca, Marta et al. (2020) ‘New insights in the lattice dynamics of monolayers, bilayers, and trilayers of WSe2 and unambiguous determination of few-layer-flakes” thickness’, 2D Materials, 7(2), p. 025004. Available at: https://doi.org/10.1088/2053-1583/ab5dec.
De Luca, Marta et al. (2020) ‘New insights in the lattice dynamics of monolayers, bilayers, and trilayers of WSe2 and unambiguous determination of few-layer-flakes” thickness’, 2D Materials, 7(2), p. 025004. Available at: https://doi.org/10.1088/2053-1583/ab5dec.
de Matteis, Diego et al. (2020) ‘Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1-x Alloys in Nanowires by Raman Spectroscopy’, ACS Nano, 14(6), pp. 6845–6856. Available at: https://doi.org/10.1021/acsnano.0c00762.
de Matteis, Diego et al. (2020) ‘Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1-x Alloys in Nanowires by Raman Spectroscopy’, ACS Nano, 14(6), pp. 6845–6856. Available at: https://doi.org/10.1021/acsnano.0c00762.
Gadea Díez, Gerard et al. (2020) ‘Enhanced thermoelectric figure of merit of individual Si nanowires with ultralow contact resistances’, Nano Energy, 67, p. 104191. Available at: https://doi.org/10.1016/j.nanoen.2019.104191.
Gadea Díez, Gerard et al. (2020) ‘Enhanced thermoelectric figure of merit of individual Si nanowires with ultralow contact resistances’, Nano Energy, 67, p. 104191. Available at: https://doi.org/10.1016/j.nanoen.2019.104191.
Swinkels, Milo Yaro et al. (2020) ‘Measuring the Optical Absorption of Single Nanowires’, Physical Review Applied, 14, p. 024045. Available at: https://doi.org/10.1103/physrevapplied.14.024045.
Swinkels, Milo Yaro et al. (2020) ‘Measuring the Optical Absorption of Single Nanowires’, Physical Review Applied, 14, p. 024045. Available at: https://doi.org/10.1103/physrevapplied.14.024045.
Tedeschi, Davide et al. (2020) ‘Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction’, ACS Nano, 14(9), pp. 11613–11622. Available at: https://doi.org/10.1021/acsnano.0c04174.
Tedeschi, Davide et al. (2020) ‘Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction’, ACS Nano, 14(9), pp. 11613–11622. Available at: https://doi.org/10.1021/acsnano.0c04174.
Vakulov, Daniel et al. (2020) ‘Ballistic phonons in ultrathin nanowires’, Nano Letters, 20(4), pp. 2703–2709. Available at: https://doi.org/10.1021/acs.nanolett.0c00320.
Vakulov, Daniel et al. (2020) ‘Ballistic phonons in ultrathin nanowires’, Nano Letters, 20(4), pp. 2703–2709. Available at: https://doi.org/10.1021/acs.nanolett.0c00320.
Benter, S. et al. (2019) ‘Quasi 1D Metal-Semiconductor Heterostructures’, Nano Letters, 19(6), pp. 3892–3897. Available at: https://doi.org/10.1021/acs.nanolett.9b01076.
Benter, S. et al. (2019) ‘Quasi 1D Metal-Semiconductor Heterostructures’, Nano Letters, 19(6), pp. 3892–3897. Available at: https://doi.org/10.1021/acs.nanolett.9b01076.
De Luca, Marta et al. (2019) ‘Phonon Engineering in Twinning Superlattice Nanowires’, Nano letters, 19(7), pp. 4702–4711. Available at: https://doi.org/10.1021/acs.nanolett.9b01775.
De Luca, Marta et al. (2019) ‘Phonon Engineering in Twinning Superlattice Nanowires’, Nano letters, 19(7), pp. 4702–4711. Available at: https://doi.org/10.1021/acs.nanolett.9b01775.
Faria Junior, Paulo E. et al. (2019) ‘Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel wurtzite materials’, Physical Review B, 99(19), p. 195205. Available at: https://doi.org/10.1103/physrevb.99.195205.
Faria Junior, Paulo E. et al. (2019) ‘Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel wurtzite materials’, Physical Review B, 99(19), p. 195205. Available at: https://doi.org/10.1103/physrevb.99.195205.
Overbeck, Jan et al. (2019) ‘A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons’, ACS Nano, 13(11), pp. 13083–13091. Available at: https://doi.org/10.1021/acsnano.9b05817.
Overbeck, Jan et al. (2019) ‘A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons’, ACS Nano, 13(11), pp. 13083–13091. Available at: https://doi.org/10.1021/acsnano.9b05817.
Tedeschi, D. et al. (2019) ‘Unusual spin properties of InP wurtzite nanowires revealed by Zeeman splitting spectroscopy’, Physical Review B, 99(16), p. 161204. Available at: https://doi.org/10.1103/physrevb.99.161204.
Tedeschi, D. et al. (2019) ‘Unusual spin properties of InP wurtzite nanowires revealed by Zeeman splitting spectroscopy’, Physical Review B, 99(16), p. 161204. Available at: https://doi.org/10.1103/physrevb.99.161204.
Zardo, Ilaria and Rurali, Riccardo (2019) ‘Manipulating phonons at the nanoscale: Impurities and boundaries’, Current Opinion in Green and Sustainable Chemistry, 17, pp. 1–7. Available at: https://doi.org/10.1016/j.cogsc.2018.12.006.
Zardo, Ilaria and Rurali, Riccardo (2019) ‘Manipulating phonons at the nanoscale: Impurities and boundaries’, Current Opinion in Green and Sustainable Chemistry, 17, pp. 1–7. Available at: https://doi.org/10.1016/j.cogsc.2018.12.006.
Fasolato, Claudia et al. (2018) ‘Crystalline, Phononic and Electronic properties of Heterostructured Polytypic Ge Nanowires by Raman Spectroscopy’, Nano letters, 18(11), pp. 7075–7084. Available at: https://doi.org/10.1021/acs.nanolett.8b03073.
Fasolato, Claudia et al. (2018) ‘Crystalline, Phononic and Electronic properties of Heterostructured Polytypic Ge Nanowires by Raman Spectroscopy’, Nano letters, 18(11), pp. 7075–7084. Available at: https://doi.org/10.1021/acs.nanolett.8b03073.
Rurali, Riccardo, Yu, Choongho and Zardo, Ilaria (2018) ‘thermoelectric properties of nanostructured materials Preface’, Journal of Physics D: Applied Physics, 51(43). Available at: https://doi.org/10.1088/1361-6463/aadf4f.
Rurali, Riccardo, Yu, Choongho and Zardo, Ilaria (2018) ‘thermoelectric properties of nanostructured materials Preface’, Journal of Physics D: Applied Physics, 51(43). Available at: https://doi.org/10.1088/1361-6463/aadf4f.
Swinkels, Milo Yaro and Zardo, Ilaria (2018) ‘Nanowires for heat conversion’, Journal of Physics D: Applied Physics, 51(35), p. 353001. Available at: https://doi.org/10.1088/1361-6463/aad25f.
Swinkels, Milo Yaro and Zardo, Ilaria (2018) ‘Nanowires for heat conversion’, Journal of Physics D: Applied Physics, 51(35), p. 353001. Available at: https://doi.org/10.1088/1361-6463/aad25f.
Baumberg, Jeremy et al. (2017) ‘SERS in biology/biomedical SERS: general discussion’. Royal Society of Chemistry: Royal Society of Chemistry. Available at: https://doi.org/10.1039/c7fd90089a.
Baumberg, Jeremy et al. (2017) ‘SERS in biology/biomedical SERS: general discussion’. Royal Society of Chemistry: Royal Society of Chemistry. Available at: https://doi.org/10.1039/c7fd90089a.
Cecchini, Raimondo et al. (2017) ‘Single-step Au-catalysed synthesis and microstructural characterization of core-shell Ge/In-Te nanowires by MOCVD’, Materials Research Letters, 6, pp. 29–35. Available at: https://doi.org/10.1080/21663831.2017.1384409.
Cecchini, Raimondo et al. (2017) ‘Single-step Au-catalysed synthesis and microstructural characterization of core-shell Ge/In-Te nanowires by MOCVD’, Materials Research Letters, 6, pp. 29–35. Available at: https://doi.org/10.1080/21663831.2017.1384409.
De Luca, Marta (2017) ‘Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy’, Journal of Physics D: Applied Physics, 50(5), p. 054001. Available at: https://doi.org/10.1088/1361-6463/50/5/054001.
De Luca, Marta (2017) ‘Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy’, Journal of Physics D: Applied Physics, 50(5), p. 054001. Available at: https://doi.org/10.1088/1361-6463/50/5/054001.
De Luca, Marta and Polimeni, Antonio (2017) ‘Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy’, Applied Physics Reviews, 4(4), p. 041102. Available at: https://doi.org/10.1063/1.5006183.
De Luca, Marta and Polimeni, Antonio (2017) ‘Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy’, Applied Physics Reviews, 4(4), p. 041102. Available at: https://doi.org/10.1063/1.5006183.
De Luca, Marta et al. (2017) ‘Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy’, Nano Letters, 17(11), pp. 6540–6547. Available at: https://doi.org/10.1021/acs.nanolett.7b02189.
De Luca, Marta et al. (2017) ‘Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy’, Nano Letters, 17(11), pp. 6540–6547. Available at: https://doi.org/10.1021/acs.nanolett.7b02189.
Fasolato, Claudio et al. (2017) ‘Temperature dependence of the surface plasmon resonance in small electron gas fragments, self consistent field approximation’, Solid State Communications, 260, pp. 30–33. Available at: https://doi.org/10.1016/j.ssc.2017.05.014.
Fasolato, Claudio et al. (2017) ‘Temperature dependence of the surface plasmon resonance in small electron gas fragments, self consistent field approximation’, Solid State Communications, 260, pp. 30–33. Available at: https://doi.org/10.1016/j.ssc.2017.05.014.
Fonseka, H. A. et al. (2017) ‘InP-InxGa1−xAs core-multi-shell nanowire quantum wells with tunable emission in the 1.3-1.55 μm wavelength range’, Nanoscale, 9, pp. 13554–13562. Available at: https://doi.org/10.1039/c7nr04598k.
Fonseka, H. A. et al. (2017) ‘InP-InxGa1−xAs core-multi-shell nanowire quantum wells with tunable emission in the 1.3-1.55 μm wavelength range’, Nanoscale, 9, pp. 13554–13562. Available at: https://doi.org/10.1039/c7nr04598k.
Graham, Duncan et al. (2017) ‘Theory of SERS enhancement: general discussion’. Available at: https://doi.org/10.1039/c7fd90095c.
Graham, Duncan et al. (2017) ‘Theory of SERS enhancement: general discussion’. Available at: https://doi.org/10.1039/c7fd90095c.
Martín-Sánchez, Javier et al. (2017) ‘Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers’, Nano Research, 11(3), pp. 1399–1414. Available at: https://doi.org/10.1007/s12274-017-1755-4.
Martín-Sánchez, Javier et al. (2017) ‘Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers’, Nano Research, 11(3), pp. 1399–1414. Available at: https://doi.org/10.1007/s12274-017-1755-4.
Rojo, Miquel et al. (2017) ‘A review on III-V core-multishell nanowires: growth, properties, and applications’, Journal of Physics D: Applied Physics, 50(14), p. 143001. Available at: https://doi.org/10.1088/1361-6463/aa5d8e.
Rojo, Miquel et al. (2017) ‘A review on III-V core-multishell nanowires: growth, properties, and applications’, Journal of Physics D: Applied Physics, 50(14), p. 143001. Available at: https://doi.org/10.1088/1361-6463/aa5d8e.
De Luca, Marta and Zardo, Ilaria (2017) ‘Semiconductor Nanowires: Raman Spectroscopy Studies’, in Khan, Maaz (ed.) Raman Spectroscopy and applications. Rijeka, Croatia: InTech (Raman Spectroscopy and applications), pp. 81–101. Available at: https://doi.org/10.5772/65113.
De Luca, Marta and Zardo, Ilaria (2017) ‘Semiconductor Nanowires: Raman Spectroscopy Studies’, in Khan, Maaz (ed.) Raman Spectroscopy and applications. Rijeka, Croatia: InTech (Raman Spectroscopy and applications), pp. 81–101. Available at: https://doi.org/10.5772/65113.
Assali, Simone et al. (2016) ‘Optical study of the band structure of wurtzite GaP nanowires’, Journal of Applied Physics, 120(4), p. 044304. Available at: https://doi.org/10.1063/1.4959147.
Assali, Simone et al. (2016) ‘Optical study of the band structure of wurtzite GaP nanowires’, Journal of Applied Physics, 120(4), p. 044304. Available at: https://doi.org/10.1063/1.4959147.
Tedeschi, Davide et al. (2016) ‘Long-Lived Hot Carriers in III-V Nanowires’, Nano Letters, 16(5), pp. 3085–93. Available at: https://doi.org/10.1021/acs.nanolett.6b00251.
Tedeschi, Davide et al. (2016) ‘Long-Lived Hot Carriers in III-V Nanowires’, Nano Letters, 16(5), pp. 3085–93. Available at: https://doi.org/10.1021/acs.nanolett.6b00251.
Tedeschi, Davide et al. (2016) ‘Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires’, Nano Letters, 16(10), pp. 6213–6221. Available at: https://doi.org/10.1021/acs.nanolett.6b02469.
Tedeschi, Davide et al. (2016) ‘Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires’, Nano Letters, 16(10), pp. 6213–6221. Available at: https://doi.org/10.1021/acs.nanolett.6b02469.
Yazji, Sara et al. (2016) ‘Assessing the thermoelectric properties of single InSb nanowires: the role of thermal contact resistance’, Semiconductor Science and Technology, 31(6), p. 064001. Available at: https://doi.org/10.1088/0268-1242/31/6/064001.
Yazji, Sara et al. (2016) ‘Assessing the thermoelectric properties of single InSb nanowires: the role of thermal contact resistance’, Semiconductor Science and Technology, 31(6), p. 064001. Available at: https://doi.org/10.1088/0268-1242/31/6/064001.
Yazji, Sara et al. (2016) ‘Surface-directed molecular assembly of pentacene on aromatic organophosphonate self-assembled monolayers explored by polarized Raman spectroscopy’, Journal of Raman Spectroscopy, 48(2), pp. 235–242. Available at: https://doi.org/10.1002/jrs.5007.
Yazji, Sara et al. (2016) ‘Surface-directed molecular assembly of pentacene on aromatic organophosphonate self-assembled monolayers explored by polarized Raman spectroscopy’, Journal of Raman Spectroscopy, 48(2), pp. 235–242. Available at: https://doi.org/10.1002/jrs.5007.
De Luca, M. et al. (2015) ‘Polarized Light Absorption in Wurtzite InP Nanowire Ensembles’, Nano Letters, 15(2), pp. 998–1005. Available at: https://doi.org/10.1021/nl5038374.
De Luca, M. et al. (2015) ‘Polarized Light Absorption in Wurtzite InP Nanowire Ensembles’, Nano Letters, 15(2), pp. 998–1005. Available at: https://doi.org/10.1021/nl5038374.
Hauge, Håkon Ikaros T. et al. (2015) ‘Hexagonal Silicon Realized’, Nano Letters, 15(9), pp. 5855–5860. Available at: https://doi.org/10.1021/acs.nanolett.5b01939.
Hauge, Håkon Ikaros T. et al. (2015) ‘Hexagonal Silicon Realized’, Nano Letters, 15(9), pp. 5855–5860. Available at: https://doi.org/10.1021/acs.nanolett.5b01939.
Swinkels, M Y et al. (2015) ‘Diameter dependence of the thermal conductivity of InAs nanowires’, Nanotechnology, 26(38), p. 385401. Available at: https://doi.org/10.1088/0957-4484/26/38/385401.
Swinkels, M Y et al. (2015) ‘Diameter dependence of the thermal conductivity of InAs nanowires’, Nanotechnology, 26(38), p. 385401. Available at: https://doi.org/10.1088/0957-4484/26/38/385401.
Yazji, Sara et al. (2015) ‘Complete thermoelectric benchmarking of individual InSb nanowires by combined micro-Raman and electric transport analysis’, Nano Research, 8(12), pp. 4048–4060. Available at: https://doi.org/10.1007/s12274-015-0906-8.
Yazji, Sara et al. (2015) ‘Complete thermoelectric benchmarking of individual InSb nanowires by combined micro-Raman and electric transport analysis’, Nano Research, 8(12), pp. 4048–4060. Available at: https://doi.org/10.1007/s12274-015-0906-8.
Zilli, Attilio et al. (2015) ‘Temperature Dependence of Interband Transitions in Wurtzite InP nanowires’, ACS Nano, 9(4), pp. 4277–87. Available at: https://doi.org/10.1021/acsnano.5b00699.
Zilli, Attilio et al. (2015) ‘Temperature Dependence of Interband Transitions in Wurtzite InP nanowires’, ACS Nano, 9(4), pp. 4277–87. Available at: https://doi.org/10.1021/acsnano.5b00699.