Georg H. Endress-Stiftungsprofessur für Experimentalphysik (Maletinsky)
Publications
91 found
Show per page
Tabataba-Vakili, F. et al. (2024) ‘Doping-control of excitons and magnetism in few-layer CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49048-9.
Tabataba-Vakili, F. et al. (2024) ‘Doping-control of excitons and magnetism in few-layer CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49048-9.
Rovny, Jared et al. (2024) ‘Nanoscale diamond quantum sensors for many-body physics’, Nature Reviews Physics. 11.11.2024, 6, pp. 753–768. Available at: https://doi.org/10.1038/s42254-024-00775-4.
Rovny, Jared et al. (2024) ‘Nanoscale diamond quantum sensors for many-body physics’, Nature Reviews Physics. 11.11.2024, 6, pp. 753–768. Available at: https://doi.org/10.1038/s42254-024-00775-4.
Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.
Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.
Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.
Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.
Chen, Shaowen et al. (2024) ‘Current induced hidden states in Josephson junctions’, Nature Communications. 14.09.2024, 15. Available at: https://doi.org/10.1038/s41467-024-52271-z.
Chen, Shaowen et al. (2024) ‘Current induced hidden states in Josephson junctions’, Nature Communications. 14.09.2024, 15. Available at: https://doi.org/10.1038/s41467-024-52271-z.
Clua-Provost, T. et al. (2024) ‘Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride’, Physical Review B. 11.07.2024, 110(1). Available at: https://doi.org/10.1103/physrevb.110.014104.
Clua-Provost, T. et al. (2024) ‘Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride’, Physical Review B. 11.07.2024, 110(1). Available at: https://doi.org/10.1103/physrevb.110.014104.
Zuber, J.A. et al. (2023) ‘Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures’, Nano Letters, 23(23), pp. 10901–10907. Available at: https://doi.org/10.1021/acs.nanolett.3c03145.
Zuber, J.A. et al. (2023) ‘Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures’, Nano Letters, 23(23), pp. 10901–10907. Available at: https://doi.org/10.1021/acs.nanolett.3c03145.
Bürgler, B. et al. (2023) ‘All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond’, npj Quantum Information, 9(1). Available at: https://doi.org/10.1038/s41534-023-00724-6.
Bürgler, B. et al. (2023) ‘All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond’, npj Quantum Information, 9(1). Available at: https://doi.org/10.1038/s41534-023-00724-6.
Happacher, J. et al. (2023) ‘Temperature-Dependent Photophysics of Single NV Centers in Diamond’, Physical Review Letters, 131(8). Available at: https://doi.org/10.1103/physrevlett.131.086904.
Happacher, J. et al. (2023) ‘Temperature-Dependent Photophysics of Single NV Centers in Diamond’, Physical Review Letters, 131(8). Available at: https://doi.org/10.1103/physrevlett.131.086904.
Pylypovskyi, O.V. et al. (2023) ‘Interaction of Domain Walls with Grain Boundaries in Uniaxial Insulating Antiferromagnets’, Physical Review Applied, 20(1). Available at: https://doi.org/10.1103/physrevapplied.20.014020.
Pylypovskyi, O.V. et al. (2023) ‘Interaction of Domain Walls with Grain Boundaries in Uniaxial Insulating Antiferromagnets’, Physical Review Applied, 20(1). Available at: https://doi.org/10.1103/physrevapplied.20.014020.
Li, Ruofan et al. (2023) ‘A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls’, Nature Communications, 14. Available at: https://doi.org/10.1038/s41467-023-38095-3.
Li, Ruofan et al. (2023) ‘A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls’, Nature Communications, 14. Available at: https://doi.org/10.1038/s41467-023-38095-3.
Li, Xiangzhi et al. (2023) ‘Proximity-induced chiral quantum light generation in strain-engineered WSe<inf>2</inf>/NiPS<inf>3</inf> heterostructures’, Nature Materials, 22, pp. 1311–1316. Available at: https://doi.org/10.1038/s41563-023-01645-7.
Li, Xiangzhi et al. (2023) ‘Proximity-induced chiral quantum light generation in strain-engineered WSe<inf>2</inf>/NiPS<inf>3</inf> heterostructures’, Nature Materials, 22, pp. 1311–1316. Available at: https://doi.org/10.1038/s41563-023-01645-7.
Zhang, Zi-Huai et al. (2023) ‘Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control’, Physical Review Letters, 13. Available at: https://doi.org/10.1103/physrevlett.130.166902.
Zhang, Zi-Huai et al. (2023) ‘Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control’, Physical Review Letters, 13. Available at: https://doi.org/10.1103/physrevlett.130.166902.
Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.
Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.
Dubois, A.E.E. et al. (2022) ‘Untrained Physically Informed Neural Network for Image Reconstruction of Magnetic Field Sources’, Physical Review Applied, 18(6). Available at: https://doi.org/10.1103/physrevapplied.18.064076.
Dubois, A.E.E. et al. (2022) ‘Untrained Physically Informed Neural Network for Image Reconstruction of Magnetic Field Sources’, Physical Review Applied, 18(6). Available at: https://doi.org/10.1103/physrevapplied.18.064076.
Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.
Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.
Happacher, Jodok et al. (2022) ‘Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond’, Physical Review Letters, 128. Available at: https://doi.org/10.1103/physrevlett.128.177401.
Happacher, Jodok et al. (2022) ‘Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond’, Physical Review Letters, 128. Available at: https://doi.org/10.1103/physrevlett.128.177401.
Makushko, Pavlo et al. (2022) ‘Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr<inf>2</inf>O<inf>3</inf> thin films’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-34233-5.
Makushko, Pavlo et al. (2022) ‘Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr<inf>2</inf>O<inf>3</inf> thin films’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-34233-5.
Rickhaus, Peter and Maletinsky, Patrick (2022) ‘SCANNING NITROGEN VACANCY MAGNETOMETRY: A QUANTUM TECHNOLOGY FOR DEVICE FAILURE ANALYSIS’, Electronic Device Failure Analysis, 24, pp. 29–32.
Rickhaus, Peter and Maletinsky, Patrick (2022) ‘SCANNING NITROGEN VACANCY MAGNETOMETRY: A QUANTUM TECHNOLOGY FOR DEVICE FAILURE ANALYSIS’, Electronic Device Failure Analysis, 24, pp. 29–32.
Seniutinas, Gediminas et al. (2022) ‘Versatile, All-Diamond Scanning Probes for High-Performance Nanoscale Magnetometry’.
Seniutinas, Gediminas et al. (2022) ‘Versatile, All-Diamond Scanning Probes for High-Performance Nanoscale Magnetometry’.
Veremchuk, Igor et al. (2022) ‘Defect Nanostructure and its Impact on Magnetism of α-Cr<inf>2</inf>O<inf>3</inf> Thin Films’, Small, 18. Available at: https://doi.org/10.1002/smll.202201228.
Veremchuk, Igor et al. (2022) ‘Defect Nanostructure and its Impact on Magnetism of α-Cr<inf>2</inf>O<inf>3</inf> Thin Films’, Small, 18. Available at: https://doi.org/10.1002/smll.202201228.
Veremchuk, Igor et al. (2022) ‘Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr<inf>2</inf>O<inf>3</inf>Sintered in Conditions Far out of Equilibrium’, ACS Applied Electronic Materials, 4, pp. 2943–2952. Available at: https://doi.org/10.1021/acsaelm.2c00398.
Veremchuk, Igor et al. (2022) ‘Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr<inf>2</inf>O<inf>3</inf>Sintered in Conditions Far out of Equilibrium’, ACS Applied Electronic Materials, 4, pp. 2943–2952. Available at: https://doi.org/10.1021/acsaelm.2c00398.
Zhong, Hai et al. (2022) ‘Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFe O3 Thin Films’, Physical Review Applied, 17. Available at: https://doi.org/10.1103/physrevapplied.17.044051.
Zhong, Hai et al. (2022) ‘Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFe O3 Thin Films’, Physical Review Applied, 17. Available at: https://doi.org/10.1103/physrevapplied.17.044051.
Celano, Umberto et al. (2021) ‘Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond’, Nano Letters, 21(24), pp. 10409–10415. Available at: https://doi.org/10.1021/acs.nanolett.1c03723.
Celano, Umberto et al. (2021) ‘Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond’, Nano Letters, 21(24), pp. 10409–10415. Available at: https://doi.org/10.1021/acs.nanolett.1c03723.
Hedrich, Natascha (2021) Exploring antiferromagnetic domain wall mechanics through scanning nitrogen vacancy magnetometry. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Hedrich, Natascha (2021) Exploring antiferromagnetic domain wall mechanics through scanning nitrogen vacancy magnetometry. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Hedrich, Natascha et al. (2021) ‘Nanoscale mechanics of antiferromagnetic domain walls’, Nature Physics, 17(5), pp. 574–577. Available at: https://doi.org/10.1038/s41567-020-01157-0.
Hedrich, Natascha et al. (2021) ‘Nanoscale mechanics of antiferromagnetic domain walls’, Nature Physics, 17(5), pp. 574–577. Available at: https://doi.org/10.1038/s41567-020-01157-0.
Hedrich, Natascha et al. (2021) ‘Publisher Correction: Nanoscale mechanics of antiferromagnetic domain walls (Nature Physics, (2021), 17, 5, (574-577), 10.1038/s41567-020-01157-0)’, Nature Physics, 17, p. 659. Available at: https://doi.org/10.1038/s41567-021-01205-3.
Hedrich, Natascha et al. (2021) ‘Publisher Correction: Nanoscale mechanics of antiferromagnetic domain walls (Nature Physics, (2021), 17, 5, (574-577), 10.1038/s41567-020-01157-0)’, Nature Physics, 17, p. 659. Available at: https://doi.org/10.1038/s41567-021-01205-3.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Zhang, Jianyu et al. (2021) ‘Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures’, Nature Communications, 12(1), p. ARTN 7258. Available at: https://doi.org/10.1038/s41467-021-27405-2.
Zhang, Jianyu et al. (2021) ‘Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures’, Nature Communications, 12(1), p. ARTN 7258. Available at: https://doi.org/10.1038/s41467-021-27405-2.
Batzer, Marietta et al. (2020) ‘Single crystal diamond pyramids for applications in nanoscale quantum sensing’, Optical Materials Express, 10(2), pp. 492–500. Available at: https://doi.org/10.1364/ome.380362.
Batzer, Marietta et al. (2020) ‘Single crystal diamond pyramids for applications in nanoscale quantum sensing’, Optical Materials Express, 10(2), pp. 492–500. Available at: https://doi.org/10.1364/ome.380362.
Broadway, D. A. et al. (2020) ‘Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements’, Physical Review Applied, 14(2), p. 024076. Available at: https://doi.org/10.1103/physrevapplied.14.024076.
Broadway, D. A. et al. (2020) ‘Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements’, Physical Review Applied, 14(2), p. 024076. Available at: https://doi.org/10.1103/physrevapplied.14.024076.
Hanlon, Liam et al. (2020) ‘Diamond nanopillar arrays for quantum microscopy of neuronal signals’, Neurophotonics, 7(3), p. 035002. Available at: https://doi.org/10.1117/1.nph.7.3.035002.
Hanlon, Liam et al. (2020) ‘Diamond nanopillar arrays for quantum microscopy of neuronal signals’, Neurophotonics, 7(3), p. 035002. Available at: https://doi.org/10.1117/1.nph.7.3.035002.
Hedrich, Natascha et al. (2020) ‘Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging’, Physical Review Applied, 14(6), p. 064007. Available at: https://doi.org/10.1103/physrevapplied.14.064007.
Hedrich, Natascha et al. (2020) ‘Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging’, Physical Review Applied, 14(6), p. 064007. Available at: https://doi.org/10.1103/physrevapplied.14.064007.
Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.
Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.
Kölbl, Johannes (2020) Dressed states of a strain-driven spin in diamond. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Kölbl, Johannes (2020) Dressed states of a strain-driven spin in diamond. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.
Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.
Rohner, Dominik (2020) Towards Single Spin Magnetometry at mK Temperatures. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Rohner, Dominik (2020) Towards Single Spin Magnetometry at mK Temperatures. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Tanos, R. et al. (2020) ‘Optimal architecture for diamond-based wide-field thermal imaging’, AIP Advances, 10(2), p. 025027. Available at: https://doi.org/10.1063/1.5140030.
Tanos, R. et al. (2020) ‘Optimal architecture for diamond-based wide-field thermal imaging’, AIP Advances, 10(2), p. 025027. Available at: https://doi.org/10.1063/1.5140030.
Waasem, Niklas, Fedder, Helmut and Maletinsky, Patrick (2020) ‘New Tools Promise the Next Big Thing for Quantum Sensing’, Photonics Spectra, 54, pp. 48–52.
Waasem, Niklas, Fedder, Helmut and Maletinsky, Patrick (2020) ‘New Tools Promise the Next Big Thing for Quantum Sensing’, Photonics Spectra, 54, pp. 48–52.
Acosta, Victor M. et al. (2019) ‘Color Centers in Diamond as Novel Probes of Superconductivity’, journal of superconductivity and novel magnetism, 32(1), pp. 85–95. Available at: https://doi.org/10.1007/s10948-018-4877-3.
Acosta, Victor M. et al. (2019) ‘Color Centers in Diamond as Novel Probes of Superconductivity’, journal of superconductivity and novel magnetism, 32(1), pp. 85–95. Available at: https://doi.org/10.1007/s10948-018-4877-3.
Akhtar, W. et al. (2019) ‘Current-Induced Nucleation and Dynamics of Skyrmions in a Co-based Hensler Alloy’, Physical Review applied, 11(3), p. 034066. Available at: https://doi.org/10.1103/physrevapplied.11.034066.
Akhtar, W. et al. (2019) ‘Current-Induced Nucleation and Dynamics of Skyrmions in a Co-based Hensler Alloy’, Physical Review applied, 11(3), p. 034066. Available at: https://doi.org/10.1103/physrevapplied.11.034066.
Appel, Patrick et al. (2019) ‘Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets’, nano letters, 19(3), pp. 1682–1687. Available at: https://doi.org/10.1021/acs.nanolett.8b04681.
Appel, Patrick et al. (2019) ‘Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets’, nano letters, 19(3), pp. 1682–1687. Available at: https://doi.org/10.1021/acs.nanolett.8b04681.
Barfuss, A. et al. (2019) ‘Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems’, Physical revciew B, 99(17), p. 174102. Available at: https://doi.org/10.1103/physrevb.99.174102.
Barfuss, A. et al. (2019) ‘Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems’, Physical revciew B, 99(17), p. 174102. Available at: https://doi.org/10.1103/physrevb.99.174102.
D`Amico, I. et al. (2019) ‘Nanoscale quantum optics’, rivista del nuovo cimento, 42(4), pp. 153–195. Available at: https://doi.org/10.1393/ncr/i2019-10158-0.
D`Amico, I. et al. (2019) ‘Nanoscale quantum optics’, rivista del nuovo cimento, 42(4), pp. 153–195. Available at: https://doi.org/10.1393/ncr/i2019-10158-0.
Flågan, Sigurd et al. (2019) ‘A tunable Fabry-Pérot cavity for diamond-based photonics’, pp. 107–108.
Flågan, Sigurd et al. (2019) ‘A tunable Fabry-Pérot cavity for diamond-based photonics’, pp. 107–108.
Hedrich, Natascha et al. (2019) ‘Nanomagnetism of Cr<inf>2</inf>O<inf>3</inf>investigated using parabolic diamond pillars’, pp. 114–115.
Hedrich, Natascha et al. (2019) ‘Nanomagnetism of Cr<inf>2</inf>O<inf>3</inf>investigated using parabolic diamond pillars’, pp. 114–115.
Kasperczyk, Mark et al. (2019) ‘Toward Novel Coherence Protection and Sensing Techniques: Closed Counter Interaction Using a Single Spin’. Available at: https://doi.org/10.23919/cleo.2019.8749498.
Kasperczyk, Mark et al. (2019) ‘Toward Novel Coherence Protection and Sensing Techniques: Closed Counter Interaction Using a Single Spin’. Available at: https://doi.org/10.23919/cleo.2019.8749498.
Kasperczyk, Mark et al. (2019) ‘Toward novel coherence protection and sensing techniques: Closed counter interaction using a single spin’. Available at: https://doi.org/10.1364/cleo_at.2019.jw3a.1.
Kasperczyk, Mark et al. (2019) ‘Toward novel coherence protection and sensing techniques: Closed counter interaction using a single spin’. Available at: https://doi.org/10.1364/cleo_at.2019.jw3a.1.
Koelbl, J. et al. (2019) ‘Determination of intrinsic effective fields and microwave polarizations by high-resolution spectroscopy of single nitrogen-vacancy center spins’, new journal of physics, 21(11), p. 113039. Available at: https://doi.org/10.1088/1367-2630/ab54a8.
Koelbl, J. et al. (2019) ‘Determination of intrinsic effective fields and microwave polarizations by high-resolution spectroscopy of single nitrogen-vacancy center spins’, new journal of physics, 21(11), p. 113039. Available at: https://doi.org/10.1088/1367-2630/ab54a8.
Kolbl, J. et al. (2019) ‘Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity’, physical review letters, 122(9), p. 090502. Available at: https://doi.org/10.1103/physrevlett.122.090502.
Kolbl, J. et al. (2019) ‘Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity’, physical review letters, 122(9), p. 090502. Available at: https://doi.org/10.1103/physrevlett.122.090502.
Maletinsky, Patrick (2019) ‘Waveguides, cavities and optical antennas for diamond quantum sensing’, p. 87.
Maletinsky, Patrick (2019) ‘Waveguides, cavities and optical antennas for diamond quantum sensing’, p. 87.
Rohner, D. et al. (2019) ‘(111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields’, applied physics letters, 115(19), p. 192401. Available at: https://doi.org/10.1063/1.5127101.
Rohner, D. et al. (2019) ‘(111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields’, applied physics letters, 115(19), p. 192401. Available at: https://doi.org/10.1063/1.5127101.
Rohner, D. et al. (2019) ‘Nanoscale Magnetometry with Single Spins in Diamond at Low Temperature’, pp. 63–64.
Rohner, D. et al. (2019) ‘Nanoscale Magnetometry with Single Spins in Diamond at Low Temperature’, pp. 63–64.
Thiel, Lucas (2019) Nanoscale Magnetometry with a Single Spin in Diamond at Cryogenic Temperatures. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Thiel, Lucas (2019) Nanoscale Magnetometry with a Single Spin in Diamond at Cryogenic Temperatures. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.
Thiel, L. et al. (2019) ‘Probing magnetism in 2D materials at the nanoscale with single-spin microscopy’, Science, 364(6444), pp. 973–976. Available at: https://doi.org/10.1126/science.aav6926.
Thiel, L. et al. (2019) ‘Probing magnetism in 2D materials at the nanoscale with single-spin microscopy’, Science, 364(6444), pp. 973–976. Available at: https://doi.org/10.1126/science.aav6926.
Barfuss, Arne et al. (2018) ‘Phase-controlled coherent dynamics of a single spin under closed-contour interaction’, Nature physics, 14(11), pp. 1087–1091. Available at: https://doi.org/10.1038/s41567-018-0231-8.
Barfuss, Arne et al. (2018) ‘Phase-controlled coherent dynamics of a single spin under closed-contour interaction’, Nature physics, 14(11), pp. 1087–1091. Available at: https://doi.org/10.1038/s41567-018-0231-8.
Challier, Michel et al. (2018) ‘Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies’, MICROMACHINES, 9(4). Available at: https://doi.org/10.3390/mi9040148.
Challier, Michel et al. (2018) ‘Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies’, MICROMACHINES, 9(4). Available at: https://doi.org/10.3390/mi9040148.
Gross, I. et al. (2018) ‘Skyrmion morphology in ultrathin magnetic films’, PHYSICAL REVIEW MATERIALS, 2(2), p. 024406. Available at: https://doi.org/10.1103/physrevmaterials.2.024406.
Gross, I. et al. (2018) ‘Skyrmion morphology in ultrathin magnetic films’, PHYSICAL REVIEW MATERIALS, 2(2), p. 024406. Available at: https://doi.org/10.1103/physrevmaterials.2.024406.
Horsley, Andrew et al. (2018) ‘Microwave Device Characterization Using a Widefield Diamond Microscope’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044039.
Horsley, Andrew et al. (2018) ‘Microwave Device Characterization Using a Widefield Diamond Microscope’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044039.
Maletinsky, Patrick (2018) ‘Nanoscale Magnetometry Using Single Spin Quantum Sensors’. CPEM: CPEM. Available at: https://doi.org/10.1109/cpem.2018.8500790.
Maletinsky, Patrick (2018) ‘Nanoscale Magnetometry Using Single Spin Quantum Sensors’. CPEM: CPEM. Available at: https://doi.org/10.1109/cpem.2018.8500790.
Norambuena, A. et al. (2018) ‘Spin-lattice relaxation of individual solid-state spins’, Physical Review B, 97(9). Available at: https://doi.org/10.1103/physrevb.97.094304.
Norambuena, A. et al. (2018) ‘Spin-lattice relaxation of individual solid-state spins’, Physical Review B, 97(9). Available at: https://doi.org/10.1103/physrevb.97.094304.
Rohner, Dominik et al. (2018) ‘Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry’, Sensors, 18(11). Available at: https://doi.org/10.3390/s18113790.
Rohner, Dominik et al. (2018) ‘Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry’, Sensors, 18(11). Available at: https://doi.org/10.3390/s18113790.
Schlussel, Yechezkel et al. (2018) ‘Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond’, Physical review applied, 10(3). Available at: https://doi.org/10.1103/physrevapplied.10.034032.
Schlussel, Yechezkel et al. (2018) ‘Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond’, Physical review applied, 10(3). Available at: https://doi.org/10.1103/physrevapplied.10.034032.
Gross, Isabell et al. (2017) ‘Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer’, Nature, 549(7671), pp. 252–256. Available at: https://doi.org/10.1038/nature23656.
Gross, Isabell et al. (2017) ‘Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer’, Nature, 549(7671), pp. 252–256. Available at: https://doi.org/10.1038/nature23656.
Horsley, Andrew et al. (2017) ‘Widefield microwave imaging using NV centres’.
Horsley, Andrew et al. (2017) ‘Widefield microwave imaging using NV centres’.
Kosub, Tobias et al. (2017) ‘Purely antiferromagnetic magnetoelectric random access memory’, Nature Communications, 8, p. 13985. Available at: https://doi.org/10.1038/ncomms13985.
Kosub, Tobias et al. (2017) ‘Purely antiferromagnetic magnetoelectric random access memory’, Nature Communications, 8, p. 13985. Available at: https://doi.org/10.1038/ncomms13985.
Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.
Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.
Teissier, Jean, Barfuss, Arne and Maletinsky, Patrick (2017) ‘Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin’, Journal of Optics, 19(4), p. 044003. Available at: https://doi.org/10.1088/2040-8986/aa5f62.
Teissier, Jean, Barfuss, Arne and Maletinsky, Patrick (2017) ‘Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin’, Journal of Optics, 19(4), p. 044003. Available at: https://doi.org/10.1088/2040-8986/aa5f62.
Appel, Patrick et al. (2016) ‘Fabrication of all diamond scanning probes for nanoscale magnetometry’, Review of Scientific Instruments, 87(6), p. 063703. Available at: https://doi.org/10.1063/1.4952953.
Appel, Patrick et al. (2016) ‘Fabrication of all diamond scanning probes for nanoscale magnetometry’, Review of Scientific Instruments, 87(6), p. 063703. Available at: https://doi.org/10.1063/1.4952953.
Arend, Carsten et al. (2016) ‘Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers’, Applied Physics Letters, 108(6), p. 063111. Available at: https://doi.org/10.1063/1.4941804.
Arend, Carsten et al. (2016) ‘Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers’, Applied Physics Letters, 108(6), p. 063111. Available at: https://doi.org/10.1063/1.4941804.
Thiel, L. et al. (2016) ‘Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer’, Nature Nanotechnology, 11(8), pp. 677–81. Available at: https://doi.org/10.1038/nnano.2016.63.
Thiel, L. et al. (2016) ‘Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer’, Nature Nanotechnology, 11(8), pp. 677–81. Available at: https://doi.org/10.1038/nnano.2016.63.
Appel, Patrick et al. (2015) ‘Nanoscale microwave imaging with a single electron spin in diamond’, New Journal of Physics, 17, p. 112001. Available at: https://doi.org/10.1088/1367-2630/17/11/112001.
Appel, Patrick et al. (2015) ‘Nanoscale microwave imaging with a single electron spin in diamond’, New Journal of Physics, 17, p. 112001. Available at: https://doi.org/10.1088/1367-2630/17/11/112001.
Barfuss, Arne et al. (2015) ‘Strong mechanical driving of a single electron spin’, Nature Physics, 11(10), pp. 820–U185. Available at: https://doi.org/10.1038/nphys3411.
Barfuss, Arne et al. (2015) ‘Strong mechanical driving of a single electron spin’, Nature Physics, 11(10), pp. 820–U185. Available at: https://doi.org/10.1038/nphys3411.
Jorio, Ado et al. (2015) ‘Stokes and anti-Stokes Raman spectra of the high-energy C-C stretching modes in graphene and diamond’, physica status solidi (b), 252(11), pp. 2380–2384. Available at: https://doi.org/10.1002/pssb.201552224.
Jorio, Ado et al. (2015) ‘Stokes and anti-Stokes Raman spectra of the high-energy C-C stretching modes in graphene and diamond’, physica status solidi (b), 252(11), pp. 2380–2384. Available at: https://doi.org/10.1002/pssb.201552224.
Kasperczyk, Mark et al. (2015) ‘Stokes-anti-Stokes correlations in diamond’, Optics Letters, 40(10), pp. 2393–2396. Available at: https://doi.org/10.1364/ol.40.002393.
Kasperczyk, Mark et al. (2015) ‘Stokes-anti-Stokes correlations in diamond’, Optics Letters, 40(10), pp. 2393–2396. Available at: https://doi.org/10.1364/ol.40.002393.
Luan, Lan et al. (2015) ‘Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond’, Scientific Reports, 5(8119), p. 8119. Available at: https://doi.org/10.1038/srep08119.
Luan, Lan et al. (2015) ‘Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond’, Scientific Reports, 5(8119), p. 8119. Available at: https://doi.org/10.1038/srep08119.
Trifunovic, Luka et al. (2015) ‘High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature’, Nature Nanotechnology, 10(6), pp. 541–6. Available at: https://doi.org/10.1038/nnano.2015.74.
Trifunovic, Luka et al. (2015) ‘High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature’, Nature Nanotechnology, 10(6), pp. 541–6. Available at: https://doi.org/10.1038/nnano.2015.74.
Chu, Y. et al. (2014) ‘Coherent optical transitions in implanted nitrogen vacancy centers’, Nano Letters, 14(4), pp. 1982–6. Available at: https://doi.org/10.1021/nl404836p.
Chu, Y. et al. (2014) ‘Coherent optical transitions in implanted nitrogen vacancy centers’, Nano Letters, 14(4), pp. 1982–6. Available at: https://doi.org/10.1021/nl404836p.
Grinolds, M S et al. (2014) ‘Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins’, Nature nanotechnology, 9(4), pp. 279–84. Available at: https://doi.org/10.1038/nnano.2014.30.
Grinolds, M S et al. (2014) ‘Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins’, Nature nanotechnology, 9(4), pp. 279–84. Available at: https://doi.org/10.1038/nnano.2014.30.
Jorio, Ado et al. (2014) ‘Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene’, Nano Letters, 14(10), pp. 5687–92. Available at: https://doi.org/10.1021/nl502412g.
Jorio, Ado et al. (2014) ‘Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene’, Nano Letters, 14(10), pp. 5687–92. Available at: https://doi.org/10.1021/nl502412g.
Neu, Elke et al. (2014) ‘Photonic nano-structures on (111)-oriented diamond’, Applied physics letters, 104(15), p. 153108. Available at: https://doi.org/10.1063/1.4871580.
Neu, Elke et al. (2014) ‘Photonic nano-structures on (111)-oriented diamond’, Applied physics letters, 104(15), p. 153108. Available at: https://doi.org/10.1063/1.4871580.
Riedel, Daniel et al. (2014) ‘Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond’, Physical review applied, 2(6). Available at: https://doi.org/10.1103/physrevapplied.2.064011.
Riedel, Daniel et al. (2014) ‘Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond’, Physical review applied, 2(6). Available at: https://doi.org/10.1103/physrevapplied.2.064011.
Rondin, L et al. (2014) ‘Magnetometry with nitrogen-vacancy defects in diamond’, Reports on progress in physics, 77(5), p. 056503. Available at: https://doi.org/10.1088/0034-4885/77/5/056503.
Rondin, L et al. (2014) ‘Magnetometry with nitrogen-vacancy defects in diamond’, Reports on progress in physics, 77(5), p. 056503. Available at: https://doi.org/10.1088/0034-4885/77/5/056503.
Teissier, J et al. (2014) ‘Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator’, Physical review letters, 113(2), p. 020503. Available at: https://doi.org/10.1103/physrevlett.113.020503.
Teissier, J et al. (2014) ‘Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator’, Physical review letters, 113(2), p. 020503. Available at: https://doi.org/10.1103/physrevlett.113.020503.
Maletinsky, P. and Jacques, V. (2014) ‘Diamond magnetic sensors’, in Quantum information processing with diamond. Cambridge: Elsevier (Quantum information processing with diamond), pp. 240–263. Available at: https://doi.org/10.1533/9780857096685.2.240.
Maletinsky, P. and Jacques, V. (2014) ‘Diamond magnetic sensors’, in Quantum information processing with diamond. Cambridge: Elsevier (Quantum information processing with diamond), pp. 240–263. Available at: https://doi.org/10.1533/9780857096685.2.240.
Grinolds, M. S. et al. (2013) ‘Nanoscale magnetic imaging of a single electron spin under ambient conditions’, Nature physics, 9(4), pp. 215–219. Available at: https://doi.org/10.1038/nphys2543.
Grinolds, M. S. et al. (2013) ‘Nanoscale magnetic imaging of a single electron spin under ambient conditions’, Nature physics, 9(4), pp. 215–219. Available at: https://doi.org/10.1038/nphys2543.
Urbaszek, Bernhard et al. (2013) ‘Nuclear spin physics in quantum dots : an optical investigation’, Reviews of Modern Physics, 85(1), pp. 79–133. Available at: https://doi.org/10.1103/revmodphys.85.79.
Urbaszek, Bernhard et al. (2013) ‘Nuclear spin physics in quantum dots : an optical investigation’, Reviews of Modern Physics, 85(1), pp. 79–133. Available at: https://doi.org/10.1103/revmodphys.85.79.
Hausmann, Birgit J M et al. (2012) ‘Integrated diamond networks for quantum nanophotonics’, Nano Letters, 12(3), pp. 1578–82. Available at: https://doi.org/10.1021/nl204449n.
Hausmann, Birgit J M et al. (2012) ‘Integrated diamond networks for quantum nanophotonics’, Nano Letters, 12(3), pp. 1578–82. Available at: https://doi.org/10.1021/nl204449n.
Hong, Sungkun et al. (2012) ‘Coherent, Mechanical Control of a Single Electronic Spin’, Nano Letters, 12(8), pp. 3920–4. Available at: https://doi.org/10.1021/nl300775c.
Hong, Sungkun et al. (2012) ‘Coherent, Mechanical Control of a Single Electronic Spin’, Nano Letters, 12(8), pp. 3920–4. Available at: https://doi.org/10.1021/nl300775c.
Maletinsky, Patrick et al. (2012) ‘A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres’, Nature Nanotechnology, 7(5), pp. 320–324. Available at: https://doi.org/10.1038/nnano.2012.50.
Maletinsky, Patrick et al. (2012) ‘A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres’, Nature Nanotechnology, 7(5), pp. 320–324. Available at: https://doi.org/10.1038/nnano.2012.50.
Krainer, L. et al. (2002) ‘Mode-locked Nd:YVO/sub 4/ laser with 157 GHz repetition rate’, in Lasers and Electro-Optics. CLEO ’02. Technical Diges. Long Beach, CA, USA : IEEE (Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO ’02. Technical Diges). Available at: https://doi.org/10.1109/cleo.2002.1034064.
Krainer, L. et al. (2002) ‘Mode-locked Nd:YVO/sub 4/ laser with 157 GHz repetition rate’, in Lasers and Electro-Optics. CLEO ’02. Technical Diges. Long Beach, CA, USA : IEEE (Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO ’02. Technical Diges). Available at: https://doi.org/10.1109/cleo.2002.1034064.