Faculty of Science
Faculty of Science
UNIverse - Public Research Portal

Georg H. Endress-Stiftungsprofessur für Experimentalphysik (Maletinsky)

Publications

91 found
Show per page

Tabataba-Vakili, F. et al. (2024) ‘Doping-control of excitons and magnetism in few-layer CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49048-9.

URLs
URLs

Rovny, Jared et al. (2024) ‘Nanoscale diamond quantum sensors for many-body physics’, Nature Reviews Physics. 11.11.2024, 6, pp. 753–768. Available at: https://doi.org/10.1038/s42254-024-00775-4.

URLs
URLs

Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.

URLs
URLs

Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.

URLs
URLs

Chen, Shaowen et al. (2024) ‘Current induced hidden states in Josephson junctions’, Nature Communications. 14.09.2024, 15. Available at: https://doi.org/10.1038/s41467-024-52271-z.

URLs
URLs

Clua-Provost, T. et al. (2024) ‘Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride’, Physical Review B. 11.07.2024, 110(1). Available at: https://doi.org/10.1103/physrevb.110.014104.

URLs
URLs

Zuber, J.A. et al. (2023) ‘Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures’, Nano Letters, 23(23), pp. 10901–10907. Available at: https://doi.org/10.1021/acs.nanolett.3c03145.

URLs
URLs

Bürgler, B. et al. (2023) ‘All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond’, npj Quantum Information, 9(1). Available at: https://doi.org/10.1038/s41534-023-00724-6.

URLs
URLs

Happacher, J. et al. (2023) ‘Temperature-Dependent Photophysics of Single NV Centers in Diamond’, Physical Review Letters, 131(8). Available at: https://doi.org/10.1103/physrevlett.131.086904.

URLs
URLs

Pylypovskyi, O.V. et al. (2023) ‘Interaction of Domain Walls with Grain Boundaries in Uniaxial Insulating Antiferromagnets’, Physical Review Applied, 20(1). Available at: https://doi.org/10.1103/physrevapplied.20.014020.

URLs
URLs

Li, Ruofan et al. (2023) ‘A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls’, Nature Communications, 14. Available at: https://doi.org/10.1038/s41467-023-38095-3.

URLs
URLs

Li, Xiangzhi et al. (2023) ‘Proximity-induced chiral quantum light generation in strain-engineered WSe<inf>2</inf>/NiPS<inf>3</inf> heterostructures’, Nature Materials, 22, pp. 1311–1316. Available at: https://doi.org/10.1038/s41563-023-01645-7.

URLs
URLs

Zhang, Zi-Huai et al. (2023) ‘Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control’, Physical Review Letters, 13. Available at: https://doi.org/10.1103/physrevlett.130.166902.

URLs
URLs

Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.

URLs
URLs

Dubois, A.E.E. et al. (2022) ‘Untrained Physically Informed Neural Network for Image Reconstruction of Magnetic Field Sources’, Physical Review Applied, 18(6). Available at: https://doi.org/10.1103/physrevapplied.18.064076.

URLs
URLs

Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.

URLs
URLs

Happacher, Jodok et al. (2022) ‘Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond’, Physical Review Letters, 128. Available at: https://doi.org/10.1103/physrevlett.128.177401.

URLs
URLs

Makushko, Pavlo et al. (2022) ‘Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr<inf>2</inf>O<inf>3</inf> thin films’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-34233-5.

URLs
URLs

Rickhaus, Peter and Maletinsky, Patrick (2022) ‘SCANNING NITROGEN VACANCY MAGNETOMETRY: A QUANTUM TECHNOLOGY FOR DEVICE FAILURE ANALYSIS’, Electronic Device Failure Analysis, 24, pp. 29–32.

Seniutinas, Gediminas et al. (2022) ‘Versatile, All-Diamond Scanning Probes for High-Performance Nanoscale Magnetometry’.

Veremchuk, Igor et al. (2022) ‘Defect Nanostructure and its Impact on Magnetism of α-Cr<inf>2</inf>O<inf>3</inf> Thin Films’, Small, 18. Available at: https://doi.org/10.1002/smll.202201228.

URLs
URLs

Veremchuk, Igor et al. (2022) ‘Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr<inf>2</inf>O<inf>3</inf>Sintered in Conditions Far out of Equilibrium’, ACS Applied Electronic Materials, 4, pp. 2943–2952. Available at: https://doi.org/10.1021/acsaelm.2c00398.

URLs
URLs

Zhong, Hai et al. (2022) ‘Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFe O3 Thin Films’, Physical Review Applied, 17. Available at: https://doi.org/10.1103/physrevapplied.17.044051.

URLs
URLs

Celano, Umberto et al. (2021) ‘Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond’, Nano Letters, 21(24), pp. 10409–10415. Available at: https://doi.org/10.1021/acs.nanolett.1c03723.

URLs
URLs

Hedrich, Natascha (2021) Exploring antiferromagnetic domain wall mechanics through scanning nitrogen vacancy magnetometry. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.

Hedrich, Natascha et al. (2021) ‘Nanoscale mechanics of antiferromagnetic domain walls’, Nature Physics, 17(5), pp. 574–577. Available at: https://doi.org/10.1038/s41567-020-01157-0.

URLs
URLs

Hedrich, Natascha et al. (2021) ‘Publisher Correction: Nanoscale mechanics of antiferromagnetic domain walls (Nature Physics, (2021), 17, 5, (574-577), 10.1038/s41567-020-01157-0)’, Nature Physics, 17, p. 659. Available at: https://doi.org/10.1038/s41567-021-01205-3.

URLs
URLs

Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.

URLs
URLs

Zhang, Jianyu et al. (2021) ‘Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures’, Nature Communications, 12(1), p. ARTN 7258. Available at: https://doi.org/10.1038/s41467-021-27405-2.

URLs
URLs

Batzer, Marietta et al. (2020) ‘Single crystal diamond pyramids for applications in nanoscale quantum sensing’, Optical Materials Express, 10(2), pp. 492–500. Available at: https://doi.org/10.1364/ome.380362.

URLs
URLs

Broadway, D. A. et al. (2020) ‘Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements’, Physical Review Applied, 14(2), p. 024076. Available at: https://doi.org/10.1103/physrevapplied.14.024076.

URLs
URLs

Hanlon, Liam et al. (2020) ‘Diamond nanopillar arrays for quantum microscopy of neuronal signals’, Neurophotonics, 7(3), p. 035002. Available at: https://doi.org/10.1117/1.nph.7.3.035002.

URLs
URLs

Hedrich, Natascha et al. (2020) ‘Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging’, Physical Review Applied, 14(6), p. 064007. Available at: https://doi.org/10.1103/physrevapplied.14.064007.

URLs
URLs

Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.

URLs
URLs

Kölbl, Johannes (2020) Dressed states of a strain-driven spin in diamond. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.

Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.

URLs
URLs

Rohner, Dominik (2020) Towards Single Spin Magnetometry at mK Temperatures. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.

Tanos, R. et al. (2020) ‘Optimal architecture for diamond-based wide-field thermal imaging’, AIP Advances, 10(2), p. 025027. Available at: https://doi.org/10.1063/1.5140030.

URLs
URLs

Waasem, Niklas, Fedder, Helmut and Maletinsky, Patrick (2020) ‘New Tools Promise the Next Big Thing for Quantum Sensing’, Photonics Spectra, 54, pp. 48–52.

Acosta, Victor M. et al. (2019) ‘Color Centers in Diamond as Novel Probes of Superconductivity’, journal of superconductivity and novel magnetism, 32(1), pp. 85–95. Available at: https://doi.org/10.1007/s10948-018-4877-3.

URLs
URLs

Akhtar, W. et al. (2019) ‘Current-Induced Nucleation and Dynamics of Skyrmions in a Co-based Hensler Alloy’, Physical Review applied, 11(3), p. 034066. Available at: https://doi.org/10.1103/physrevapplied.11.034066.

URLs
URLs

Appel, Patrick et al. (2019) ‘Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets’, nano letters, 19(3), pp. 1682–1687. Available at: https://doi.org/10.1021/acs.nanolett.8b04681.

URLs
URLs

Barfuss, A. et al. (2019) ‘Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems’, Physical revciew B, 99(17), p. 174102. Available at: https://doi.org/10.1103/physrevb.99.174102.

URLs
URLs

D`Amico, I. et al. (2019) ‘Nanoscale quantum optics’, rivista del nuovo cimento, 42(4), pp. 153–195. Available at: https://doi.org/10.1393/ncr/i2019-10158-0.

URLs
URLs

Flågan, Sigurd et al. (2019) ‘A tunable Fabry-Pérot cavity for diamond-based photonics’, pp. 107–108.

Hedrich, Natascha et al. (2019) ‘Nanomagnetism of Cr<inf>2</inf>O<inf>3</inf>investigated using parabolic diamond pillars’, pp. 114–115.

Kasperczyk, Mark et al. (2019) ‘Toward Novel Coherence Protection and Sensing Techniques: Closed Counter Interaction Using a Single Spin’. Available at: https://doi.org/10.23919/cleo.2019.8749498.

URLs
URLs

Kasperczyk, Mark et al. (2019) ‘Toward novel coherence protection and sensing techniques: Closed counter interaction using a single spin’. Available at: https://doi.org/10.1364/cleo_at.2019.jw3a.1.

URLs
URLs

Koelbl, J. et al. (2019) ‘Determination of intrinsic effective fields and microwave polarizations by high-resolution spectroscopy of single nitrogen-vacancy center spins’, new journal of physics, 21(11), p. 113039. Available at: https://doi.org/10.1088/1367-2630/ab54a8.

URLs
URLs

Kolbl, J. et al. (2019) ‘Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity’, physical review letters, 122(9), p. 090502. Available at: https://doi.org/10.1103/physrevlett.122.090502.

URLs
URLs

Maletinsky, Patrick (2019) ‘Waveguides, cavities and optical antennas for diamond quantum sensing’, p. 87.

Rohner, D. et al. (2019) ‘(111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields’, applied physics letters, 115(19), p. 192401. Available at: https://doi.org/10.1063/1.5127101.

URLs
URLs

Rohner, D. et al. (2019) ‘Nanoscale Magnetometry with Single Spins in Diamond at Low Temperature’, pp. 63–64.

Thiel, Lucas (2019) Nanoscale Magnetometry with a Single Spin in Diamond at Cryogenic Temperatures. . Translated by Maletinsky Patrick. Dissertation. Universität Basel.

Thiel, L. et al. (2019) ‘Probing magnetism in 2D materials at the nanoscale with single-spin microscopy’, Science, 364(6444), pp. 973–976. Available at: https://doi.org/10.1126/science.aav6926.

URLs
URLs

Barfuss, Arne et al. (2018) ‘Phase-controlled coherent dynamics of a single spin under closed-contour interaction’, Nature physics, 14(11), pp. 1087–1091. Available at: https://doi.org/10.1038/s41567-018-0231-8.

URLs
URLs

Challier, Michel et al. (2018) ‘Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies’, MICROMACHINES, 9(4). Available at: https://doi.org/10.3390/mi9040148.

URLs
URLs

Gross, I. et al. (2018) ‘Skyrmion morphology in ultrathin magnetic films’, PHYSICAL REVIEW MATERIALS, 2(2), p. 024406. Available at: https://doi.org/10.1103/physrevmaterials.2.024406.

URLs
URLs

Horsley, Andrew et al. (2018) ‘Microwave Device Characterization Using a Widefield Diamond Microscope’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044039.

URLs
URLs

Maletinsky, Patrick (2018) ‘Nanoscale Magnetometry Using Single Spin Quantum Sensors’. CPEM: CPEM. Available at: https://doi.org/10.1109/cpem.2018.8500790.

URLs
URLs

Norambuena, A. et al. (2018) ‘Spin-lattice relaxation of individual solid-state spins’, Physical Review B, 97(9). Available at: https://doi.org/10.1103/physrevb.97.094304.

URLs
URLs

Rohner, Dominik et al. (2018) ‘Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry’, Sensors, 18(11). Available at: https://doi.org/10.3390/s18113790.

URLs
URLs

Schlussel, Yechezkel et al. (2018) ‘Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond’, Physical review applied, 10(3). Available at: https://doi.org/10.1103/physrevapplied.10.034032.

URLs
URLs

Gross, Isabell et al. (2017) ‘Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer’, Nature, 549(7671), pp. 252–256. Available at: https://doi.org/10.1038/nature23656.

URLs
URLs

Horsley, Andrew et al. (2017) ‘Widefield microwave imaging using NV centres’.

Kosub, Tobias et al. (2017) ‘Purely antiferromagnetic magnetoelectric random access memory’, Nature Communications, 8, p. 13985. Available at: https://doi.org/10.1038/ncomms13985.

URLs
URLs

Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.

URLs
URLs

Teissier, Jean, Barfuss, Arne and Maletinsky, Patrick (2017) ‘Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin’, Journal of Optics, 19(4), p. 044003. Available at: https://doi.org/10.1088/2040-8986/aa5f62.

URLs
URLs

Appel, Patrick et al. (2016) ‘Fabrication of all diamond scanning probes for nanoscale magnetometry’, Review of Scientific Instruments, 87(6), p. 063703. Available at: https://doi.org/10.1063/1.4952953.

URLs
URLs

Arend, Carsten et al. (2016) ‘Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers’, Applied Physics Letters, 108(6), p. 063111. Available at: https://doi.org/10.1063/1.4941804.

URLs
URLs

Thiel, L. et al. (2016) ‘Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer’, Nature Nanotechnology, 11(8), pp. 677–81. Available at: https://doi.org/10.1038/nnano.2016.63.

URLs
URLs

Appel, Patrick et al. (2015) ‘Nanoscale microwave imaging with a single electron spin in diamond’, New Journal of Physics, 17, p. 112001. Available at: https://doi.org/10.1088/1367-2630/17/11/112001.

URLs
URLs

Barfuss, Arne et al. (2015) ‘Strong mechanical driving of a single electron spin’, Nature Physics, 11(10), pp. 820–U185. Available at: https://doi.org/10.1038/nphys3411.

URLs
URLs

Jorio, Ado et al. (2015) ‘Stokes and anti-Stokes Raman spectra of the high-energy C-C stretching modes in graphene and diamond’, physica status solidi (b), 252(11), pp. 2380–2384. Available at: https://doi.org/10.1002/pssb.201552224.

URLs
URLs

Kasperczyk, Mark et al. (2015) ‘Stokes-anti-Stokes correlations in diamond’, Optics Letters, 40(10), pp. 2393–2396. Available at: https://doi.org/10.1364/ol.40.002393.

URLs
URLs

Luan, Lan et al. (2015) ‘Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond’, Scientific Reports, 5(8119), p. 8119. Available at: https://doi.org/10.1038/srep08119.

URLs
URLs

Trifunovic, Luka et al. (2015) ‘High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature’, Nature Nanotechnology, 10(6), pp. 541–6. Available at: https://doi.org/10.1038/nnano.2015.74.

URLs
URLs

Chu, Y. et al. (2014) ‘Coherent optical transitions in implanted nitrogen vacancy centers’, Nano Letters, 14(4), pp. 1982–6. Available at: https://doi.org/10.1021/nl404836p.

URLs
URLs

Grinolds, M S et al. (2014) ‘Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins’, Nature nanotechnology, 9(4), pp. 279–84. Available at: https://doi.org/10.1038/nnano.2014.30.

URLs
URLs

Jorio, Ado et al. (2014) ‘Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene’, Nano Letters, 14(10), pp. 5687–92. Available at: https://doi.org/10.1021/nl502412g.

URLs
URLs

Neu, Elke et al. (2014) ‘Photonic nano-structures on (111)-oriented diamond’, Applied physics letters, 104(15), p. 153108. Available at: https://doi.org/10.1063/1.4871580.

URLs
URLs

Riedel, Daniel et al. (2014) ‘Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond’, Physical review applied, 2(6). Available at: https://doi.org/10.1103/physrevapplied.2.064011.

URLs
URLs

Rondin, L et al. (2014) ‘Magnetometry with nitrogen-vacancy defects in diamond’, Reports on progress in physics, 77(5), p. 056503. Available at: https://doi.org/10.1088/0034-4885/77/5/056503.

URLs
URLs

Teissier, J et al. (2014) ‘Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator’, Physical review letters, 113(2), p. 020503. Available at: https://doi.org/10.1103/physrevlett.113.020503.

URLs
URLs

Maletinsky, P. and Jacques, V. (2014) ‘Diamond magnetic sensors’, in Quantum information processing with diamond. Cambridge: Elsevier (Quantum information processing with diamond), pp. 240–263. Available at: https://doi.org/10.1533/9780857096685.2.240.

URLs
URLs

Grinolds, M. S. et al. (2013) ‘Nanoscale magnetic imaging of a single electron spin under ambient conditions’, Nature physics, 9(4), pp. 215–219. Available at: https://doi.org/10.1038/nphys2543.

URLs
URLs

Urbaszek, Bernhard et al. (2013) ‘Nuclear spin physics in quantum dots : an optical investigation’, Reviews of Modern Physics, 85(1), pp. 79–133. Available at: https://doi.org/10.1103/revmodphys.85.79.

URLs
URLs

Hausmann, Birgit J M et al. (2012) ‘Integrated diamond networks for quantum nanophotonics’, Nano Letters, 12(3), pp. 1578–82. Available at: https://doi.org/10.1021/nl204449n.

URLs
URLs

Hong, Sungkun et al. (2012) ‘Coherent, Mechanical Control of a Single Electronic Spin’, Nano Letters, 12(8), pp. 3920–4. Available at: https://doi.org/10.1021/nl300775c.

URLs
URLs

Maletinsky, Patrick et al. (2012) ‘A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres’, Nature Nanotechnology, 7(5), pp. 320–324. Available at: https://doi.org/10.1038/nnano.2012.50.

URLs
URLs

Krainer, L. et al. (2002) ‘Mode-locked Nd:YVO/sub 4/ laser with 157 GHz repetition rate’, in Lasers and Electro-Optics. CLEO ’02. Technical Diges. Long Beach, CA, USA : IEEE (Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO ’02. Technical Diges). Available at: https://doi.org/10.1109/cleo.2002.1034064.

URLs
URLs