Theoretische Physik Mesoscopics (Loss)
Publications
540 found
Show per page
Cvitkovich, L. et al. (2024) ‘Coherence limit due to hyperfine interaction with nuclei in the barrier material of Si spin qubits’, Physical Review Applied, 22(6). Available at: https://doi.org/10.1103/physrevapplied.22.064089.
Cvitkovich, L. et al. (2024) ‘Coherence limit due to hyperfine interaction with nuclei in the barrier material of Si spin qubits’, Physical Review Applied, 22(6). Available at: https://doi.org/10.1103/physrevapplied.22.064089.
Luethi, Melina et al. (2024) ‘From perfect to imperfect poor man’s Majoranas in minimal Kitaev chains’, Physical Review B. 12.12.2024, 110(24). Available at: https://doi.org/10.1103/physrevb.110.245412.
Luethi, Melina et al. (2024) ‘From perfect to imperfect poor man’s Majoranas in minimal Kitaev chains’, Physical Review B. 12.12.2024, 110(24). Available at: https://doi.org/10.1103/physrevb.110.245412.
Zou, J., Bosco, S. and Loss, D. (2024) ‘Spatially correlated classical and quantum noise in driven qubits’, npj Quantum Information, 10(1). Available at: https://doi.org/10.1038/s41534-024-00842-9.
Zou, J., Bosco, S. and Loss, D. (2024) ‘Spatially correlated classical and quantum noise in driven qubits’, npj Quantum Information, 10(1). Available at: https://doi.org/10.1038/s41534-024-00842-9.
De Palma, Franco et al. (2024) ‘Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states’, Nature Communications. 23.11.2024, 15(1). Available at: https://doi.org/10.1038/s41467-024-54520-7.
De Palma, Franco et al. (2024) ‘Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states’, Nature Communications. 23.11.2024, 15(1). Available at: https://doi.org/10.1038/s41467-024-54520-7.
Miserev, Dmitry et al. (2024) ‘Microscopic mechanism of pair-, charge-, and spin-density-wave instabilities in interacting D -dimensional Fermi liquids’, Physical Review B. 12.09.2024, 110(12). Available at: https://doi.org/10.1103/physrevb.110.125128.
Miserev, Dmitry et al. (2024) ‘Microscopic mechanism of pair-, charge-, and spin-density-wave instabilities in interacting D -dimensional Fermi liquids’, Physical Review B. 12.09.2024, 110(12). Available at: https://doi.org/10.1103/physrevb.110.125128.
Szumniak, Pawel, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2404.08527.
Szumniak, Pawel, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2404.08527.
Szumniak, Paweł, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Physical Review B. 09.09.2024, 110(11). Available at: https://doi.org/10.1103/physrevb.110.115413.
Szumniak, Paweł, Loss, Daniel and Klinovaja, Jelena (2024) ‘Spin-resolved nonlocal transport in proximitized Rashba nanowires’, Physical Review B. 09.09.2024, 110(11). Available at: https://doi.org/10.1103/physrevb.110.115413.
Nakata, Kouki et al. (2024) ‘Magnonic φ Josephson junctions and synchronized precession’, Physical Review Research. 22.08.2024, 6(3). Available at: https://doi.org/10.1103/physrevresearch.6.033207.
Nakata, Kouki et al. (2024) ‘Magnonic φ Josephson junctions and synchronized precession’, Physical Review Research. 22.08.2024, 6(3). Available at: https://doi.org/10.1103/physrevresearch.6.033207.
Adelsberger, Christoph et al. (2024) ‘Valley-Free Silicon Fins Caused by Shear Strain’, Physical Review Letters. 17.07.2024, 133(3). Available at: https://doi.org/10.1103/physrevlett.133.037001.
Adelsberger, Christoph et al. (2024) ‘Valley-Free Silicon Fins Caused by Shear Strain’, Physical Review Letters. 17.07.2024, 133(3). Available at: https://doi.org/10.1103/physrevlett.133.037001.
Angehrn, Georg et al. (2024) ‘Relations between normal state nonreciprocal transport and the superconducting diode effect in the trivial and topological phases’, Applied Physics Letters. 12.07.2024, 125(2). Available at: https://doi.org/10.1063/5.0216679.
Angehrn, Georg et al. (2024) ‘Relations between normal state nonreciprocal transport and the superconducting diode effect in the trivial and topological phases’, Applied Physics Letters. 12.07.2024, 125(2). Available at: https://doi.org/10.1063/5.0216679.
Bosco, Stefano, Zou, Ji and Loss, Daniel (2024) ‘High-Fidelity Spin Qubit Shuttling via Large Spin-Orbit Interactions’, PRX Quantum. 05.06.2024, 5(2). Available at: https://doi.org/10.1103/prxquantum.5.020353.
Bosco, Stefano, Zou, Ji and Loss, Daniel (2024) ‘High-Fidelity Spin Qubit Shuttling via Large Spin-Orbit Interactions’, PRX Quantum. 05.06.2024, 5(2). Available at: https://doi.org/10.1103/prxquantum.5.020353.
Miserev, Dmitry et al. (2024) ‘Microscopic Mechanism of Pair-, Charge- and Spin-Density-Wave Instabilities in Interacting D-Dimensional Fermi Liquids’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2312.17208.
Miserev, Dmitry et al. (2024) ‘Microscopic Mechanism of Pair-, Charge- and Spin-Density-Wave Instabilities in Interacting D-Dimensional Fermi Liquids’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2312.17208.
Spethmann, Maria et al. (2024) ‘High-fidelity two-qubit gates of hybrid superconducting-semiconducting singlet-triplet qubits’, Physical Review B. 07.02.2024, 109(8). Available at: https://doi.org/10.1103/physrevb.109.085303.
Spethmann, Maria et al. (2024) ‘High-fidelity two-qubit gates of hybrid superconducting-semiconducting singlet-triplet qubits’, Physical Review B. 07.02.2024, 109(8). Available at: https://doi.org/10.1103/physrevb.109.085303.
Geyer, S. et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics [Preprint]. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Geyer, S. et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics [Preprint]. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Hutchinson et al. (2024) ‘Spin susceptibility in interacting two-dimensional semiconductors and bilayer systems at first order: Kohn anomalies and spin density wave ordering’, Physical review B. 20.02.2024, 109. Available at: https://doi.org/10.1103/physrevb.109.075139.
Hutchinson et al. (2024) ‘Spin susceptibility in interacting two-dimensional semiconductors and bilayer systems at first order: Kohn anomalies and spin density wave ordering’, Physical review B. 20.02.2024, 109. Available at: https://doi.org/10.1103/physrevb.109.075139.
Miserev, D., Klinovaja, J. and Loss, D. (2023) ‘Dimensional reduction of the Luttinger-Ward functional for spin-degenerate D -dimensional electron gases’, Physical Review B, 108(23). Available at: https://doi.org/10.1103/physrevb.108.235116.
Miserev, D., Klinovaja, J. and Loss, D. (2023) ‘Dimensional reduction of the Luttinger-Ward functional for spin-degenerate D -dimensional electron gases’, Physical Review B, 108(23). Available at: https://doi.org/10.1103/physrevb.108.235116.
Yoneda, J. et al. (2023) ‘Noise-correlation spectrum for a pair of spin qubits in silicon’, Nature Physics, 19(12), pp. 1793–1798. Available at: https://doi.org/10.1038/s41567-023-02238-6.
Yoneda, J. et al. (2023) ‘Noise-correlation spectrum for a pair of spin qubits in silicon’, Nature Physics, 19(12), pp. 1793–1798. Available at: https://doi.org/10.1038/s41567-023-02238-6.
Luethi, M. et al. (2023) ‘Majorana bound states in germanium Josephson junctions via phase control’, Physical Review B, 108(19). Available at: https://doi.org/10.1103/physrevb.108.195406.
Luethi, M. et al. (2023) ‘Majorana bound states in germanium Josephson junctions via phase control’, Physical Review B, 108(19). Available at: https://doi.org/10.1103/physrevb.108.195406.
Rojas-Arias, J.S. et al. (2023) ‘Spatial noise correlations beyond nearest neighbors in 28Si/ Si-Ge spin qubits’, Physical Review Applied, 20(5). Available at: https://doi.org/10.1103/physrevapplied.20.054024.
Rojas-Arias, J.S. et al. (2023) ‘Spatial noise correlations beyond nearest neighbors in 28Si/ Si-Ge spin qubits’, Physical Review Applied, 20(5). Available at: https://doi.org/10.1103/physrevapplied.20.054024.
Adelsberger, C. et al. (2023) ‘Microscopic analysis of proximity-induced superconductivity and metallization effects in superconductor-germanium hole nanowires’, Physical Review B, 108(15). Available at: https://doi.org/10.1103/physrevb.108.155433.
Adelsberger, C. et al. (2023) ‘Microscopic analysis of proximity-induced superconductivity and metallization effects in superconductor-germanium hole nanowires’, Physical Review B, 108(15). Available at: https://doi.org/10.1103/physrevb.108.155433.
Miller, D. et al. (2023) ‘Shor-Laflamme distributions of graph states and noise robustness of entanglement’, Journal of Physics A: Mathematical and Theoretical, 56(33). Available at: https://doi.org/10.1088/1751-8121/ace8d4.
Miller, D. et al. (2023) ‘Shor-Laflamme distributions of graph states and noise robustness of entanglement’, Journal of Physics A: Mathematical and Theoretical, 56(33). Available at: https://doi.org/10.1088/1751-8121/ace8d4.
Laubscher, K. et al. (2023) ‘RKKY interaction at helical edges of topological superconductors’, Physical Review B, 107(11). Available at: https://doi.org/10.1103/physrevb.107.115421.
Laubscher, K. et al. (2023) ‘RKKY interaction at helical edges of topological superconductors’, Physical Review B, 107(11). Available at: https://doi.org/10.1103/physrevb.107.115421.
Hoffman, S., Loss, D. and Tserkovnyak, Y. (2023) ‘Superfluid transport in quantum spin chains’, Physical Review B, 107(8). Available at: https://doi.org/10.1103/physrevb.107.085403.
Hoffman, S., Loss, D. and Tserkovnyak, Y. (2023) ‘Superfluid transport in quantum spin chains’, Physical Review B, 107(8). Available at: https://doi.org/10.1103/physrevb.107.085403.
Hou, Z. et al. (2023) ‘Realization of a three-dimensional quantum Hall effect in a Zeeman-induced second-order topological insulator on a torus’, Physical Review B, 107(7). Available at: https://doi.org/10.1103/physrevb.107.075437.
Hou, Z. et al. (2023) ‘Realization of a three-dimensional quantum Hall effect in a Zeeman-induced second-order topological insulator on a torus’, Physical Review B, 107(7). Available at: https://doi.org/10.1103/physrevb.107.075437.
Mook, A. et al. (2023) ‘Magnons, magnon bound pairs, and their hybrid spin-multipolar topology’, Physical Review B, 107(6). Available at: https://doi.org/10.1103/physrevb.107.064429.
Mook, A. et al. (2023) ‘Magnons, magnon bound pairs, and their hybrid spin-multipolar topology’, Physical Review B, 107(6). Available at: https://doi.org/10.1103/physrevb.107.064429.
Luethi, M. et al. (2023) ‘Planar Josephson junctions in germanium: Effect of cubic spin-orbit interaction’, Physical Review B, 107(3). Available at: https://doi.org/10.1103/physrevb.107.035435.
Luethi, M. et al. (2023) ‘Planar Josephson junctions in germanium: Effect of cubic spin-orbit interaction’, Physical Review B, 107(3). Available at: https://doi.org/10.1103/physrevb.107.035435.
Bosco, Stefano et al. (2023) ‘Phase driving hole spin qubits’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2303.03350.
Bosco, Stefano et al. (2023) ‘Phase driving hole spin qubits’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2303.03350.
Bosco, Stefano et al. (2023) ‘Phase-Driving Hole Spin Qubits’, Physical Review Letters. 07.11.2023, 131(19). Available at: https://doi.org/10.1103/physrevlett.131.197001.
Bosco, Stefano et al. (2023) ‘Phase-Driving Hole Spin Qubits’, Physical Review Letters. 07.11.2023, 131(19). Available at: https://doi.org/10.1103/physrevlett.131.197001.
Bosco, S. and Loss, D. (2022) ‘Hole Spin Qubits in Thin Curved Quantum Wells’, Physical Review Applied, 18(4). Available at: https://doi.org/10.1103/physrevapplied.18.044038.
Bosco, S. and Loss, D. (2022) ‘Hole Spin Qubits in Thin Curved Quantum Wells’, Physical Review Applied, 18(4). Available at: https://doi.org/10.1103/physrevapplied.18.044038.
Bosco, Stefano et al. (2022) ‘Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots’, Physical Review Letters, 129(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.129.066801.
Bosco, Stefano et al. (2022) ‘Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots’, Physical Review Letters, 129(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.129.066801.
Gutierrez-Rubio, Angel et al. (2022) ‘Bayesian estimation of correlation functions’, Physical Review Research. 06.12.2022, 4(4).
Gutierrez-Rubio, Angel et al. (2022) ‘Bayesian estimation of correlation functions’, Physical Review Research. 06.12.2022, 4(4).
Hetényi, Bence (2022) Quantum computation in solid-state systems. . Translated by Loss Daniel. Dissertation. Universität Basel.
Hetényi, Bence (2022) Quantum computation in solid-state systems. . Translated by Loss Daniel. Dissertation. Universität Basel.
Hetényi, Bence, Bosco, Stefano and Loss, Daniel (2022) ‘Anomalous Zero-Field Splitting for Hole Spin Qubits in Si and Ge Quantum Dots’, Physical Review Letters, 129(11), p. 116805. Available at: https://doi.org/10.1103/physrevlett.129.116805.
Hetényi, Bence, Bosco, Stefano and Loss, Daniel (2022) ‘Anomalous Zero-Field Splitting for Hole Spin Qubits in Si and Ge Quantum Dots’, Physical Review Letters, 129(11), p. 116805. Available at: https://doi.org/10.1103/physrevlett.129.116805.
Hirosawa, Tomoki et al. (2022) ‘Laser-Controlled Real- and Reciprocal-Space Topology in Multiferroic Insulators’, Physical Review Letters, 128(3), p. 037201. Available at: https://doi.org/10.1103/physrevlett.128.037201.
Hirosawa, Tomoki et al. (2022) ‘Laser-Controlled Real- and Reciprocal-Space Topology in Multiferroic Insulators’, Physical Review Letters, 128(3), p. 037201. Available at: https://doi.org/10.1103/physrevlett.128.037201.
Jena, Jagannath et al. (2022) ‘Observation of fractional spin textures in a Heusler material’, Nature Communications, 13(1), p. 2348. Available at: https://doi.org/10.1038/s41467-022-29991-1.
Jena, Jagannath et al. (2022) ‘Observation of fractional spin textures in a Heusler material’, Nature Communications, 13(1), p. 2348. Available at: https://doi.org/10.1038/s41467-022-29991-1.
Küster, Felix et al. (2022) ‘Non-Majorana modes in diluted spin chains proximitized to a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 119(42), p. e2210589119. Available at: https://doi.org/10.1073/pnas.2210589119.
Küster, Felix et al. (2022) ‘Non-Majorana modes in diluted spin chains proximitized to a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 119(42), p. e2210589119. Available at: https://doi.org/10.1073/pnas.2210589119.
Legg, Henry F. et al. (2022) ‘Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires’, Nature Nanotechnology, 17(7), pp. 696–700. Available at: https://doi.org/10.1038/s41565-022-01124-1.
Legg, Henry F. et al. (2022) ‘Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires’, Nature Nanotechnology, 17(7), pp. 696–700. Available at: https://doi.org/10.1038/s41565-022-01124-1.
Malkoc, Ognjen, Stano, Peter and Loss, Daniel (2022) ‘Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits’, Physical Review Letters, 129(24), p. 247701. Available at: https://doi.org/10.1103/physrevlett.129.247701.
Malkoc, Ognjen, Stano, Peter and Loss, Daniel (2022) ‘Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits’, Physical Review Letters, 129(24), p. 247701. Available at: https://doi.org/10.1103/physrevlett.129.247701.
Stano, Peter and Loss, Daniel (2022) ‘Review of performance metrics of spin qubits in gated semiconducting nanostructures’, Nature Reviews Physics, 4(10), pp. 672–688. Available at: https://doi.org/10.1038/s42254-022-00484-w.
Stano, Peter and Loss, Daniel (2022) ‘Review of performance metrics of spin qubits in gated semiconducting nanostructures’, Nature Reviews Physics, 4(10), pp. 672–688. Available at: https://doi.org/10.1038/s42254-022-00484-w.
Parkin, S. et al. (2021) ‘Observation of fractional spin textures and bulk-boundary correspondence’, Research Square [Preprint]. Research Square Company. Available at: https://doi.org/10.21203/rs.3.rs-136696/v1.
Parkin, S. et al. (2021) ‘Observation of fractional spin textures and bulk-boundary correspondence’, Research Square [Preprint]. Research Square Company. Available at: https://doi.org/10.21203/rs.3.rs-136696/v1.
Bosco, Stefano et al. (2021) ‘Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power’, Physical Review B, 104(11), p. 115425. Available at: https://doi.org/10.1103/physrevb.104.115425.
Bosco, Stefano et al. (2021) ‘Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power’, Physical Review B, 104(11), p. 115425. Available at: https://doi.org/10.1103/physrevb.104.115425.
Bosco, Stefano, Hetenyi, Bence and Loss, Daniel (2021) ‘Hole Spin Qubits in Si FinFETs With Fully Tunable Spin-Orbit Coupling and Sweet Spots for Charge Noise’, PRX QUANTUM, 2(1), p. 010348. Available at: https://doi.org/10.1103/prxquantum.2.010348.
Bosco, Stefano, Hetenyi, Bence and Loss, Daniel (2021) ‘Hole Spin Qubits in Si FinFETs With Fully Tunable Spin-Orbit Coupling and Sweet Spots for Charge Noise’, PRX QUANTUM, 2(1), p. 010348. Available at: https://doi.org/10.1103/prxquantum.2.010348.
Bosco, Stefano and Loss, Daniel (2021) ‘Fully Tunable Hyperfine Interactions of Hole Spin Qubits in Si and Ge Quantum Dots’, Physical Review Letters, 127(19), p. 190501. Available at: https://doi.org/10.1103/physrevlett.127.190501.
Bosco, Stefano and Loss, Daniel (2021) ‘Fully Tunable Hyperfine Interactions of Hole Spin Qubits in Si and Ge Quantum Dots’, Physical Review Letters, 127(19), p. 190501. Available at: https://doi.org/10.1103/physrevlett.127.190501.
Carballido, Miguel J. et al. (2021) ‘Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction’, Physical Review B, 103(19), p. 195444. Available at: https://doi.org/10.1103/physrevb.102.195401.
Carballido, Miguel J. et al. (2021) ‘Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction’, Physical Review B, 103(19), p. 195444. Available at: https://doi.org/10.1103/physrevb.102.195401.
Deb, Oindrila et al. (2021) ‘Yu-Shiba-Rusinov states and ordering of magnetic impurities near the boundary of a superconducting nanowire’, Physical Review B, 103(16), p. 165403. Available at: https://doi.org/10.1103/physrevb.103.165403.
Deb, Oindrila et al. (2021) ‘Yu-Shiba-Rusinov states and ordering of magnetic impurities near the boundary of a superconducting nanowire’, Physical Review B, 103(16), p. 165403. Available at: https://doi.org/10.1103/physrevb.103.165403.
Ding, Hao et al. (2021) ‘Tuning interactions between spins in a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 118(14), p. e2024837118. Available at: https://doi.org/10.1073/pnas.2024837118.
Ding, Hao et al. (2021) ‘Tuning interactions between spins in a superconductor’, Proceedings of the National Academy of Sciences of the United States of America, 118(14), p. e2024837118. Available at: https://doi.org/10.1073/pnas.2024837118.
Froning, F. N. M. et al. (2021) ‘Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots’, Physical Review Research, 3(1), p. 013081. Available at: https://doi.org/10.1103/physrevresearch.3.013081.
Froning, F. N. M. et al. (2021) ‘Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots’, Physical Review Research, 3(1), p. 013081. Available at: https://doi.org/10.1103/physrevresearch.3.013081.
Heinrich, Andreas J. et al. (2021) ‘Quantum-coherent nanoscience’, Nature Nanotechnology, 16(12), pp. 1318–1329. Available at: https://doi.org/10.1038/s41565-021-00994-1.
Heinrich, Andreas J. et al. (2021) ‘Quantum-coherent nanoscience’, Nature Nanotechnology, 16(12), pp. 1318–1329. Available at: https://doi.org/10.1038/s41565-021-00994-1.
Hess, Richard et al. (2021) ‘Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires with superconducting and normal sections’, Physical Review B, 104(7), p. 075405. Available at: https://doi.org/10.1103/physrevb.104.075405.
Hess, Richard et al. (2021) ‘Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires with superconducting and normal sections’, Physical Review B, 104(7), p. 075405. Available at: https://doi.org/10.1103/physrevb.104.075405.
Hsu, Chen-Hsuan et al. (2021) ‘Helical liquids in semiconductors’, Semiconductor Science and Technology, 36(12), p. 123003. Available at: https://doi.org/10.1088/1361-6641/ac2c27.
Hsu, Chen-Hsuan et al. (2021) ‘Helical liquids in semiconductors’, Semiconductor Science and Technology, 36(12), p. 123003. Available at: https://doi.org/10.1088/1361-6641/ac2c27.
Laubscher, Katharina et al. (2021) ‘Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems’, Physical Review B, 104(3), p. 035432. Available at: https://doi.org/10.1103/physrevb.104.035432.
Laubscher, Katharina et al. (2021) ‘Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems’, Physical Review B, 104(3), p. 035432. Available at: https://doi.org/10.1103/physrevb.104.035432.
Legg, Henry F., Loss, Daniel and Klinovaja, Jelena (2021) ‘Majorana bound states in topological insulators without a vortex’, Physical Review B, 104(16), p. 165405. Available at: https://doi.org/10.1103/physrevb.104.165405.
Legg, Henry F., Loss, Daniel and Klinovaja, Jelena (2021) ‘Majorana bound states in topological insulators without a vortex’, Physical Review B, 104(16), p. 165405. Available at: https://doi.org/10.1103/physrevb.104.165405.
Mook, Alexander et al. (2021) ‘Chiral hinge magnons in second-order topological magnon insulators’, Physical Review B, 104(2), p. 024406. Available at: https://doi.org/10.1103/physrevb.104.024406.
Mook, Alexander et al. (2021) ‘Chiral hinge magnons in second-order topological magnon insulators’, Physical Review B, 104(2), p. 024406. Available at: https://doi.org/10.1103/physrevb.104.024406.
Mook, Alexander et al. (2021) ‘Interaction-Stabilized Topological Magnon Insulator in Ferromagnets’, Physical Review X, 11(2), p. 021061. Available at: https://doi.org/10.1103/physrevx.11.021061.
Mook, Alexander et al. (2021) ‘Interaction-Stabilized Topological Magnon Insulator in Ferromagnets’, Physical Review X, 11(2), p. 021061. Available at: https://doi.org/10.1103/physrevx.11.021061.
Ronetti, Flavio, Loss, Daniel and Klinovaja, Jelena (2021) ‘Clock model and parafermions in Rashba nanowires’, Physical Review B, 103(23), p. 235410. Available at: https://doi.org/10.1103/physrevb.103.235410.
Ronetti, Flavio, Loss, Daniel and Klinovaja, Jelena (2021) ‘Clock model and parafermions in Rashba nanowires’, Physical Review B, 103(23), p. 235410. Available at: https://doi.org/10.1103/physrevb.103.235410.
Scappucci, Giordano et al. (2021) ‘The germanium quantum information route’, NATURE REVIEWS MATERIALS, 6(10), pp. 926–943. Available at: https://doi.org/10.1038/s41578-020-00262-z.
Scappucci, Giordano et al. (2021) ‘The germanium quantum information route’, NATURE REVIEWS MATERIALS, 6(10), pp. 926–943. Available at: https://doi.org/10.1038/s41578-020-00262-z.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2021) ‘Insulating regime of an underdamped current-biased Josephson junction supporting Z(3) and Z(4) parafermions’, Physical Review B, 103(18), p. 180505. Available at: https://doi.org/10.1103/physrevb.103.l180505.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2021) ‘Insulating regime of an underdamped current-biased Josephson junction supporting Z(3) and Z(4) parafermions’, Physical Review B, 103(18), p. 180505. Available at: https://doi.org/10.1103/physrevb.103.l180505.
Melo, L.C. et al. (2020) ‘Use of threaded rigid cannula and flexible endoscope for single access video laparoscopy in standing horses Uso de cânula rígida com rosca e endoscópio flexível para videolaparoscopia de acesso único em equinos em estação’, Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 72(3), pp. 695–702. Available at: https://doi.org/10.1590/1678-4162-11247.
Melo, L.C. et al. (2020) ‘Use of threaded rigid cannula and flexible endoscope for single access video laparoscopy in standing horses Uso de cânula rígida com rosca e endoscópio flexível para videolaparoscopia de acesso único em equinos em estação’, Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 72(3), pp. 695–702. Available at: https://doi.org/10.1590/1678-4162-11247.
Nakajima, T. et al. (2020) ‘Coherence of a Driven Electron Spin Qubit Actively Decoupled from Quasistatic Noise’, Physical Review X, 10(1). Available at: https://doi.org/10.1103/physrevx.10.011060.
Nakajima, T. et al. (2020) ‘Coherence of a Driven Electron Spin Qubit Actively Decoupled from Quasistatic Noise’, Physical Review X, 10(1). Available at: https://doi.org/10.1103/physrevx.10.011060.
Camenzind, Leon C. et al. (2020) ‘Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots’, Physical Review Letters, 127(5), p. 057701. Available at: https://doi.org/10.1103/physrevlett.127.057701.
Camenzind, Leon C. et al. (2020) ‘Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots’, Physical Review Letters, 127(5), p. 057701. Available at: https://doi.org/10.1103/physrevlett.127.057701.
Chua, Victor et al. (2020) ‘Majorana zero modes and their bosonization’, Physical Review B, 102(15), p. 155416. Available at: https://doi.org/10.1103/physrevb.102.155416.
Chua, Victor et al. (2020) ‘Majorana zero modes and their bosonization’, Physical Review B, 102(15), p. 155416. Available at: https://doi.org/10.1103/physrevb.102.155416.
Díaz, Sebastián A. et al. (2020) ‘Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields’, Physical Review Research, 2(1), p. 013231. Available at: https://doi.org/10.1103/physrevresearch.2.013231.
Díaz, Sebastián A. et al. (2020) ‘Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields’, Physical Review Research, 2(1), p. 013231. Available at: https://doi.org/10.1103/physrevresearch.2.013231.
Díaz, Sebastián A. et al. (2020) ‘Spin Wave Radiation by a Topological Charge Dipole’, Nano letters, 20(9), pp. 6556–6562. Available at: https://doi.org/10.1021/acs.nanolett.0c02192.
Díaz, Sebastián A. et al. (2020) ‘Spin Wave Radiation by a Topological Charge Dipole’, Nano letters, 20(9), pp. 6556–6562. Available at: https://doi.org/10.1021/acs.nanolett.0c02192.
Dmytruk, Olesia, Loss, Daniel and Klinovaja, Jelena (2020) ‘Pinning of Andreev bound states to zero energy in two-dimensional superconductor- semiconductor Rashba heterostructures’, Physical Review B, 102(24), p. 245431. Available at: https://doi.org/10.1103/physrevb.102.245431.
Dmytruk, Olesia, Loss, Daniel and Klinovaja, Jelena (2020) ‘Pinning of Andreev bound states to zero energy in two-dimensional superconductor- semiconductor Rashba heterostructures’, Physical Review B, 102(24), p. 245431. Available at: https://doi.org/10.1103/physrevb.102.245431.
Galambos, Tamás Haidekker et al. (2020) ‘Superconducting Quantum Interference in Edge State Josephson Junctions’, Physical Review Letters, 125(15), p. 157701. Available at: https://doi.org/10.1103/physrevlett.125.157701.
Galambos, Tamás Haidekker et al. (2020) ‘Superconducting Quantum Interference in Edge State Josephson Junctions’, Physical Review Letters, 125(15), p. 157701. Available at: https://doi.org/10.1103/physrevlett.125.157701.
Gao, Fei et al. (2020) ‘Site-Controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin-Orbit Coupling’, Advanced Materials, 32(16), p. e1906523. Available at: https://doi.org/10.1002/adma.201906523.
Gao, Fei et al. (2020) ‘Site-Controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin-Orbit Coupling’, Advanced Materials, 32(16), p. e1906523. Available at: https://doi.org/10.1002/adma.201906523.
Hetenyi, Bence, Kloeffel, Christoph and Loss, Daniel (2020) ‘Exchange interaction of hole-spin qubits in double quantum dots in highly anisotropic semiconductors’, Physical Review Research, 2(3), p. 033036. Available at: https://doi.org/10.1103/physrevresearch.2.033036.
Hetenyi, Bence, Kloeffel, Christoph and Loss, Daniel (2020) ‘Exchange interaction of hole-spin qubits in double quantum dots in highly anisotropic semiconductors’, Physical Review Research, 2(3), p. 033036. Available at: https://doi.org/10.1103/physrevresearch.2.033036.
Hirosawa, Tomoki et al. (2020) ‘Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals’, Physical Review Letters, 125(20), p. 207204. Available at: https://doi.org/10.1103/physrevlett.125.207204.
Hirosawa, Tomoki et al. (2020) ‘Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals’, Physical Review Letters, 125(20), p. 207204. Available at: https://doi.org/10.1103/physrevlett.125.207204.
Hsu, Chen-Hsuan et al. (2020) ‘Universal conductance dips and fractional excitations in a two-subband quantum wire’, Physical Review Research, 2(4), p. 043208. Available at: https://doi.org/10.1103/physrevresearch.2.043208.
Hsu, Chen-Hsuan et al. (2020) ‘Universal conductance dips and fractional excitations in a two-subband quantum wire’, Physical Review Research, 2(4), p. 043208. Available at: https://doi.org/10.1103/physrevresearch.2.043208.
Juenger, Christian et al. (2020) ‘Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires’, Physical Review Letters, 125(1), p. 017701. Available at: https://doi.org/10.1103/physrevlett.125.017701.
Juenger, Christian et al. (2020) ‘Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires’, Physical Review Letters, 125(1), p. 017701. Available at: https://doi.org/10.1103/physrevlett.125.017701.
Laubscher, Katharina et al. (2020) ‘Kramers pairs of Majorana corner states in a topological insulator bilayer’, Physical Review B, 102(19), p. 195401. Available at: https://doi.org/10.1103/physrevb.102.195401.
Laubscher, Katharina et al. (2020) ‘Kramers pairs of Majorana corner states in a topological insulator bilayer’, Physical Review B, 102(19), p. 195401. Available at: https://doi.org/10.1103/physrevb.102.195401.
Laubscher, Katharina, Loss, Daniel and Klinovaja, Jelena (2020) ‘Majorana and parafermion corner states from two coupled sheets of bilayer graphene’, Physical Review Research, 2(1), p. 013330. Available at: https://doi.org/10.1103/physrevresearch.2.013330.
Laubscher, Katharina, Loss, Daniel and Klinovaja, Jelena (2020) ‘Majorana and parafermion corner states from two coupled sheets of bilayer graphene’, Physical Review Research, 2(1), p. 013330. Available at: https://doi.org/10.1103/physrevresearch.2.013330.
Mook, Alexander, Klinovaja, Jelena and Loss, Daniel (2020) ‘Quantum damping of skyrmion crystal eigenmodes due to spontaneous quasiparticle decay’, Physical Review Research, 2(3), p. 033491. Available at: https://doi.org/10.1103/physrevresearch.2.033491.
Mook, Alexander, Klinovaja, Jelena and Loss, Daniel (2020) ‘Quantum damping of skyrmion crystal eigenmodes due to spontaneous quasiparticle decay’, Physical Review Research, 2(3), p. 033491. Available at: https://doi.org/10.1103/physrevresearch.2.033491.
Plekhanov, Kirill et al. (2020) ‘Hinge states in a system of coupled Rashba layers’, Physical Review Research, 2(1), p. 013083. Available at: https://doi.org/10.1103/physrevresearch.2.013083.
Plekhanov, Kirill et al. (2020) ‘Hinge states in a system of coupled Rashba layers’, Physical Review Research, 2(1), p. 013083. Available at: https://doi.org/10.1103/physrevresearch.2.013083.
Pletyukhov, Mikhail et al. (2020) ‘Rational boundary charge in one-dimensional systems with interaction and disorder’, Physical Review Research, 2(3), p. 033345. Available at: https://doi.org/10.1103/physrevresearch.2.033345.
Pletyukhov, Mikhail et al. (2020) ‘Rational boundary charge in one-dimensional systems with interaction and disorder’, Physical Review Research, 2(3), p. 033345. Available at: https://doi.org/10.1103/physrevresearch.2.033345.
Psaroudaki, Christina and Loss, Daniel (2020) ‘Quantum Depinning of a Magnetic Skyrmion’, Physical Review Letters, 124(9), p. 097202. Available at: https://doi.org/10.1103/physrevlett.124.097202.
Psaroudaki, Christina and Loss, Daniel (2020) ‘Quantum Depinning of a Magnetic Skyrmion’, Physical Review Letters, 124(9), p. 097202. Available at: https://doi.org/10.1103/physrevlett.124.097202.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Ronetti, Flavio et al. (2020) ‘Magnetically confined bound states in Rashba systems’, Physical Review Research, 2(2), p. 022052. Available at: https://doi.org/10.1103/physrevresearch.2.022052.
Ronetti, Flavio et al. (2020) ‘Magnetically confined bound states in Rashba systems’, Physical Review Research, 2(2), p. 022052. Available at: https://doi.org/10.1103/physrevresearch.2.022052.
Schulz, Ferdinand et al. (2020) ‘Majorana bound states in topological insulators with hidden Dirac points’, Physical Review Research, 2(3), p. 033215. Available at: https://doi.org/10.1103/physrevresearch.2.033215.
Schulz, Ferdinand et al. (2020) ‘Majorana bound states in topological insulators with hidden Dirac points’, Physical Review Research, 2(3), p. 033215. Available at: https://doi.org/10.1103/physrevresearch.2.033215.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2020) ‘Critical current for an insulating regime of an underdamped current-biased topological Josephson junction’, Physical Review Research, 2(3), p. 033448. Available at: https://doi.org/10.1103/physrevresearch.2.033448.
Svetogorov, Aleksandr E., Loss, Daniel and Klinovaja, Jelena (2020) ‘Critical current for an insulating regime of an underdamped current-biased topological Josephson junction’, Physical Review Research, 2(3), p. 033448. Available at: https://doi.org/10.1103/physrevresearch.2.033448.
Thakurathi, Manisha et al. (2020) ‘Interaction-driven Floquet engineering of topological superconductivity in Rashba nanowires’, Physical Review Research, 2(1), p. 013292. Available at: https://doi.org/10.1103/physrevresearch.2.013292.
Thakurathi, Manisha et al. (2020) ‘Interaction-driven Floquet engineering of topological superconductivity in Rashba nanowires’, Physical Review Research, 2(1), p. 013292. Available at: https://doi.org/10.1103/physrevresearch.2.013292.
Thakurathi, Manisha et al. (2020) ‘Transport signatures of bulk topological phases in double Rashba nanowires probed by spin-polarized STM’, Physical Review Research, 2(2), p. 023197. Available at: https://doi.org/10.1103/physrevresearch.2.023197.
Thakurathi, Manisha et al. (2020) ‘Transport signatures of bulk topological phases in double Rashba nanowires probed by spin-polarized STM’, Physical Review Research, 2(2), p. 023197. Available at: https://doi.org/10.1103/physrevresearch.2.023197.
Volpez, Yanick André (2020) Topological quantum phases in layered systems with Rashba spin-orbit interaction. . Translated by Loss Daniel. Dissertation. Universität Basel.
Volpez, Yanick André (2020) Topological quantum phases in layered systems with Rashba spin-orbit interaction. . Translated by Loss Daniel. Dissertation. Universität Basel.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2020) ‘Time-reversal invariant topological superconductivity in planar Josephson bijunction’, Physical Review Research, 2(2), p. 023415. Available at: https://doi.org/10.1103/physrevresearch.2.023415.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2020) ‘Time-reversal invariant topological superconductivity in planar Josephson bijunction’, Physical Review Research, 2(2), p. 023415. Available at: https://doi.org/10.1103/physrevresearch.2.023415.
Hsu, C.-H. et al. (2019) ‘Charge transport of a spin-orbit-coupled Luttinger liquid’, Physical Review B, 100(19). Available at: https://doi.org/10.1103/physrevb.100.195423.
Hsu, C.-H. et al. (2019) ‘Charge transport of a spin-orbit-coupled Luttinger liquid’, Physical Review B, 100(19). Available at: https://doi.org/10.1103/physrevb.100.195423.
Psaroudaki, C., Aseev, P. and Loss, D. (2019) ‘Quantum Brownian motion of a magnetic skyrmion’, Physical Review B, 100(13). Available at: https://doi.org/10.1103/physrevb.100.134404.
Psaroudaki, C., Aseev, P. and Loss, D. (2019) ‘Quantum Brownian motion of a magnetic skyrmion’, Physical Review B, 100(13). Available at: https://doi.org/10.1103/physrevb.100.134404.
Laubscher, K., Loss, D. and Wootton, J.R. (2019) ‘Universal quantum computation in the surface code using non-Abelian islands’, Physical Review A, 100(1). Available at: https://doi.org/10.1103/physreva.100.012338.
Laubscher, K., Loss, D. and Wootton, J.R. (2019) ‘Universal quantum computation in the surface code using non-Abelian islands’, Physical Review A, 100(1). Available at: https://doi.org/10.1103/physreva.100.012338.
Sato, Y. et al. (2019) ‘Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires’, Physical Review B, 99(15). Available at: https://doi.org/10.1103/physrevb.99.155304.
Sato, Y. et al. (2019) ‘Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires’, Physical Review B, 99(15). Available at: https://doi.org/10.1103/physrevb.99.155304.
Otsuka, T. et al. (2019) ‘Difference in charge and spin dynamics in a quantum dot-lead coupled system’, Physical Review B, 99(8). Available at: https://doi.org/10.1103/physrevb.99.085402.
Otsuka, T. et al. (2019) ‘Difference in charge and spin dynamics in a quantum dot-lead coupled system’, Physical Review B, 99(8). Available at: https://doi.org/10.1103/physrevb.99.085402.
Camenzind, Leon C. et al. (2019) ‘Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields’, Physical Review Letters, 122(20), p. 207701. Available at: https://doi.org/10.1103/physrevlett.122.207701.
Camenzind, Leon C. et al. (2019) ‘Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields’, Physical Review Letters, 122(20), p. 207701. Available at: https://doi.org/10.1103/physrevlett.122.207701.
Díaz, Sebastián A., Klinovaja, Jelena and Loss, Daniel (2019) ‘Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals’, Physical Review Letters, 122(18), p. 187203. Available at: https://doi.org/10.1103/physrevlett.122.187203.
Díaz, Sebastián A., Klinovaja, Jelena and Loss, Daniel (2019) ‘Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals’, Physical Review Letters, 122(18), p. 187203. Available at: https://doi.org/10.1103/physrevlett.122.187203.
Kim, Se Kwon et al. (2019) ‘Tunable Magnonic Thermal Hall Effect in Skyrmion Crystal Phases of Ferrimagnets’, Physical review letters, 122(5), p. 057204. Available at: https://doi.org/10.1103/physrevlett.122.057204.
Kim, Se Kwon et al. (2019) ‘Tunable Magnonic Thermal Hall Effect in Skyrmion Crystal Phases of Ferrimagnets’, Physical review letters, 122(5), p. 057204. Available at: https://doi.org/10.1103/physrevlett.122.057204.
Nakajima, Takashi et al. (2019) ‘Quantum non-demolition measurement of an electron spin qubit’, Nature nanotechnology, 14(6), pp. 555–560. Available at: https://doi.org/10.1038/s41565-019-0426-x.
Nakajima, Takashi et al. (2019) ‘Quantum non-demolition measurement of an electron spin qubit’, Nature nanotechnology, 14(6), pp. 555–560. Available at: https://doi.org/10.1038/s41565-019-0426-x.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2019) ‘Second-Order Topological Superconductivity in π-Junction Rashba Layers’, Physical Review Letters, 122(12), p. 126402. Available at: https://doi.org/10.1103/physrevlett.122.126402.
Volpez, Yanick, Loss, Daniel and Klinovaja, Jelena (2019) ‘Second-Order Topological Superconductivity in π-Junction Rashba Layers’, Physical Review Letters, 122(12), p. 126402. Available at: https://doi.org/10.1103/physrevlett.122.126402.
Noiri, A. et al. (2018) ‘A fast quantum interface between different spin qubit encodings’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-07522-1.
Noiri, A. et al. (2018) ‘A fast quantum interface between different spin qubit encodings’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-07522-1.
Loss, D.S. (2018) ‘Missionaries, the monarchy, and the emergence of Anglican pluralism in the 1960s and 1970s’, Journal of British Studies, 57(3), pp. 543–563. Available at: https://doi.org/10.1017/jbr.2018.83.
Loss, D.S. (2018) ‘Missionaries, the monarchy, and the emergence of Anglican pluralism in the 1960s and 1970s’, Journal of British Studies, 57(3), pp. 543–563. Available at: https://doi.org/10.1017/jbr.2018.83.
Aseev, Pavel P., Klinovaja, Jelena and Loss, Daniel (2018) ‘Lifetime of Majorana qubits in Rashba nanowires with nonuniform chemical potential’, Physical review B: Condensed matter and materials physics, 98(15), p. 155414. Available at: https://doi.org/10.1103/physrevb.98.155414.
Aseev, Pavel P., Klinovaja, Jelena and Loss, Daniel (2018) ‘Lifetime of Majorana qubits in Rashba nanowires with nonuniform chemical potential’, Physical review B: Condensed matter and materials physics, 98(15), p. 155414. Available at: https://doi.org/10.1103/physrevb.98.155414.
Aseev, Pavel P., Loss, Daniel and Klinovaja, Jelena (2018) ‘Conductance of fractional Luttinger liquids at finite temperatures’, Physical review B: Condensed matter and materials physics, 98(4), p. 045416. Available at: https://doi.org/10.1103/physrevb.98.045416.
Aseev, Pavel P., Loss, Daniel and Klinovaja, Jelena (2018) ‘Conductance of fractional Luttinger liquids at finite temperatures’, Physical review B: Condensed matter and materials physics, 98(4), p. 045416. Available at: https://doi.org/10.1103/physrevb.98.045416.
Camenzind, Leon C. et al. (2018) ‘Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot’, Nature communications, 9(1), p. 3454. Available at: https://doi.org/10.1038/s41467-018-05879-x.
Camenzind, Leon C. et al. (2018) ‘Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot’, Nature communications, 9(1), p. 3454. Available at: https://doi.org/10.1038/s41467-018-05879-x.
Chevallier, Denis et al. (2018) ‘Topological phase detection in Rashba nanowires with a quantum dot’, Physical Review B, 97(4), p. 045404. Available at: https://doi.org/10.1103/physrevb.97.045404.
Chevallier, Denis et al. (2018) ‘Topological phase detection in Rashba nanowires with a quantum dot’, Physical Review B, 97(4), p. 045404. Available at: https://doi.org/10.1103/physrevb.97.045404.