Experimentalphysik Nanoelektronik (Schönenberger)
Publications
348 found
Show per page
Karnatak, Paritosh and Schönenberger, Christian (2025) ‘‘Unconventional’ superconductivity probed in twisted graphene’, Nature. 05.02.2025, 638(8049), pp. 44–45. Available at: https://doi.org/10.1038/d41586-025-00057-8.
Karnatak, Paritosh and Schönenberger, Christian (2025) ‘‘Unconventional’ superconductivity probed in twisted graphene’, Nature. 05.02.2025, 638(8049), pp. 44–45. Available at: https://doi.org/10.1038/d41586-025-00057-8.
Weldeyesus, H. (2025) Momentum resolved tunneling in one-dimensional systems.
Weldeyesus, H. (2025) Momentum resolved tunneling in one-dimensional systems.
Ungerer, J.H. et al. (2024) ‘Strong coupling between a microwave photon and a singlet-triplet qubit’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-45235-w.
Ungerer, J.H. et al. (2024) ‘Strong coupling between a microwave photon and a singlet-triplet qubit’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-45235-w.
Ranni, Antti et al. (2024) ‘Decoherence in a crystal-phase defined double quantum dot charge qubit strongly coupled to a high-impedance resonator’, Physical Review Research. 14.11.2024, 6(4). Available at: https://doi.org/10.1103/physrevresearch.6.043134.
Ranni, Antti et al. (2024) ‘Decoherence in a crystal-phase defined double quantum dot charge qubit strongly coupled to a high-impedance resonator’, Physical Review Research. 14.11.2024, 6(4). Available at: https://doi.org/10.1103/physrevresearch.6.043134.
Cheung, L.Y. et al. (2024) ‘Photon-mediated long-range coupling of two Andreev pair qubits’, Nature Physics, 20, pp. 1793–1797. Available at: https://doi.org/10.1038/s41567-024-02630-w.
Cheung, L.Y. et al. (2024) ‘Photon-mediated long-range coupling of two Andreev pair qubits’, Nature Physics, 20, pp. 1793–1797. Available at: https://doi.org/10.1038/s41567-024-02630-w.
Chakraborti, H. et al. (2024) ‘Electron wave and quantum optics in graphene’, Journal of Physics Condensed Matter, 36(39). Available at: https://doi.org/10.1088/1361-648X/ad46bc.
Chakraborti, H. et al. (2024) ‘Electron wave and quantum optics in graphene’, Journal of Physics Condensed Matter, 36(39). Available at: https://doi.org/10.1088/1361-648X/ad46bc.
Zheng, Han et al. (2024) ‘Coherent Control of a Few-Channel Hole Type Gatemon Qubit’, Nano Letters, 24, pp. 7173–7179. Available at: https://doi.org/10.1021/acs.nanolett.4c00770.
Zheng, Han et al. (2024) ‘Coherent Control of a Few-Channel Hole Type Gatemon Qubit’, Nano Letters, 24, pp. 7173–7179. Available at: https://doi.org/10.1021/acs.nanolett.4c00770.
Ciaccia, C. et al. (2024) ‘Charge-4e supercurrent in a two-dimensional InAs-Al superconductor-semiconductor heterostructure’, Communications Physics. 22.01.2024, 7. Available at: https://doi.org/10.1038/s42005-024-01531-x.
Ciaccia, C. et al. (2024) ‘Charge-4e supercurrent in a two-dimensional InAs-Al superconductor-semiconductor heterostructure’, Communications Physics. 22.01.2024, 7. Available at: https://doi.org/10.1038/s42005-024-01531-x.
Cheung, L.Y. (2024) Semiconducting nanowire-based Josephson junctions for qubits.
Cheung, L.Y. (2024) Semiconducting nanowire-based Josephson junctions for qubits.
Ciaccia, C. (2024) Superconducting hybrid devices in proximitized InAs two-dimensional electron gases.
Ciaccia, C. (2024) Superconducting hybrid devices in proximitized InAs two-dimensional electron gases.
Faist, O. (2024) Andreev bound states in semiconducting double nanowires
.
Faist, O. (2024) Andreev bound states in semiconducting double nanowires
.
Mingazheva, Z. (2024) Exploring bound states of NbSe₂ van der Waals superconductor probed by tunneling spectroscopy.
Mingazheva, Z. (2024) Exploring bound states of NbSe₂ van der Waals superconductor probed by tunneling spectroscopy.
Pally, A.P. (2024) Crystal-phase defined nanowire quantum dots as a platform for qubits.
Pally, A.P. (2024) Crystal-phase defined nanowire quantum dots as a platform for qubits.
Varghese, B.S. (2024) Strain engineering graphene and bilayer graphene transport properties.
Varghese, B.S. (2024) Strain engineering graphene and bilayer graphene transport properties.
Zheng, H. (2024) Superconducting quantum devices with germanium nanowires.
Zheng, H. (2024) Superconducting quantum devices with germanium nanowires.
Jünger, C. et al. (2023) ‘Intermediate states in Andreev bound state fusion’, Communications Physics, 6(1). Available at: https://doi.org/10.1038/s42005-023-01273-2.
Jünger, C. et al. (2023) ‘Intermediate states in Andreev bound state fusion’, Communications Physics, 6(1). Available at: https://doi.org/10.1038/s42005-023-01273-2.
Ungerer, J.H. et al. (2023) ‘Performance of high impedance resonators in dirty dielectric environments’, EPJ Quantum Technology, 10. Available at: https://doi.org/10.1140/epjqt/s40507-023-00199-6.
Ungerer, J.H. et al. (2023) ‘Performance of high impedance resonators in dirty dielectric environments’, EPJ Quantum Technology, 10. Available at: https://doi.org/10.1140/epjqt/s40507-023-00199-6.
Huang, Wenhao et al. (2023) ‘Edge Contacts to Atomically Precise Graphene Nanoribbons’, ACS Nano, 17(19), pp. 18706–18715. Available at: https://doi.org/10.1021/acsnano.3c00782.
Huang, Wenhao et al. (2023) ‘Edge Contacts to Atomically Precise Graphene Nanoribbons’, ACS Nano, 17(19), pp. 18706–18715. Available at: https://doi.org/10.1021/acsnano.3c00782.
Haller, R. et al. (2023) ‘ac Josephson effect in a gate-tunable Formula Presented nanowire superconducting weak link’, Physical Review B, 108(9). Available at: https://doi.org/10.1103/PhysRevB.108.094514.
Haller, R. et al. (2023) ‘ac Josephson effect in a gate-tunable Formula Presented nanowire superconducting weak link’, Physical Review B, 108(9). Available at: https://doi.org/10.1103/PhysRevB.108.094514.
Ungerer, J.H. et al. (2023) ‘Charge-sensing of a Ge/Si core/shell nanowire double quantum dot using a high-impedance superconducting resonator’, Materials for Quantum Technology, 3. Available at: https://doi.org/10.1088/2633-4356/ace2a6.
Ungerer, J.H. et al. (2023) ‘Charge-sensing of a Ge/Si core/shell nanowire double quantum dot using a high-impedance superconducting resonator’, Materials for Quantum Technology, 3. Available at: https://doi.org/10.1088/2633-4356/ace2a6.
Ciaccia, C. et al. (2023) ‘Gate-tunable Josephson diode in proximitized InAs supercurrent interferometers’, Physical Review Research, 5(3). Available at: https://doi.org/10.1103/PhysRevResearch.5.033131.
Ciaccia, C. et al. (2023) ‘Gate-tunable Josephson diode in proximitized InAs supercurrent interferometers’, Physical Review Research, 5(3). Available at: https://doi.org/10.1103/PhysRevResearch.5.033131.
Endres, Martin et al. (2023) ‘Current-Phase Relation of a WTe 2 Josephson Junction’, Nano Letters, 23, pp. 4654–4659. Available at: https://doi.org/10.1021/acs.nanolett.3c01416.
Endres, Martin et al. (2023) ‘Current-Phase Relation of a WTe 2 Josephson Junction’, Nano Letters, 23, pp. 4654–4659. Available at: https://doi.org/10.1021/acs.nanolett.3c01416.
Karnatak, Paritosh et al. (2023) ‘Origin of Subgap States in Normal-Insulator-Superconductor van der Waals Heterostructures’, Nano Letters. 16.03.2023, 23(7), pp. 2454–2459. Available at: https://doi.org/10.1021/acs.nanolett.2c02777.
Karnatak, Paritosh et al. (2023) ‘Origin of Subgap States in Normal-Insulator-Superconductor van der Waals Heterostructures’, Nano Letters. 16.03.2023, 23(7), pp. 2454–2459. Available at: https://doi.org/10.1021/acs.nanolett.2c02777.
Correa Sampaio, I. (2023) Quantum transport phenomena in 2D semiconductor-superconductor hybrid structures.
Correa Sampaio, I. (2023) Quantum transport phenomena in 2D semiconductor-superconductor hybrid structures.
Stramaglia, F. (2023) Controlling the correlated state of matter at oxide interfaces.
Stramaglia, F. (2023) Controlling the correlated state of matter at oxide interfaces.
Bordoloi, A. et al. (2022) ‘Spin Cross-Correlation Experiments in an Electron Entangler’, Research Square [Preprint]. Research Square Company (Research Square). Available at: https://doi.org/10.21203/rs.3.rs-1452771/v1.
Bordoloi, A. et al. (2022) ‘Spin Cross-Correlation Experiments in an Electron Entangler’, Research Square [Preprint]. Research Square Company (Research Square). Available at: https://doi.org/10.21203/rs.3.rs-1452771/v1.
An, Sung Jin et al. (2022) ‘Impact of the gate geometry on adiabatic charge pumping in InAs double quantum dots’, Nanoscale Advances, 4(18), pp. 3816–3823. Available at: https://doi.org/10.1039/d2na00372d.
An, Sung Jin et al. (2022) ‘Impact of the gate geometry on adiabatic charge pumping in InAs double quantum dots’, Nanoscale Advances, 4(18), pp. 3816–3823. Available at: https://doi.org/10.1039/d2na00372d.
Bordoloi, Arunav et al. (2022) ‘Spin cross-correlation experiments in an electron entangler’, Nature, 612(7940), pp. 454–458. Available at: https://doi.org/10.1038/s41586-022-05436-z.
Bordoloi, Arunav et al. (2022) ‘Spin cross-correlation experiments in an electron entangler’, Nature, 612(7940), pp. 454–458. Available at: https://doi.org/10.1038/s41586-022-05436-z.
Endres Martin Alexander (2022) WTe2: Candidate for topological superconductivity. Dissertation. Universität Basel.
Endres Martin Alexander (2022) WTe2: Candidate for topological superconductivity. Dissertation. Universität Basel.
Endres, M.A. (2022) WTe$_2$: Candidate for topological superconductivity.
Endres, M.A. (2022) WTe$_2$: Candidate for topological superconductivity.
Endres, Martin et al. (2022) ‘Transparent Josephson junctions in higher-order topological insulator WTe₂ via Pd diffusion’, Physical Review Materials, 6(8), p. L081201. Available at: https://doi.org/10.1103/physrevmaterials.6.l081201.
Endres, Martin et al. (2022) ‘Transparent Josephson junctions in higher-order topological insulator WTe₂ via Pd diffusion’, Physical Review Materials, 6(8), p. L081201. Available at: https://doi.org/10.1103/physrevmaterials.6.l081201.
Haller, R. et al. (2022) ‘Phase-dependent microwave response of a graphene Josephson junction’, Physical Review Research, 4(1), p. 013198. Available at: https://doi.org/10.1103/physrevresearch.4.013198.
Haller, R. et al. (2022) ‘Phase-dependent microwave response of a graphene Josephson junction’, Physical Review Research, 4(1), p. 013198. Available at: https://doi.org/10.1103/physrevresearch.4.013198.
Ramezani, Mehdi (2022) Superconducting contacts and quantum interference phenomena in monolayer semiconductor devices. Dissertation. Universität Basel.
Ramezani, Mehdi (2022) Superconducting contacts and quantum interference phenomena in monolayer semiconductor devices. Dissertation. Universität Basel.
Ramezani, M. (2022) Superconducting contacts and quantum interference phenomena
in monolayer semiconductor devices.
Ramezani, M. (2022) Superconducting contacts and quantum interference phenomena
in monolayer semiconductor devices.
Scherübl, Zoltán et al. (2022) ‘From Cooper pair splitting to nonlocal spectroscopy of a Shiba state’, Physical Review Research, 4(2), p. 023143. Available at: https://doi.org/10.1103/physrevresearch.4.023143.
Scherübl, Zoltán et al. (2022) ‘From Cooper pair splitting to nonlocal spectroscopy of a Shiba state’, Physical Review Research, 4(2), p. 023143. Available at: https://doi.org/10.1103/physrevresearch.4.023143.
Schönenberger, Christian (2022) ‘2D materials shrink superconducting qubits’, Nature Materials, 21(4), pp. 381–382. Available at: https://doi.org/10.1038/s41563-022-01220-6.
Schönenberger, Christian (2022) ‘2D materials shrink superconducting qubits’, Nature Materials, 21(4), pp. 381–382. Available at: https://doi.org/10.1038/s41563-022-01220-6.
Ungerer, Jann Hinnerk (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots. Dissertation. Universität Basel.
Ungerer, Jann Hinnerk (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots. Dissertation. Universität Basel.
Ungerer, J.H. (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots.
Ungerer, J.H. (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots.
Bordoloi, A. (2021) Spin Projection and Correlation Experiments in Nanoelectronic Devices.
Bordoloi, A. (2021) Spin Projection and Correlation Experiments in Nanoelectronic Devices.
Fülöp, Balint et al. (2021) ‘New method of transport measurements on van der Waals heterostructures under pressure’, Journal of Applied Physics, 130(6), p. 064303. Available at: https://doi.org/10.1063/5.0058583.
Fülöp, Balint et al. (2021) ‘New method of transport measurements on van der Waals heterostructures under pressure’, Journal of Applied Physics, 130(6), p. 064303. Available at: https://doi.org/10.1063/5.0058583.
Fülöp, Balint et al. (2021) ‘Boosting proximity spin orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure’, npj 2D Materials and Applications, 5(1), p. 82. Available at: https://doi.org/10.1038/s41699-021-00262-9.
Fülöp, Balint et al. (2021) ‘Boosting proximity spin orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure’, npj 2D Materials and Applications, 5(1), p. 82. Available at: https://doi.org/10.1038/s41699-021-00262-9.
Gubser, L. (2021) Phonon detection by double quantum dots.
Gubser, L. (2021) Phonon detection by double quantum dots.
Haller, R. (2021) Probing the microwave response of novel Josephson elements. Dissertation. Universität Basel. Available at: https://nanoelectronics.unibas.ch/wordpress/wp-content/uploads/theses/2021_Thesis_Roy_Haller.pdf.
Haller, R. (2021) Probing the microwave response of novel Josephson elements. Dissertation. Universität Basel. Available at: https://nanoelectronics.unibas.ch/wordpress/wp-content/uploads/theses/2021_Thesis_Roy_Haller.pdf.
Haller, Roy (2021) Probing the microwave response of novel Josephson elements. Dissertation. Universität Basel.
Haller, Roy (2021) Probing the microwave response of novel Josephson elements. Dissertation. Universität Basel.
Haller, R. (2021) Probing the microwave response of novel Josephson elements.
Haller, R. (2021) Probing the microwave response of novel Josephson elements.
Indolese, D. (2021) Engineered graphene Josephson junctions probed by quantum interference effects.
Indolese, D. (2021) Engineered graphene Josephson junctions probed by quantum interference effects.
Kononov, Artem et al. (2021) ‘Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact’, Journal of Applied Physics, 129(11), p. 113903. Available at: https://doi.org/10.1063/5.0021350.
Kononov, Artem et al. (2021) ‘Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact’, Journal of Applied Physics, 129(11), p. 113903. Available at: https://doi.org/10.1063/5.0021350.
Mergenthaler, Matthias et al. (2021) ‘Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits’, Physical Review Applied, 15(6), p. 064050. Available at: https://doi.org/10.1103/physrevapplied.15.064050.
Mergenthaler, Matthias et al. (2021) ‘Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits’, Physical Review Applied, 15(6), p. 064050. Available at: https://doi.org/10.1103/physrevapplied.15.064050.
Mergenthaler, M. et al. (2021) ‘Radio-frequency characterization of a supercurrent transistor made from a carbon nanotube’, Materials for Quantum Technology, 1, p. 035003. Available at: https://doi.org/10.1088/2633-4356/ac1d57.
Mergenthaler, M. et al. (2021) ‘Radio-frequency characterization of a supercurrent transistor made from a carbon nanotube’, Materials for Quantum Technology, 1, p. 035003. Available at: https://doi.org/10.1088/2633-4356/ac1d57.
Perrenoud, M. et al. (2021) ‘Operation of parallel SNSPDs at high detection rate’, Superconductor science & technology, 34(2), p. 024002. Available at: https://doi.org/10.1088/1361-6668/abc8d0.
Perrenoud, M. et al. (2021) ‘Operation of parallel SNSPDs at high detection rate’, Superconductor science & technology, 34(2), p. 024002. Available at: https://doi.org/10.1088/1361-6668/abc8d0.
Ramezani, Mehdi et al. (2021) ‘Superconducting contacts to a monolayer semiconductor’, Nano Letters, 21(13), pp. 5614–5619. Available at: https://doi.org/10.1021/acs.nanolett.1c00615.
Ramezani, Mehdi et al. (2021) ‘Superconducting contacts to a monolayer semiconductor’, Nano Letters, 21(13), pp. 5614–5619. Available at: https://doi.org/10.1021/acs.nanolett.1c00615.
Sifrig, Dominik et al. (2021) ‘Reducing the hydrogen content in liquid helium’, Cryogenics, 114, p. 103239. Available at: https://doi.org/10.1016/j.cryogenics.2020.103239.
Sifrig, Dominik et al. (2021) ‘Reducing the hydrogen content in liquid helium’, Cryogenics, 114, p. 103239. Available at: https://doi.org/10.1016/j.cryogenics.2020.103239.
Synhaivska, O. (2021) Sensing metal ions-peptide and protein interfacial interactions.
Synhaivska, O. (2021) Sensing metal ions-peptide and protein interfacial interactions.
Thomas, F. S. et al. (2021) ‘Spectroscopy of the local density-of-states in nanowires using integrated quantum dots’, Physical Review B, 104(11), p. 115415. Available at: https://doi.org/10.1103/physrevb.104.115415.
Thomas, F. S. et al. (2021) ‘Spectroscopy of the local density-of-states in nanowires using integrated quantum dots’, Physical Review B, 104(11), p. 115415. Available at: https://doi.org/10.1103/physrevb.104.115415.
Wang, L. et al. (2021) ‘Global strain-induced scalar potential in graphene devices’, Communications physics, 4(1), p. 147. Available at: https://doi.org/10.1038/s42005-021-00651-y.
Wang, L. et al. (2021) ‘Global strain-induced scalar potential in graphene devices’, Communications physics, 4(1), p. 147. Available at: https://doi.org/10.1038/s42005-021-00651-y.
Zihlmann, S. et al. (2020) ‘Out-of-plane corrugations in graphene based van der Waals heterostructures’, Physical Review B, 102(19). Available at: https://doi.org/10.1103/PhysRevB.102.195404.
Zihlmann, S. et al. (2020) ‘Out-of-plane corrugations in graphene based van der Waals heterostructures’, Physical Review B, 102(19). Available at: https://doi.org/10.1103/PhysRevB.102.195404.
Bayogan, Janice Ruth et al. (2020) ‘Controllable p-n junctions in three-dimensional Dirac semimetal Cd3As2 nanowires’, Nanotechnology, 31(20), p. 205001. Available at: https://doi.org/10.1088/1361-6528/ab6dfe.
Bayogan, Janice Ruth et al. (2020) ‘Controllable p-n junctions in three-dimensional Dirac semimetal Cd3As2 nanowires’, Nanotechnology, 31(20), p. 205001. Available at: https://doi.org/10.1088/1361-6528/ab6dfe.
Bordoloi, A. (2020) Spin Projection and Correlation Experiments in Nanoelectronic Devices. Dissertation. Universität Basel.
Bordoloi, A. (2020) Spin Projection and Correlation Experiments in Nanoelectronic Devices. Dissertation. Universität Basel.
Bordoloi, Arunav (2020) Spin projection and correlation experiments in nanoelectronic devices. Dissertation. Universität Basel.
Bordoloi, Arunav (2020) Spin projection and correlation experiments in nanoelectronic devices. Dissertation. Universität Basel.
Bordoloi, Arunav et al. (2020) ‘A double quantum dot spin valve’, Communications Physics, 3(1), p. 135. Available at: https://doi.org/10.1038/s42005-020-00405-2.
Bordoloi, Arunav et al. (2020) ‘A double quantum dot spin valve’, Communications Physics, 3(1), p. 135. Available at: https://doi.org/10.1038/s42005-020-00405-2.
Indolese, D. (2020) Engineered Graphene Josephson Junctions Probed by Quantum Interference Effects. Dissertation. Universität Basel.
Indolese, D. (2020) Engineered Graphene Josephson Junctions Probed by Quantum Interference Effects. Dissertation. Universität Basel.
Indolese, David (2020) Engineered graphene Josephson junctions probed by quantum interference effects. Dissertation. Universität Basel.
Indolese, David (2020) Engineered graphene Josephson junctions probed by quantum interference effects. Dissertation. Universität Basel.
Indolese, David I. et al. (2020) ‘Compact SQUID realized in a double layer graphene heterostructure’, Nano Letters, 20(10), pp. 7129–7135. Available at: https://doi.org/10.1021/acs.nanolett.0c02412.
Indolese, David I. et al. (2020) ‘Compact SQUID realized in a double layer graphene heterostructure’, Nano Letters, 20(10), pp. 7129–7135. Available at: https://doi.org/10.1021/acs.nanolett.0c02412.
Juenger, Christian et al. (2020) ‘Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires’, Physical Review Letters, 125(1), p. 017701. Available at: https://doi.org/10.1103/physrevlett.125.017701.
Juenger, Christian et al. (2020) ‘Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires’, Physical Review Letters, 125(1), p. 017701. Available at: https://doi.org/10.1103/physrevlett.125.017701.
Kononov, Artem et al. (2020) ‘One-Dimensional Edge Transport in Few-Layer WTe2’, Nano Letters, 20(6), pp. 4228–4233. Available at: https://doi.org/10.1021/acs.nanolett.0c00658.
Kononov, Artem et al. (2020) ‘One-Dimensional Edge Transport in Few-Layer WTe2’, Nano Letters, 20(6), pp. 4228–4233. Available at: https://doi.org/10.1021/acs.nanolett.0c00658.
Scherübl, Zoltán et al. (2020) ‘Large spatial extension of the zero-energy Yu-Shiba-Rusinov state in a magnetic field’, Nature Communications, 11(1), p. 1834. Available at: https://doi.org/10.1038/s41467-020-15322-9.
Scherübl, Zoltán et al. (2020) ‘Large spatial extension of the zero-energy Yu-Shiba-Rusinov state in a magnetic field’, Nature Communications, 11(1), p. 1834. Available at: https://doi.org/10.1038/s41467-020-15322-9.
Thomas, Frederick (2020) Deterministic tunnel barriers in 1D quantum electronic systems. Dissertation. Universität Basel.
Thomas, Frederick (2020) Deterministic tunnel barriers in 1D quantum electronic systems. Dissertation. Universität Basel.
Thomas, F. (2020) Deterministic tunnel barriers in 1D quantum electronic systems.
Thomas, F. (2020) Deterministic tunnel barriers in 1D quantum electronic systems.
Thomas, Frederick S. et al. (2020) ‘Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots’, Nanotechnology, 31(13), p. 135003. Available at: https://doi.org/10.1088/1361-6528/ab5ce6.
Thomas, Frederick S. et al. (2020) ‘Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots’, Nanotechnology, 31(13), p. 135003. Available at: https://doi.org/10.1088/1361-6528/ab5ce6.
Thomas, F. S. (2020) Deterministic Tunnel Barriers in One-Dimensional Quantum Electronic Systems. Dissertation. Universität Basel.
Thomas, F. S. (2020) Deterministic Tunnel Barriers in One-Dimensional Quantum Electronic Systems. Dissertation. Universität Basel.
Wang, L. (2020) Quantum Transport Experiments in Strain-Engineered Graphene. Dissertation. Universität Basel.
Wang, L. (2020) Quantum Transport Experiments in Strain-Engineered Graphene. Dissertation. Universität Basel.
Wang, Lujun (2020) Quantum transport experiments in strain-engineered graphene. Dissertation. Universität Basel.
Wang, Lujun (2020) Quantum transport experiments in strain-engineered graphene. Dissertation. Universität Basel.
Wang, Lujun et al. (2020) ‘Mobility Enhancement in Graphene by in situ Reduction of Random Strain Fluctuations’, Physical Review Letters, 124(15), p. 157701. Available at: https://doi.org/10.1103/physrevlett.124.157701.
Wang, Lujun et al. (2020) ‘Mobility Enhancement in Graphene by in situ Reduction of Random Strain Fluctuations’, Physical Review Letters, 124(15), p. 157701. Available at: https://doi.org/10.1103/physrevlett.124.157701.
Jünger, Christian (2019) Transport Spectroscopy of Semiconductor Superconductor Nanowire Hybrid Devices. Dissertation. Universität Basel.
Jünger, Christian (2019) Transport Spectroscopy of Semiconductor Superconductor Nanowire Hybrid Devices. Dissertation. Universität Basel.
Junger, Christian et al. (2019) ‘Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots’, Communications physics, 2, p. 76. Available at: https://doi.org/10.1038/s42005-019-0162-4.
Junger, Christian et al. (2019) ‘Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots’, Communications physics, 2, p. 76. Available at: https://doi.org/10.1038/s42005-019-0162-4.
Jünger, Christian Helmut (2019) Transport Spectroscopy of Semiconductor Superconductor Nanowire Hybrid Devices. Dissertation. Universität Basel.
Jünger, Christian Helmut (2019) Transport Spectroscopy of Semiconductor Superconductor Nanowire Hybrid Devices. Dissertation. Universität Basel.
Jünger, C.H. (2019) Transport spectroscopy of semiconductor superconductor nanowire hybrid devices. Available at: https://doi.org/10.5451/unibas-007214844.
Jünger, C.H. (2019) Transport spectroscopy of semiconductor superconductor nanowire hybrid devices. Available at: https://doi.org/10.5451/unibas-007214844.
Jung, Minkyung et al. (2019) ‘GHz nanomechanical resonator in an ultraclean suspended graphene p-n junction’, Nanoscale, 11(10), pp. 4355–4361. Available at: https://doi.org/10.1039/c8nr09963d.
Jung, Minkyung et al. (2019) ‘GHz nanomechanical resonator in an ultraclean suspended graphene p-n junction’, Nanoscale, 11(10), pp. 4355–4361. Available at: https://doi.org/10.1039/c8nr09963d.
Vladyka, Anton et al. (2019) ‘In-situ formation of one-dimensional coordination polymers in molecular junctions’, Nature Communications, 10(1), p. 262. Available at: https://doi.org/10.1038/s41467-018-08025-9.
Vladyka, Anton et al. (2019) ‘In-situ formation of one-dimensional coordination polymers in molecular junctions’, Nature Communications, 10(1), p. 262. Available at: https://doi.org/10.1038/s41467-018-08025-9.
Wang, L. (2019) Quantum transport experiments in strain-engineered graphene. Available at: https://doi.org/10.5451/unibas-007215249.
Wang, L. (2019) Quantum transport experiments in strain-engineered graphene. Available at: https://doi.org/10.5451/unibas-007215249.
Wang, Lujun et al. (2019) ‘In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices’, Nano Letters, 19(6), pp. 4097–4102. Available at: https://doi.org/10.1021/acs.nanolett.9b01491.
Wang, Lujun et al. (2019) ‘In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices’, Nano Letters, 19(6), pp. 4097–4102. Available at: https://doi.org/10.1021/acs.nanolett.9b01491.
Wang, Lujun et al. (2019) ‘New Generation of Moire Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures’, Nano Letters, 19(4), pp. 2371–2376. Available at: https://doi.org/10.1021/acs.nanolett.8b05061.
Wang, Lujun et al. (2019) ‘New Generation of Moire Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures’, Nano Letters, 19(4), pp. 2371–2376. Available at: https://doi.org/10.1021/acs.nanolett.8b05061.
Zihlmann, Simon et al. (2019) ‘Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/Gr/hBN heterostructures’, Physical review B, 97(7). Available at: https://doi.org/10.1103/physrevb.97.075434.
Zihlmann, Simon et al. (2019) ‘Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/Gr/hBN heterostructures’, Physical review B, 97(7). Available at: https://doi.org/10.1103/physrevb.97.075434.
Zihlmann, Simon et al. (2019) ‘Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy’, Physical Review B, 99(7), p. 075419. Available at: https://doi.org/10.1103/physrevb.99.075419.
Zihlmann, Simon et al. (2019) ‘Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy’, Physical Review B, 99(7), p. 075419. Available at: https://doi.org/10.1103/physrevb.99.075419.
Baba, S. et al. (2018) ‘Cooper-pair splitting in two parallel InAs nanowires’, New journal of physics, 20. Available at: https://doi.org/10.1088/1367-2630/aac74e.
Baba, S. et al. (2018) ‘Cooper-pair splitting in two parallel InAs nanowires’, New journal of physics, 20. Available at: https://doi.org/10.1088/1367-2630/aac74e.
Bouvron, Samuel et al. (2018) ‘Charge transport in a single molecule transistor probed by scanning tunneling microscopy’, Nanoscale, 10(3), pp. 1487–1493. Available at: https://doi.org/10.1039/c7nr06860c.
Bouvron, Samuel et al. (2018) ‘Charge transport in a single molecule transistor probed by scanning tunneling microscopy’, Nanoscale, 10(3), pp. 1487–1493. Available at: https://doi.org/10.1039/c7nr06860c.
Caloz, Misael et al. (2018) ‘High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors’, Applied Physics Letters, 112(6), p. 061103. Available at: https://doi.org/10.1063/1.5010102.
Caloz, Misael et al. (2018) ‘High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors’, Applied Physics Letters, 112(6), p. 061103. Available at: https://doi.org/10.1063/1.5010102.
Gurram, M. et al. (2018) ‘Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures’, Physical Review B, 97(4), p. 045411. Available at: https://doi.org/10.1103/physrevb.97.045411.
Gurram, M. et al. (2018) ‘Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures’, Physical Review B, 97(4), p. 045411. Available at: https://doi.org/10.1103/physrevb.97.045411.
Harabula, M.-C. (2018) Lumped impedance matchers and GHz noise investigation of quantum dots. Available at: https://doi.org/10.5451/unibas-007095003.
Harabula, M.-C. (2018) Lumped impedance matchers and GHz noise investigation of quantum dots. Available at: https://doi.org/10.5451/unibas-007095003.
Harabula, Mihai-Cezar et al. (2018) ‘Blocking-state influence on shot noise and conductance in quantum dots’, Physical Review B, 97(11). Available at: https://doi.org/10.1103/physrevb.97.115403.
Harabula, Mihai-Cezar et al. (2018) ‘Blocking-state influence on shot noise and conductance in quantum dots’, Physical Review B, 97(11). Available at: https://doi.org/10.1103/physrevb.97.115403.
Indolese, David et al. (2018) ‘Wideband and On-Chip Excitation for Dynamical Spin Injection into Graphene’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044053.
Indolese, David et al. (2018) ‘Wideband and On-Chip Excitation for Dynamical Spin Injection into Graphene’, Physical review applied, 10(4). Available at: https://doi.org/10.1103/physrevapplied.10.044053.
Indolese, David et al. (2018) ‘Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice’, Physical review letters, 121(13), p. 137701. Available at: https://doi.org/10.1103/physrevlett.121.137701.
Indolese, David et al. (2018) ‘Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice’, Physical review letters, 121(13), p. 137701. Available at: https://doi.org/10.1103/physrevlett.121.137701.
Makk, Péter et al. (2018) ‘Coexistence of classical snake states and Aharonov-Bohm oscillations along graphene p − n junctions’, Physical Review B, 98(3). Available at: https://doi.org/10.1103/physrevb.98.035413.
Makk, Péter et al. (2018) ‘Coexistence of classical snake states and Aharonov-Bohm oscillations along graphene p − n junctions’, Physical Review B, 98(3). Available at: https://doi.org/10.1103/physrevb.98.035413.
Mihai-Cezar Harabula (2018) Lumped Impedance Matchers and GHz Noise Investigation of Quantum Dots. Dissertation. Universität Basel. Available at: https://nanoelectronics.unibas.ch/wordpress/wp-content/uploads/theses/2018_Thesis_Cezar_Harabula.pdf.
Mihai-Cezar Harabula (2018) Lumped Impedance Matchers and GHz Noise Investigation of Quantum Dots. Dissertation. Universität Basel. Available at: https://nanoelectronics.unibas.ch/wordpress/wp-content/uploads/theses/2018_Thesis_Cezar_Harabula.pdf.
Roch, Jonas G. et al. (2018) ‘Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure’, Nano Letters, 18(2), pp. 1070–1074. Available at: https://doi.org/10.1021/acs.nanolett.7b04553.
Roch, Jonas G. et al. (2018) ‘Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure’, Nano Letters, 18(2), pp. 1070–1074. Available at: https://doi.org/10.1021/acs.nanolett.7b04553.
Simon Zihlmann (2018) Spin and charge relaxation in graphene. Dissertation. Universität Basel.
Simon Zihlmann (2018) Spin and charge relaxation in graphene. Dissertation. Universität Basel.
Thodkar, Kishan et al. (2018) ‘Observation of High Accuracy Resistance Quantization in CVD Graphene’. IEEE: IEEE. Available at: https://doi.org/10.1109/cpem.2018.8500820.
Thodkar, Kishan et al. (2018) ‘Observation of High Accuracy Resistance Quantization in CVD Graphene’. IEEE: IEEE. Available at: https://doi.org/10.1109/cpem.2018.8500820.
Zihlmann, S. (2018) Spin and charge relaxation in graphene. Available at: https://doi.org/10.5451/unibas-007056155.
Zihlmann, S. (2018) Spin and charge relaxation in graphene. Available at: https://doi.org/10.5451/unibas-007056155.
Korzh, Boris et al. (2017) ‘Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)’, in Joe C. Campbell;Mark A. Itzler (ed.) SPIE Commercial + Scientific Sensing and Imaging. Anaheim, CA, United States: SPIE (SPIE Commercial + Scientific Sensing and Imaging), p. 102120B . Available at: https://doi.org/10.1117/12.2265488.
Korzh, Boris et al. (2017) ‘Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)’, in Joe C. Campbell;Mark A. Itzler (ed.) SPIE Commercial + Scientific Sensing and Imaging. Anaheim, CA, United States: SPIE (SPIE Commercial + Scientific Sensing and Imaging), p. 102120B . Available at: https://doi.org/10.1117/12.2265488.
Abulizi, Gulibusitan (2017) Quantum transport in hexagonal boron nitride carbon nanotube heterostructures. Dissertation. Universität Basel.
Abulizi, Gulibusitan (2017) Quantum transport in hexagonal boron nitride carbon nanotube heterostructures. Dissertation. Universität Basel.