UNIverse - Public Research Portal

Nanotechnologie Argovia (Poggio)

Publications

127 found
Show per page

Aldeghi, Michele et al. (2025) ‘Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays’, Nano Letters. 22.01.2025, 25(5), pp. 1838–1844. Available at: https://doi.org/10.1021/acs.nanolett.4c05037.

URLs
URLs

Bersano, Fabio et al. (2025) ‘Nanomole Process: Enabling Localized Metallic Back-Gates for Enhanced Cryogenic Front-to-Back Coupling in FDSOI Quantum Dots’, IEEE Journal of the Electron Devices Society [Preprint]. 25.02.2025. Available at: https://doi.org/10.1109/jeds.2025.3545661.

URLs
URLs

Züger, F. (2025) Dual-scale hybrid patches combining 3D-bioprinted constructs with directional nanofiber network to mimic native myocardium towards in-vitro heart models.

URLs
URLs

Tschudin, M.A. et al. (2024) ‘Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49717-9.

URLs
URLs

Vervelaki, Andriani et al. (2024) ‘Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6’, Communications Materials. 19.03.2024, 5(1). Available at: https://doi.org/10.1038/s43246-024-00477-5.

URLs
URLs

Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.

URLs
URLs

Budakian, Raffi et al. (2024) ‘Roadmap on nanoscale magnetic resonance imaging’, Nanotechnology. 24.07.2024, 35. Available at: https://doi.org/10.1088/1361-6528/ad4b23.

URLs
URLs

Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.

URLs
URLs

Marchiori, Estefani et al. (2024) ‘Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3’, Communications Materials. 28.09.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00647-5.

URLs
URLs

Leisgang, Nadine et al. (2024) ‘Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor’, Physical Review Letters. 08.07.2024, 133(2). Available at: https://doi.org/10.1103/physrevlett.133.026501.

URLs
URLs

Andersen, Ulrik L et al. (2024) ‘2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science’, Journal of Physics: Materials. 13.06.2024, 7(3). Available at: https://doi.org/10.1088/2515-7639/ad31b5.

URLs
URLs

Liza Žaper et al. (2024) ‘Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets’, ACS Applied Nano Materials. 07.02.2024, 7(4), pp. 3854–3860. Available at: https://doi.org/10.1021/acsanm.3c05470.

URLs
URLs

Mattiat, H. et al. (2024) ‘Mapping the phase-separated state in a 2D magnet’, Nanoscale. 15.02.2024, 16(10), p. 5302–5312 . Available at: https://doi.org/10.1039/d3nr06550b.

URLs
URLs

Romagnoli, G. (2024) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet.

URLs
URLs

Siegwolf, P. (2024) Exploring two-dimensional magnetism by scanning nitrogen-vacancy magnetometry.

URLs
URLs

Weegen, M. (2024) Mechanical excitation of trapped ions coupled to a nanomechanical oscillator.

URLs
URLs

Ollier, Alexina et al. (2023) ‘Energy dissipation on magic angle twisted bilayer graphene’, Communications Physics. 28.11.2023, 6(1). Available at: https://doi.org/10.1038/s42005-023-01441-4.

URLs
URLs

Bersano, Fabio et al. (2023) ‘Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control’, in IEEE Symposium on VLSI Technology and Circuits. Kyoto, Japan: IEEE (IEEE Symposium on VLSI Technology and Circuits). Available at: https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278.

URLs
URLs

Romagnoli, G. et al. (2023) ‘Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering’, Applied Physics Letters, 122(19). Available at: https://doi.org/10.1063/5.0150222.

URLs
URLs

Karnatak, Paritosh et al. (2023) ‘Origin of Subgap States in Normal-Insulator-Superconductor van der Waals Heterostructures’, Nano Letters. 16.03.2023, 23(7), pp. 2454–2459. Available at: https://doi.org/10.1021/acs.nanolett.2c02777.

URLs
URLs

Forrer, L. et al. (2023) ‘Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers’, AIP Advances, 13(3), p. 035208. Available at: https://doi.org/10.1063/5.0127665.

URLs
URLs

Jaeger, D. (2023) Fiber-Cavity optomechanics with hexagonal boron nitride drum resonators.

URLs
URLs

Jaeger, David et al. (2023) ‘Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator’, Nano Letters, 23(5), pp. 2016–2022. Available at: https://doi.org/10.1021/acs.nanolett.3c00233.

URLs
URLs

Mattiat, H. (2023) Nanowire magnetic force microscopy.

URLs
URLs

Sanchez, F. (2023) Nanostructuring of transition metal induced by neutral gas and low-energy ion irradiation.

URLs
URLs

Spinnler, C. (2023) Exploiting phonon and coulomb interactions in semiconductor quantum dots.

URLs
URLs

Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arXiv.2312.00576.

URLs
URLs

Bersano, Fabio et al. (2022) ‘Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing’. IEEE: IEEE. Available at: https://doi.org/10.1109/esscirc55480.2022.9911479.

URLs
URLs

Marchiori, Estefani et al. (2022) ‘Nanoscale magnetic field imaging for 2D materials’, Nature Reviews Physics, 4(1), pp. 49–60. Available at: https://doi.org/10.1038/s42254-021-00380-9.

URLs
URLs

Marchiori, Estefani et al. (2022) ‘Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip’, Applied physics letters, 121(5), p. 052601. Available at: https://doi.org/10.1063/5.0103597.

URLs
URLs

Philipp, Simon (2022) Magnetism of nano- to micrometer-sized anisotropic materials. Dissertation. Universität Basel.

Philipp, S. (2022) Magnetism of Nano- to Micrometer-Sized Anisotropic Materials.

URLs
URLs

Romagnoli Giulio (2022) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet. Dissertation. Universität Basel.

Ruelle, Thibaud et al. (2022) ‘A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K’, Review of Scientific Instruments, 93(9), p. 095003. Available at: https://doi.org/10.1063/5.0098140.

URLs
URLs

Scherb, S.M.A. (2022) Scanning Probe Microscopy Studies of Functional Molecular Structures Prepared via Electrospray Deposition.

URLs
URLs

Soni, K. (2022) Experimental study of radio-frequency plasma surface interactions on diagnostic mirrors under ITER-relevant environments.

URLs
URLs

Ungerer, J.H. (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots.

URLs
URLs

Wyss, M. et al. (2022) ‘Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe’, Physical review applied, 17(3), p. 034002. Available at: https://doi.org/10.1103/physrevapplied.17.034002.

URLs
URLs

Zakharova, A. (2022) Magnetic and electronic properties of oxides heterostructures probed with x-ray spectroscopy.

URLs
URLs

Züger, Fabian et al. (2022) ‘Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue’, Advanced NanoBiomed Research, 2(2), p. 2100108. Available at: https://doi.org/10.1002/anbr.202100108.

URLs
URLs

Claudon, J. et al. (2021) ‘Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons’, in International Conference on Numerical Simulation of Optoelectronic Devices. IEEE: IEEE (International Conference on Numerical Simulation of Optoelectronic Devices). Available at: https://doi.org/10.1109/nusod52207.2021.9541487.

URLs
URLs

David, B. (2021) Antiferromagnetic properties of 3d transition metal oxide nanoparticles.

URLs
URLs

Drechsel, C. (2021) Atomic and Molecular Adsorption on Superconducting Pb as Basis for the Realization of Qubits.

URLs
URLs

Gross, B. et al. (2021) ‘Magnetic anisotropy of individual maghemite mesocrystals’, Physical Review B, 103(1), p. 014402. Available at: https://doi.org/10.1103/physrevb.103.014402.

URLs
URLs

Haller, R. (2021) Probing the microwave response of novel Josephson elements.

URLs
URLs

Lu, Xiaobo et al. (2021) ‘Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle’, Proceedings of the National Academy of Sciences of the United States of America, 118(30), p. e2100006118. Available at: https://doi.org/10.1073/pnas.2100006118.

URLs
URLs

Philipp, S. et al. (2021) ‘Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps’, Applied Physics Letters, 119(22), p. 222406. Available at: https://doi.org/10.1063/5.0076116.

URLs
URLs

Ruelle, Thibaud (2021) Towards Hybrid Optomechanics in a Fiber-Based Fabry-Perot Cavity. Dissertation. Universität Basel.

Ruelle, T. (2021) Towards hybrid optomechanics in a fiber-based fabry-perot cavity.

URLs
URLs

Ceccarelli, Lorenzo (2020) Scanning probe microsopy with SQUID-on-tip sensor. Dissertation. Universität Basel.

Ceccarelli, L. (2020) Scanning probe microscopy with SQUID-on-tip sensor.

URLs
URLs

Geirhos, Korbinian et al. (2020) ‘Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host’, npj Quantum Materials, 5(1), p. 44. Available at: https://doi.org/10.1038/s41535-020-0247-z.

URLs
URLs

Gross, B. et al. (2020) ‘Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8’, Physical Review B, 102(10), p. 104407. Available at: https://doi.org/10.1103/physrevb.102.104407.

URLs
URLs

Mattiat, H. et al. (2020) ‘Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition’, Physical review applied, 13(4), p. 044043. Available at: https://doi.org/10.1103/physrevapplied.13.044043.

URLs
URLs

Poggio, Martino and Rossi, Nicola (2020) ‘Currents cool and drive’, Nature Physics, 1 January, pp. 10–11. Available at: https://doi.org/10.1038/s41567-019-0723-1.

URLs
URLs

Roesner, Benedikt et al. (2020) ‘Soft x-ray microscopy with 7 nm resolution’, Optica, 7(11), pp. 1602–1608. Available at: https://doi.org/10.1364/optica.399885.

URLs
URLs

Poggio, Martino (2020) ‘Determining magnetization configurations and reversal of individual magnetic nanotubes’, in Vázquez, Mauel (ed.) Magnetic Nano- and Microwires. Duxford: Elsivier (Woodhead Publishing Series in Electronic and Optical Materials), pp. 491–517. Available at: https://doi.org/10.1016/b978-0-08-102832-2.00017-7.

URLs
URLs

Braakman, F. R. and Poggio, M. (2019) ‘Force sensing with nanowire cantilevers’, Nanotechnology, 30(33), p. 332001. Available at: https://doi.org/10.1088/1361-6528/ab19cf.

URLs
URLs

Ceccarelli, L. et al. (2019) ‘Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films’, Physical Review B, 100(10), p. 104504. Available at: https://doi.org/10.1103/physrevb.100.104504.

URLs
URLs

Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.

URLs
URLs

Rossi, Nicola (2019) Force sensing with nanowires. Dissertation. Universität Basel.

Rossi, N. (2019) Force sensing with nanowires. Available at: https://doi.org/10.5451/unibas-007178292.

URLs
URLs

Rossi, Nicola et al. (2019) ‘Magnetic force sensing using a self-assembled nanowire’, Nano Letters, 19(2), pp. 930–936. Available at: https://doi.org/10.1021/acs.nanolett.8b04174.

URLs
URLs

Ruelle, Thibaud, Poggio, Martino and Braakman, Floris (2019) ‘Optimized single-shot laser ablation of concave mirror templates on optical fibers’, Applied optics, 58(14), pp. 3784–3789. Available at: https://doi.org/10.1364/ao.58.003784.

URLs
URLs

Wyss, Marcus et al. (2019) ‘Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal’, ACS Nano, 13(12), pp. 13910–13916. Available at: https://doi.org/10.1021/acsnano.9b05428.

URLs
URLs

Braakman, F. et al. (2018) ‘Coherent Dynamics of Nanowire Force Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/CPEM.2018.8501011.

URLs
URLs

Braakman, Floris R. et al. (2018) ‘Coherent two-mode dynamics of a nanowire force sensor’, Physical Review Applied, 9(5), p. 054045. Available at: https://doi.org/10.1103/physrevapplied.9.054045.

URLs
URLs

Cadeddu, Davide (2018) Nanomechanics and scanning probe microscopy with nanowires. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058191.

URLs
URLs

Cadeddu, D. (2018) Nanomechanics and scanning probe microscopy with nanowires. Available at: https://doi.org/10.5451/unibas-007058191.

URLs
URLs

Mehlin, A. et al. (2018) ‘Observation of end-vortex nucleation in individual ferromagnetic nanotubes’, Physical Review B, 97(13), p. 134422. Available at: https://doi.org/10.1103/physrevb.97.134422.

URLs
URLs

Mehlin, Andrea (2018) Dynamic Cantilever Magnetometry of Reversal Processes and Phase Transitions in Individual Nanomagnets. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006756814.

Vasyukov, Denis et al. (2018) ‘Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes’, Nano Letters, 18(2), pp. 964–970. Available at: https://doi.org/10.1021/acs.nanolett.7b04386.

URLs
URLs

Wyss, Marcus (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058176.

URLs
URLs

Wyss, M. (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. Available at: https://doi.org/10.5451/unibas-007058176.

URLs
URLs

Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force-detected nuclear magnetic resonance’, in Anders, Jens; Korvink, Jan (ed.) Micro and Nano Scale NMR: Technologies and Systems. Weinheim, Germany: Wiley (Micro and Nano Scale NMR: Technologies and Systems), pp. 381–420. Available at: https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569.

URLs
URLs

Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force‐Detected Nuclear Magnetic Resonance’, in Anders, Jens;Korvink, Jan G. (ed.) Micro and Nano Scale NMR: Technologies and Systems. 1 edn. Wiley‐VCH Verlag (Advanced Micro and Nanosystems), pp. 381–420. Available at: https://doi.org/10.1002/9783527697281.ch13.

URLs
URLs

Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.

URLs
URLs

Herzog, Benedikt E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006822959.

URLs
URLs

Herzog, B.E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. Available at: https://doi.org/10.5451/unibas-006822959.

URLs
URLs

Mehlin, A. (2017) Dynamic cantilever magnetometry of reversal processes and phase transitions in individual nanomagnets. Available at: https://doi.org/10.5451/unibas-006756814.

URLs
URLs

Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.

URLs
URLs

Wyss, M. et al. (2017) ‘Imaging magnetic vortex configurations in ferromagnetic nanotubes’, Physical Review B, 96(2), p. 024423. Available at: https://doi.org/10.1103/physrevb.96.024423.

URLs
URLs

Cadeddu, D. et al. (2016) ‘Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire’, Nano Letters, 16(2), pp. 926–31. Available at: https://doi.org/10.1021/acs.nanolett.5b03822.

URLs
URLs

Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.

URLs
URLs

Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B. 05.02.2016, 93(6). Available at: https://doi.org/10.1103/PhysRevB.93.064409.

Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B, 93(6), p. 064409. Available at: https://doi.org/10.1103/physrevb.93.064409.

URLs
URLs

Rossi, Nicola et al. (2016) ‘Vectorial scanning force microscopy using a nanowire sensor’, Nature Nanotechnology, 12(2), pp. 150–155. Available at: https://doi.org/10.1038/nnano.2016.189.

URLs
URLs

Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.

URLs
URLs

Baumann, S. (2015) Investigation of the unusual magnetic properties of Fe and Co on MgO with high spatial, energy and temporal resolution. Available at: https://doi.org/10.5451/unibas-006489486.

URLs
URLs

Buchter, Arne (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006483670.

Buchter, A. (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. Available at: https://doi.org/10.5451/unibas-006483670.

URLs
URLs

Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B. 22.12.2015, 92(21). Available at: https://doi.org/10.1103/PhysRevB.92.214432.

Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B, 92(21), p. 214432. Available at: https://doi.org/10.1103/physrevb.92.214432.

URLs
URLs

Mehlin, A. et al. (2015) ‘Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry’, Nano Letters, 15(7), pp. 4839–4844. Available at: https://doi.org/10.1021/acs.nanolett.5b02232.

URLs
URLs

Tao, Ye et al. (2015) ‘Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection’, Nanotechnology, 26(46), p. 465501. Available at: https://doi.org/10.1088/0957-4484/26/46/465501.

URLs
URLs

Bossoni, Lucia, Carretta, Pietro and Poggio, Martino (2014) ‘Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry’, Applied Physics Letters, 104(18), p. 182601. Available at: https://doi.org/10.1063/1.4874979.

URLs
URLs

Braakman, F. R. et al. (2014) ‘Nonlinear motion and mechanical mixing in as-grown GaAs nanowires’, Applied Physics Letters, 105(17), p. 173111. Available at: https://doi.org/10.1063/1.4900928.

URLs
URLs

Herzog, B. E. et al. (2014) ‘Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble’, Applied Physics Letters, 105(4), p. 043112. Available at: https://doi.org/10.1063/1.4892361.

URLs
URLs

Montinaro, Michele (2014) Coupling of nanomechanical resonators to controllable quantum systems. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006327932.

URLs
URLs

Montinaro, M. (2014) Coupling of nanomechanical resonators to controllable quantum systems. Available at: https://doi.org/10.5451/unibas-006327932.

URLs
URLs