Nanotechnologie Argovia (Poggio)
Publications
127 found
Show per page
Aldeghi, Michele et al. (2025) ‘Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays’, Nano Letters. 22.01.2025, 25(5), pp. 1838–1844. Available at: https://doi.org/10.1021/acs.nanolett.4c05037.
Aldeghi, Michele et al. (2025) ‘Simulation and Measurement of Stray Fields for the Manipulation of Spin Qubits in One- and Two-Dimensional Arrays’, Nano Letters. 22.01.2025, 25(5), pp. 1838–1844. Available at: https://doi.org/10.1021/acs.nanolett.4c05037.
Bersano, Fabio et al. (2025) ‘Nanomole Process: Enabling Localized Metallic Back-Gates for Enhanced Cryogenic Front-to-Back Coupling in FDSOI Quantum Dots’, IEEE Journal of the Electron Devices Society [Preprint]. 25.02.2025. Available at: https://doi.org/10.1109/jeds.2025.3545661.
Bersano, Fabio et al. (2025) ‘Nanomole Process: Enabling Localized Metallic Back-Gates for Enhanced Cryogenic Front-to-Back Coupling in FDSOI Quantum Dots’, IEEE Journal of the Electron Devices Society [Preprint]. 25.02.2025. Available at: https://doi.org/10.1109/jeds.2025.3545661.
Züger, F. (2025) Dual-scale hybrid patches combining
3D-bioprinted constructs with directional
nanofiber network to mimic native myocardium
towards in-vitro heart models.
Züger, F. (2025) Dual-scale hybrid patches combining
3D-bioprinted constructs with directional
nanofiber network to mimic native myocardium
towards in-vitro heart models.
Tschudin, M.A. et al. (2024) ‘Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49717-9.
Tschudin, M.A. et al. (2024) ‘Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49717-9.
Vervelaki, Andriani et al. (2024) ‘Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6’, Communications Materials. 19.03.2024, 5(1). Available at: https://doi.org/10.1038/s43246-024-00477-5.
Vervelaki, Andriani et al. (2024) ‘Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6’, Communications Materials. 19.03.2024, 5(1). Available at: https://doi.org/10.1038/s43246-024-00477-5.
Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.
Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.
Budakian, Raffi et al. (2024) ‘Roadmap on nanoscale magnetic resonance imaging’, Nanotechnology. 24.07.2024, 35. Available at: https://doi.org/10.1088/1361-6528/ad4b23.
Budakian, Raffi et al. (2024) ‘Roadmap on nanoscale magnetic resonance imaging’, Nanotechnology. 24.07.2024, 35. Available at: https://doi.org/10.1088/1361-6528/ad4b23.
Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.
Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.
Marchiori, Estefani et al. (2024) ‘Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3’, Communications Materials. 28.09.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00647-5.
Marchiori, Estefani et al. (2024) ‘Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3’, Communications Materials. 28.09.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00647-5.
Leisgang, Nadine et al. (2024) ‘Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor’, Physical Review Letters. 08.07.2024, 133(2). Available at: https://doi.org/10.1103/physrevlett.133.026501.
Leisgang, Nadine et al. (2024) ‘Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor’, Physical Review Letters. 08.07.2024, 133(2). Available at: https://doi.org/10.1103/physrevlett.133.026501.
Andersen, Ulrik L et al. (2024) ‘2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science’, Journal of Physics: Materials. 13.06.2024, 7(3). Available at: https://doi.org/10.1088/2515-7639/ad31b5.
Andersen, Ulrik L et al. (2024) ‘2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science’, Journal of Physics: Materials. 13.06.2024, 7(3). Available at: https://doi.org/10.1088/2515-7639/ad31b5.
Liza Žaper et al. (2024) ‘Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets’, ACS Applied Nano Materials. 07.02.2024, 7(4), pp. 3854–3860. Available at: https://doi.org/10.1021/acsanm.3c05470.
Liza Žaper et al. (2024) ‘Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets’, ACS Applied Nano Materials. 07.02.2024, 7(4), pp. 3854–3860. Available at: https://doi.org/10.1021/acsanm.3c05470.
Mattiat, H. et al. (2024) ‘Mapping the phase-separated state in a 2D magnet’, Nanoscale. 15.02.2024, 16(10), p. 5302–5312 . Available at: https://doi.org/10.1039/d3nr06550b.
Mattiat, H. et al. (2024) ‘Mapping the phase-separated state in a 2D magnet’, Nanoscale. 15.02.2024, 16(10), p. 5302–5312 . Available at: https://doi.org/10.1039/d3nr06550b.
Romagnoli, G. (2024) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet.
Romagnoli, G. (2024) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet.
Siegwolf, P. (2024) Exploring two-dimensional magnetism by scanning nitrogen-vacancy magnetometry.
Siegwolf, P. (2024) Exploring two-dimensional magnetism by scanning nitrogen-vacancy magnetometry.
Weegen, M. (2024) Mechanical excitation of trapped ions coupled to a nanomechanical oscillator.
Weegen, M. (2024) Mechanical excitation of trapped ions coupled to a nanomechanical oscillator.
Ollier, Alexina et al. (2023) ‘Energy dissipation on magic angle twisted bilayer graphene’, Communications Physics. 28.11.2023, 6(1). Available at: https://doi.org/10.1038/s42005-023-01441-4.
Ollier, Alexina et al. (2023) ‘Energy dissipation on magic angle twisted bilayer graphene’, Communications Physics. 28.11.2023, 6(1). Available at: https://doi.org/10.1038/s42005-023-01441-4.
Bersano, Fabio et al. (2023) ‘Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control’, in IEEE Symposium on VLSI Technology and Circuits. Kyoto, Japan: IEEE (IEEE Symposium on VLSI Technology and Circuits). Available at: https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278.
Bersano, Fabio et al. (2023) ‘Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control’, in IEEE Symposium on VLSI Technology and Circuits. Kyoto, Japan: IEEE (IEEE Symposium on VLSI Technology and Circuits). Available at: https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278.
Romagnoli, G. et al. (2023) ‘Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering’, Applied Physics Letters, 122(19). Available at: https://doi.org/10.1063/5.0150222.
Romagnoli, G. et al. (2023) ‘Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering’, Applied Physics Letters, 122(19). Available at: https://doi.org/10.1063/5.0150222.
Karnatak, Paritosh et al. (2023) ‘Origin of Subgap States in Normal-Insulator-Superconductor van der Waals Heterostructures’, Nano Letters. 16.03.2023, 23(7), pp. 2454–2459. Available at: https://doi.org/10.1021/acs.nanolett.2c02777.
Karnatak, Paritosh et al. (2023) ‘Origin of Subgap States in Normal-Insulator-Superconductor van der Waals Heterostructures’, Nano Letters. 16.03.2023, 23(7), pp. 2454–2459. Available at: https://doi.org/10.1021/acs.nanolett.2c02777.
Forrer, L. et al. (2023) ‘Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers’, AIP Advances, 13(3), p. 035208. Available at: https://doi.org/10.1063/5.0127665.
Forrer, L. et al. (2023) ‘Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers’, AIP Advances, 13(3), p. 035208. Available at: https://doi.org/10.1063/5.0127665.
Jaeger, D. (2023) Fiber-Cavity optomechanics with hexagonal boron nitride drum resonators.
Jaeger, D. (2023) Fiber-Cavity optomechanics with hexagonal boron nitride drum resonators.
Jaeger, David et al. (2023) ‘Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator’, Nano Letters, 23(5), pp. 2016–2022. Available at: https://doi.org/10.1021/acs.nanolett.3c00233.
Jaeger, David et al. (2023) ‘Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator’, Nano Letters, 23(5), pp. 2016–2022. Available at: https://doi.org/10.1021/acs.nanolett.3c00233.
Mattiat, H. (2023) Nanowire magnetic force microscopy.
Mattiat, H. (2023) Nanowire magnetic force microscopy.
Sanchez, F. (2023) Nanostructuring of transition metal induced by neutral gas and low-energy ion irradiation.
Sanchez, F. (2023) Nanostructuring of transition metal induced by neutral gas and low-energy ion irradiation.
Spinnler, C. (2023) Exploiting phonon and coulomb interactions in semiconductor quantum dots.
Spinnler, C. (2023) Exploiting phonon and coulomb interactions in semiconductor quantum dots.
Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arXiv.2312.00576.
Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arXiv.2312.00576.
Bersano, Fabio et al. (2022) ‘Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing’. IEEE: IEEE. Available at: https://doi.org/10.1109/esscirc55480.2022.9911479.
Bersano, Fabio et al. (2022) ‘Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing’. IEEE: IEEE. Available at: https://doi.org/10.1109/esscirc55480.2022.9911479.
Marchiori, Estefani et al. (2022) ‘Nanoscale magnetic field imaging for 2D materials’, Nature Reviews Physics, 4(1), pp. 49–60. Available at: https://doi.org/10.1038/s42254-021-00380-9.
Marchiori, Estefani et al. (2022) ‘Nanoscale magnetic field imaging for 2D materials’, Nature Reviews Physics, 4(1), pp. 49–60. Available at: https://doi.org/10.1038/s42254-021-00380-9.
Marchiori, Estefani et al. (2022) ‘Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip’, Applied physics letters, 121(5), p. 052601. Available at: https://doi.org/10.1063/5.0103597.
Marchiori, Estefani et al. (2022) ‘Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip’, Applied physics letters, 121(5), p. 052601. Available at: https://doi.org/10.1063/5.0103597.
Philipp, Simon (2022) Magnetism of nano- to micrometer-sized anisotropic materials. Dissertation. Universität Basel.
Philipp, Simon (2022) Magnetism of nano- to micrometer-sized anisotropic materials. Dissertation. Universität Basel.
Philipp, S. (2022) Magnetism of Nano- to Micrometer-Sized Anisotropic Materials.
Philipp, S. (2022) Magnetism of Nano- to Micrometer-Sized Anisotropic Materials.
Romagnoli Giulio (2022) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet. Dissertation. Universität Basel.
Romagnoli Giulio (2022) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet. Dissertation. Universität Basel.
Ruelle, Thibaud et al. (2022) ‘A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K’, Review of Scientific Instruments, 93(9), p. 095003. Available at: https://doi.org/10.1063/5.0098140.
Ruelle, Thibaud et al. (2022) ‘A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K’, Review of Scientific Instruments, 93(9), p. 095003. Available at: https://doi.org/10.1063/5.0098140.
Scherb, S.M.A. (2022) Scanning Probe Microscopy Studies of Functional Molecular Structures Prepared via Electrospray Deposition.
Scherb, S.M.A. (2022) Scanning Probe Microscopy Studies of Functional Molecular Structures Prepared via Electrospray Deposition.
Soni, K. (2022) Experimental study of radio-frequency plasma surface interactions on diagnostic mirrors under ITER-relevant environments.
Soni, K. (2022) Experimental study of radio-frequency plasma surface interactions on diagnostic mirrors under ITER-relevant environments.
Ungerer, J.H. (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots.
Ungerer, J.H. (2022) High-impedance circuit quantum electrodynamics with semiconductor quantum dots.
Wyss, M. et al. (2022) ‘Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe’, Physical review applied, 17(3), p. 034002. Available at: https://doi.org/10.1103/physrevapplied.17.034002.
Wyss, M. et al. (2022) ‘Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe’, Physical review applied, 17(3), p. 034002. Available at: https://doi.org/10.1103/physrevapplied.17.034002.
Zakharova, A. (2022) Magnetic and electronic properties of oxides heterostructures probed with x-ray spectroscopy.
Zakharova, A. (2022) Magnetic and electronic properties of oxides heterostructures probed with x-ray spectroscopy.
Züger, Fabian et al. (2022) ‘Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue’, Advanced NanoBiomed Research, 2(2), p. 2100108. Available at: https://doi.org/10.1002/anbr.202100108.
Züger, Fabian et al. (2022) ‘Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue’, Advanced NanoBiomed Research, 2(2), p. 2100108. Available at: https://doi.org/10.1002/anbr.202100108.
Claudon, J. et al. (2021) ‘Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons’, in International Conference on Numerical Simulation of Optoelectronic Devices. IEEE: IEEE (International Conference on Numerical Simulation of Optoelectronic Devices). Available at: https://doi.org/10.1109/nusod52207.2021.9541487.
Claudon, J. et al. (2021) ‘Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons’, in International Conference on Numerical Simulation of Optoelectronic Devices. IEEE: IEEE (International Conference on Numerical Simulation of Optoelectronic Devices). Available at: https://doi.org/10.1109/nusod52207.2021.9541487.
David, B. (2021) Antiferromagnetic properties of 3d transition metal
oxide nanoparticles.
David, B. (2021) Antiferromagnetic properties of 3d transition metal
oxide nanoparticles.
Drechsel, C. (2021) Atomic and Molecular Adsorption on Superconducting Pb as Basis for the Realization of Qubits.
Drechsel, C. (2021) Atomic and Molecular Adsorption on Superconducting Pb as Basis for the Realization of Qubits.
Gross, B. et al. (2021) ‘Magnetic anisotropy of individual maghemite mesocrystals’, Physical Review B, 103(1), p. 014402. Available at: https://doi.org/10.1103/physrevb.103.014402.
Gross, B. et al. (2021) ‘Magnetic anisotropy of individual maghemite mesocrystals’, Physical Review B, 103(1), p. 014402. Available at: https://doi.org/10.1103/physrevb.103.014402.
Haller, R. (2021) Probing the microwave response of novel Josephson elements.
Haller, R. (2021) Probing the microwave response of novel Josephson elements.
Lu, Xiaobo et al. (2021) ‘Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle’, Proceedings of the National Academy of Sciences of the United States of America, 118(30), p. e2100006118. Available at: https://doi.org/10.1073/pnas.2100006118.
Lu, Xiaobo et al. (2021) ‘Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle’, Proceedings of the National Academy of Sciences of the United States of America, 118(30), p. e2100006118. Available at: https://doi.org/10.1073/pnas.2100006118.
Philipp, S. et al. (2021) ‘Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps’, Applied Physics Letters, 119(22), p. 222406. Available at: https://doi.org/10.1063/5.0076116.
Philipp, S. et al. (2021) ‘Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps’, Applied Physics Letters, 119(22), p. 222406. Available at: https://doi.org/10.1063/5.0076116.
Ruelle, Thibaud (2021) Towards Hybrid Optomechanics in a Fiber-Based Fabry-Perot Cavity. Dissertation. Universität Basel.
Ruelle, Thibaud (2021) Towards Hybrid Optomechanics in a Fiber-Based Fabry-Perot Cavity. Dissertation. Universität Basel.
Ruelle, T. (2021) Towards hybrid optomechanics in a fiber-based fabry-perot cavity.
Ruelle, T. (2021) Towards hybrid optomechanics in a fiber-based fabry-perot cavity.
Ceccarelli, Lorenzo (2020) Scanning probe microsopy with SQUID-on-tip sensor. Dissertation. Universität Basel.
Ceccarelli, Lorenzo (2020) Scanning probe microsopy with SQUID-on-tip sensor. Dissertation. Universität Basel.
Ceccarelli, L. (2020) Scanning probe microscopy with SQUID-on-tip sensor.
Ceccarelli, L. (2020) Scanning probe microscopy with SQUID-on-tip sensor.
Geirhos, Korbinian et al. (2020) ‘Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host’, npj Quantum Materials, 5(1), p. 44. Available at: https://doi.org/10.1038/s41535-020-0247-z.
Geirhos, Korbinian et al. (2020) ‘Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host’, npj Quantum Materials, 5(1), p. 44. Available at: https://doi.org/10.1038/s41535-020-0247-z.
Gross, B. et al. (2020) ‘Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8’, Physical Review B, 102(10), p. 104407. Available at: https://doi.org/10.1103/physrevb.102.104407.
Gross, B. et al. (2020) ‘Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8’, Physical Review B, 102(10), p. 104407. Available at: https://doi.org/10.1103/physrevb.102.104407.
Mattiat, H. et al. (2020) ‘Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition’, Physical review applied, 13(4), p. 044043. Available at: https://doi.org/10.1103/physrevapplied.13.044043.
Mattiat, H. et al. (2020) ‘Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition’, Physical review applied, 13(4), p. 044043. Available at: https://doi.org/10.1103/physrevapplied.13.044043.
Poggio, Martino and Rossi, Nicola (2020) ‘Currents cool and drive’, Nature Physics, 1 January, pp. 10–11. Available at: https://doi.org/10.1038/s41567-019-0723-1.
Poggio, Martino and Rossi, Nicola (2020) ‘Currents cool and drive’, Nature Physics, 1 January, pp. 10–11. Available at: https://doi.org/10.1038/s41567-019-0723-1.
Roesner, Benedikt et al. (2020) ‘Soft x-ray microscopy with 7 nm resolution’, Optica, 7(11), pp. 1602–1608. Available at: https://doi.org/10.1364/optica.399885.
Roesner, Benedikt et al. (2020) ‘Soft x-ray microscopy with 7 nm resolution’, Optica, 7(11), pp. 1602–1608. Available at: https://doi.org/10.1364/optica.399885.
Poggio, Martino (2020) ‘Determining magnetization configurations and reversal of individual magnetic nanotubes’, in Vázquez, Mauel (ed.) Magnetic Nano- and Microwires. Duxford: Elsivier (Woodhead Publishing Series in Electronic and Optical Materials), pp. 491–517. Available at: https://doi.org/10.1016/b978-0-08-102832-2.00017-7.
Poggio, Martino (2020) ‘Determining magnetization configurations and reversal of individual magnetic nanotubes’, in Vázquez, Mauel (ed.) Magnetic Nano- and Microwires. Duxford: Elsivier (Woodhead Publishing Series in Electronic and Optical Materials), pp. 491–517. Available at: https://doi.org/10.1016/b978-0-08-102832-2.00017-7.
Braakman, F. R. and Poggio, M. (2019) ‘Force sensing with nanowire cantilevers’, Nanotechnology, 30(33), p. 332001. Available at: https://doi.org/10.1088/1361-6528/ab19cf.
Braakman, F. R. and Poggio, M. (2019) ‘Force sensing with nanowire cantilevers’, Nanotechnology, 30(33), p. 332001. Available at: https://doi.org/10.1088/1361-6528/ab19cf.
Ceccarelli, L. et al. (2019) ‘Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films’, Physical Review B, 100(10), p. 104504. Available at: https://doi.org/10.1103/physrevb.100.104504.
Ceccarelli, L. et al. (2019) ‘Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films’, Physical Review B, 100(10), p. 104504. Available at: https://doi.org/10.1103/physrevb.100.104504.
Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.
Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.
Rossi, Nicola (2019) Force sensing with nanowires. Dissertation. Universität Basel.
Rossi, Nicola (2019) Force sensing with nanowires. Dissertation. Universität Basel.
Rossi, N. (2019) Force sensing with nanowires. Available at: https://doi.org/10.5451/unibas-007178292.
Rossi, N. (2019) Force sensing with nanowires. Available at: https://doi.org/10.5451/unibas-007178292.
Rossi, Nicola et al. (2019) ‘Magnetic force sensing using a self-assembled nanowire’, Nano Letters, 19(2), pp. 930–936. Available at: https://doi.org/10.1021/acs.nanolett.8b04174.
Rossi, Nicola et al. (2019) ‘Magnetic force sensing using a self-assembled nanowire’, Nano Letters, 19(2), pp. 930–936. Available at: https://doi.org/10.1021/acs.nanolett.8b04174.
Ruelle, Thibaud, Poggio, Martino and Braakman, Floris (2019) ‘Optimized single-shot laser ablation of concave mirror templates on optical fibers’, Applied optics, 58(14), pp. 3784–3789. Available at: https://doi.org/10.1364/ao.58.003784.
Ruelle, Thibaud, Poggio, Martino and Braakman, Floris (2019) ‘Optimized single-shot laser ablation of concave mirror templates on optical fibers’, Applied optics, 58(14), pp. 3784–3789. Available at: https://doi.org/10.1364/ao.58.003784.
Wyss, Marcus et al. (2019) ‘Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal’, ACS Nano, 13(12), pp. 13910–13916. Available at: https://doi.org/10.1021/acsnano.9b05428.
Wyss, Marcus et al. (2019) ‘Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal’, ACS Nano, 13(12), pp. 13910–13916. Available at: https://doi.org/10.1021/acsnano.9b05428.
Braakman, F. et al. (2018) ‘Coherent Dynamics of Nanowire Force Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/CPEM.2018.8501011.
Braakman, F. et al. (2018) ‘Coherent Dynamics of Nanowire Force Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/CPEM.2018.8501011.
Braakman, Floris R. et al. (2018) ‘Coherent two-mode dynamics of a nanowire force sensor’, Physical Review Applied, 9(5), p. 054045. Available at: https://doi.org/10.1103/physrevapplied.9.054045.
Braakman, Floris R. et al. (2018) ‘Coherent two-mode dynamics of a nanowire force sensor’, Physical Review Applied, 9(5), p. 054045. Available at: https://doi.org/10.1103/physrevapplied.9.054045.
Cadeddu, Davide (2018) Nanomechanics and scanning probe microscopy with nanowires. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058191.
Cadeddu, Davide (2018) Nanomechanics and scanning probe microscopy with nanowires. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058191.
Cadeddu, D. (2018) Nanomechanics and scanning probe microscopy with nanowires. Available at: https://doi.org/10.5451/unibas-007058191.
Cadeddu, D. (2018) Nanomechanics and scanning probe microscopy with nanowires. Available at: https://doi.org/10.5451/unibas-007058191.
Mehlin, A. et al. (2018) ‘Observation of end-vortex nucleation in individual ferromagnetic nanotubes’, Physical Review B, 97(13), p. 134422. Available at: https://doi.org/10.1103/physrevb.97.134422.
Mehlin, A. et al. (2018) ‘Observation of end-vortex nucleation in individual ferromagnetic nanotubes’, Physical Review B, 97(13), p. 134422. Available at: https://doi.org/10.1103/physrevb.97.134422.
Mehlin, Andrea (2018) Dynamic Cantilever Magnetometry of Reversal Processes and Phase Transitions in Individual Nanomagnets. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006756814.
Mehlin, Andrea (2018) Dynamic Cantilever Magnetometry of Reversal Processes and Phase Transitions in Individual Nanomagnets. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006756814.
Vasyukov, Denis et al. (2018) ‘Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes’, Nano Letters, 18(2), pp. 964–970. Available at: https://doi.org/10.1021/acs.nanolett.7b04386.
Vasyukov, Denis et al. (2018) ‘Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes’, Nano Letters, 18(2), pp. 964–970. Available at: https://doi.org/10.1021/acs.nanolett.7b04386.
Wyss, Marcus (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058176.
Wyss, Marcus (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058176.
Wyss, M. (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. Available at: https://doi.org/10.5451/unibas-007058176.
Wyss, M. (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. Available at: https://doi.org/10.5451/unibas-007058176.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force-detected nuclear magnetic resonance’, in Anders, Jens; Korvink, Jan (ed.) Micro and Nano Scale NMR: Technologies and Systems. Weinheim, Germany: Wiley (Micro and Nano Scale NMR: Technologies and Systems), pp. 381–420. Available at: https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force-detected nuclear magnetic resonance’, in Anders, Jens; Korvink, Jan (ed.) Micro and Nano Scale NMR: Technologies and Systems. Weinheim, Germany: Wiley (Micro and Nano Scale NMR: Technologies and Systems), pp. 381–420. Available at: https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force‐Detected Nuclear Magnetic Resonance’, in Anders, Jens;Korvink, Jan G. (ed.) Micro and Nano Scale NMR: Technologies and Systems. 1 edn. Wiley‐VCH Verlag (Advanced Micro and Nanosystems), pp. 381–420. Available at: https://doi.org/10.1002/9783527697281.ch13.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force‐Detected Nuclear Magnetic Resonance’, in Anders, Jens;Korvink, Jan G. (ed.) Micro and Nano Scale NMR: Technologies and Systems. 1 edn. Wiley‐VCH Verlag (Advanced Micro and Nanosystems), pp. 381–420. Available at: https://doi.org/10.1002/9783527697281.ch13.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Herzog, Benedikt E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006822959.
Herzog, Benedikt E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006822959.
Herzog, B.E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. Available at: https://doi.org/10.5451/unibas-006822959.
Herzog, B.E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. Available at: https://doi.org/10.5451/unibas-006822959.
Mehlin, A. (2017) Dynamic cantilever magnetometry of reversal processes and phase transitions in individual nanomagnets. Available at: https://doi.org/10.5451/unibas-006756814.
Mehlin, A. (2017) Dynamic cantilever magnetometry of reversal processes and phase transitions in individual nanomagnets. Available at: https://doi.org/10.5451/unibas-006756814.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Wyss, M. et al. (2017) ‘Imaging magnetic vortex configurations in ferromagnetic nanotubes’, Physical Review B, 96(2), p. 024423. Available at: https://doi.org/10.1103/physrevb.96.024423.
Wyss, M. et al. (2017) ‘Imaging magnetic vortex configurations in ferromagnetic nanotubes’, Physical Review B, 96(2), p. 024423. Available at: https://doi.org/10.1103/physrevb.96.024423.
Cadeddu, D. et al. (2016) ‘Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire’, Nano Letters, 16(2), pp. 926–31. Available at: https://doi.org/10.1021/acs.nanolett.5b03822.
Cadeddu, D. et al. (2016) ‘Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire’, Nano Letters, 16(2), pp. 926–31. Available at: https://doi.org/10.1021/acs.nanolett.5b03822.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B. 05.02.2016, 93(6). Available at: https://doi.org/10.1103/PhysRevB.93.064409.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B. 05.02.2016, 93(6). Available at: https://doi.org/10.1103/PhysRevB.93.064409.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B, 93(6), p. 064409. Available at: https://doi.org/10.1103/physrevb.93.064409.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B, 93(6), p. 064409. Available at: https://doi.org/10.1103/physrevb.93.064409.
Rossi, Nicola et al. (2016) ‘Vectorial scanning force microscopy using a nanowire sensor’, Nature Nanotechnology, 12(2), pp. 150–155. Available at: https://doi.org/10.1038/nnano.2016.189.
Rossi, Nicola et al. (2016) ‘Vectorial scanning force microscopy using a nanowire sensor’, Nature Nanotechnology, 12(2), pp. 150–155. Available at: https://doi.org/10.1038/nnano.2016.189.
Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.
Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.
Baumann, S. (2015) Investigation of the unusual magnetic properties of Fe and Co on MgO with high spatial, energy and temporal resolution. Available at: https://doi.org/10.5451/unibas-006489486.
Baumann, S. (2015) Investigation of the unusual magnetic properties of Fe and Co on MgO with high spatial, energy and temporal resolution. Available at: https://doi.org/10.5451/unibas-006489486.
Buchter, Arne (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006483670.
Buchter, Arne (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006483670.
Buchter, A. (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. Available at: https://doi.org/10.5451/unibas-006483670.
Buchter, A. (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. Available at: https://doi.org/10.5451/unibas-006483670.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B. 22.12.2015, 92(21). Available at: https://doi.org/10.1103/PhysRevB.92.214432.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B. 22.12.2015, 92(21). Available at: https://doi.org/10.1103/PhysRevB.92.214432.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B, 92(21), p. 214432. Available at: https://doi.org/10.1103/physrevb.92.214432.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B, 92(21), p. 214432. Available at: https://doi.org/10.1103/physrevb.92.214432.
Mehlin, A. et al. (2015) ‘Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry’, Nano Letters, 15(7), pp. 4839–4844. Available at: https://doi.org/10.1021/acs.nanolett.5b02232.
Mehlin, A. et al. (2015) ‘Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry’, Nano Letters, 15(7), pp. 4839–4844. Available at: https://doi.org/10.1021/acs.nanolett.5b02232.
Tao, Ye et al. (2015) ‘Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection’, Nanotechnology, 26(46), p. 465501. Available at: https://doi.org/10.1088/0957-4484/26/46/465501.
Tao, Ye et al. (2015) ‘Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection’, Nanotechnology, 26(46), p. 465501. Available at: https://doi.org/10.1088/0957-4484/26/46/465501.
Bossoni, Lucia, Carretta, Pietro and Poggio, Martino (2014) ‘Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry’, Applied Physics Letters, 104(18), p. 182601. Available at: https://doi.org/10.1063/1.4874979.
Bossoni, Lucia, Carretta, Pietro and Poggio, Martino (2014) ‘Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry’, Applied Physics Letters, 104(18), p. 182601. Available at: https://doi.org/10.1063/1.4874979.
Braakman, F. R. et al. (2014) ‘Nonlinear motion and mechanical mixing in as-grown GaAs nanowires’, Applied Physics Letters, 105(17), p. 173111. Available at: https://doi.org/10.1063/1.4900928.
Braakman, F. R. et al. (2014) ‘Nonlinear motion and mechanical mixing in as-grown GaAs nanowires’, Applied Physics Letters, 105(17), p. 173111. Available at: https://doi.org/10.1063/1.4900928.
Herzog, B. E. et al. (2014) ‘Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble’, Applied Physics Letters, 105(4), p. 043112. Available at: https://doi.org/10.1063/1.4892361.
Herzog, B. E. et al. (2014) ‘Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble’, Applied Physics Letters, 105(4), p. 043112. Available at: https://doi.org/10.1063/1.4892361.
Montinaro, Michele (2014) Coupling of nanomechanical resonators to controllable quantum systems. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006327932.
Montinaro, Michele (2014) Coupling of nanomechanical resonators to controllable quantum systems. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006327932.
Montinaro, M. (2014) Coupling of nanomechanical resonators to controllable quantum systems. Available at: https://doi.org/10.5451/unibas-006327932.
Montinaro, M. (2014) Coupling of nanomechanical resonators to controllable quantum systems. Available at: https://doi.org/10.5451/unibas-006327932.