Nanotechnologie Argovia (Poggio)
Publications
95 found
Show per page
Tschudin, M.A. et al. (2024) ‘Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49717-9.
Tschudin, M.A. et al. (2024) ‘Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49717-9.
Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.
Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.
Budakian, Raffi et al. (2024) ‘Roadmap on nanoscale magnetic resonance imaging’, Nanotechnology. 24.07.2024, 35. Available at: https://doi.org/10.1088/1361-6528/ad4b23.
Budakian, Raffi et al. (2024) ‘Roadmap on nanoscale magnetic resonance imaging’, Nanotechnology. 24.07.2024, 35. Available at: https://doi.org/10.1088/1361-6528/ad4b23.
Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.
Bagani, Kousik et al. (2024) ‘Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr’, Nano Letters. 04.10.2024, 24(41), pp. 13068–13074. Available at: https://doi.org/10.1021/acs.nanolett.4c03919.
Marchiori, Estefani et al. (2024) ‘Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3’, Communications Materials. 28.09.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00647-5.
Marchiori, Estefani et al. (2024) ‘Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3’, Communications Materials. 28.09.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00647-5.
Leisgang, Nadine et al. (2024) ‘Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor’, Physical Review Letters. 08.07.2024, 133(2). Available at: https://doi.org/10.1103/physrevlett.133.026501.
Leisgang, Nadine et al. (2024) ‘Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor’, Physical Review Letters. 08.07.2024, 133(2). Available at: https://doi.org/10.1103/physrevlett.133.026501.
Andersen, Ulrik L et al. (2024) ‘2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science’, Journal of Physics: Materials. 13.06.2024, 7(3). Available at: https://doi.org/10.1088/2515-7639/ad31b5.
Andersen, Ulrik L et al. (2024) ‘2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science’, Journal of Physics: Materials. 13.06.2024, 7(3). Available at: https://doi.org/10.1088/2515-7639/ad31b5.
Mattiat, H. et al. (2024) ‘Mapping the phase-separated state in a 2D magnet’, Nanoscale. 15.02.2024, 16(10), p. 5302–5312 . Available at: https://doi.org/10.1039/d3nr06550b.
Mattiat, H. et al. (2024) ‘Mapping the phase-separated state in a 2D magnet’, Nanoscale. 15.02.2024, 16(10), p. 5302–5312 . Available at: https://doi.org/10.1039/d3nr06550b.
Liza Žaper et al. (2024) ‘Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets’, ACS Applied Nano Materials. 07.02.2024, 7(4), pp. 3854–3860. Available at: https://doi.org/10.1021/acsanm.3c05470.
Liza Žaper et al. (2024) ‘Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets’, ACS Applied Nano Materials. 07.02.2024, 7(4), pp. 3854–3860. Available at: https://doi.org/10.1021/acsanm.3c05470.
Vervelaki, Andriani et al. (2024) ‘Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6’, communications materials. 19.03.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00477-5.
Vervelaki, Andriani et al. (2024) ‘Visualizing thickness-dependent magnetic textures in few-layer Cr2Ge2Te6’, communications materials. 19.03.2024, 5. Available at: https://doi.org/10.1038/s43246-024-00477-5.
Ollier, Alexina et al. (2023) ‘Energy dissipation on magic angle twisted bilayer graphene’, Communications Physics. 28.11.2023, 6(1). Available at: https://doi.org/10.1038/s42005-023-01441-4.
Ollier, Alexina et al. (2023) ‘Energy dissipation on magic angle twisted bilayer graphene’, Communications Physics. 28.11.2023, 6(1). Available at: https://doi.org/10.1038/s42005-023-01441-4.
Bersano, Fabio et al. (2023) ‘Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control’, in IEEE Symposium on VLSI Technology and Circuits. Kyoto, Japan: IEEE (IEEE Symposium on VLSI Technology and Circuits). Available at: https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278.
Bersano, Fabio et al. (2023) ‘Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control’, in IEEE Symposium on VLSI Technology and Circuits. Kyoto, Japan: IEEE (IEEE Symposium on VLSI Technology and Circuits). Available at: https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278.
Romagnoli, G. et al. (2023) ‘Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering’, Applied Physics Letters, 122(19). Available at: https://doi.org/10.1063/5.0150222.
Romagnoli, G. et al. (2023) ‘Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering’, Applied Physics Letters, 122(19). Available at: https://doi.org/10.1063/5.0150222.
Forrer, L. et al. (2023) ‘Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers’, AIP Advances, 13(3), p. 035208. Available at: https://doi.org/10.1063/5.0127665.
Forrer, L. et al. (2023) ‘Electron-beam lithography of nanostructures at the tips of scanning probe cantilevers’, AIP Advances, 13(3), p. 035208. Available at: https://doi.org/10.1063/5.0127665.
Jaeger, David et al. (2023) ‘Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator’, Nano Letters, 23(5), pp. 2016–2022. Available at: https://doi.org/10.1021/acs.nanolett.3c00233.
Jaeger, David et al. (2023) ‘Mechanical Mode Imaging of a High-Q Hybrid hBN/Si₃N₄ Resonator’, Nano Letters, 23(5), pp. 2016–2022. Available at: https://doi.org/10.1021/acs.nanolett.3c00233.
Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2312.00576.
Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2312.00576.
Bersano, Fabio et al. (2022) ‘Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing’. IEEE: IEEE. Available at: https://doi.org/10.1109/esscirc55480.2022.9911479.
Bersano, Fabio et al. (2022) ‘Multi-Gate FD-SOI Single Electron Transistor for hybrid SET-MOSFET quantum computing’. IEEE: IEEE. Available at: https://doi.org/10.1109/esscirc55480.2022.9911479.
Marchiori, Estefani et al. (2022) ‘Nanoscale magnetic field imaging for 2D materials’, Nature Reviews Physics, 4(1), pp. 49–60. Available at: https://doi.org/10.1038/s42254-021-00380-9.
Marchiori, Estefani et al. (2022) ‘Nanoscale magnetic field imaging for 2D materials’, Nature Reviews Physics, 4(1), pp. 49–60. Available at: https://doi.org/10.1038/s42254-021-00380-9.
Marchiori, Estefani et al. (2022) ‘Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip’, Applied physics letters, 121(5), p. 052601. Available at: https://doi.org/10.1063/5.0103597.
Marchiori, Estefani et al. (2022) ‘Magnetic Imaging of Superconducting Qubit Devices with Scanning SQUID-on-tip’, Applied physics letters, 121(5), p. 052601. Available at: https://doi.org/10.1063/5.0103597.
Philipp, Simon (2022) Magnetism of nano- to micrometer-sized anisotropic materials. . Translated by Poggio Martino. Dissertation. Universität Basel.
Philipp, Simon (2022) Magnetism of nano- to micrometer-sized anisotropic materials. . Translated by Poggio Martino. Dissertation. Universität Basel.
Romagnoli Giulio (2022) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet. . Translated by Poggio Martino. Dissertation. Universität Basel.
Romagnoli Giulio (2022) SQUID-on-tip sensors for real-space magnetic imaging of a chiral magnet. . Translated by Poggio Martino. Dissertation. Universität Basel.
Ruelle, Thibaud et al. (2022) ‘A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K’, Review of Scientific Instruments, 93(9), p. 095003. Available at: https://doi.org/10.1063/5.0098140.
Ruelle, Thibaud et al. (2022) ‘A tunable fiber Fabry-Perot cavity for hybrid optomechanics stabilized at 4 K’, Review of Scientific Instruments, 93(9), p. 095003. Available at: https://doi.org/10.1063/5.0098140.
Wyss, M. et al. (2022) ‘Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe’, Physical review applied, 17(3), p. 034002. Available at: https://doi.org/10.1103/physrevapplied.17.034002.
Wyss, M. et al. (2022) ‘Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe’, Physical review applied, 17(3), p. 034002. Available at: https://doi.org/10.1103/physrevapplied.17.034002.
Züger, Fabian et al. (2022) ‘Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue’, Advanced NanoBiomed Research, 2(2), p. 2100108. Available at: https://doi.org/10.1002/anbr.202100108.
Züger, Fabian et al. (2022) ‘Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue’, Advanced NanoBiomed Research, 2(2), p. 2100108. Available at: https://doi.org/10.1002/anbr.202100108.
Claudon, J. et al. (2021) ‘Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons’, in International Conference on Numerical Simulation of Optoelectronic Devices. IEEE: IEEE (International Conference on Numerical Simulation of Optoelectronic Devices). Available at: https://doi.org/10.1109/nusod52207.2021.9541487.
Claudon, J. et al. (2021) ‘Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons’, in International Conference on Numerical Simulation of Optoelectronic Devices. IEEE: IEEE (International Conference on Numerical Simulation of Optoelectronic Devices). Available at: https://doi.org/10.1109/nusod52207.2021.9541487.
Gross, B. et al. (2021) ‘Magnetic anisotropy of individual maghemite mesocrystals’, Physical Review B, 103(1), p. 014402. Available at: https://doi.org/10.1103/physrevb.103.014402.
Gross, B. et al. (2021) ‘Magnetic anisotropy of individual maghemite mesocrystals’, Physical Review B, 103(1), p. 014402. Available at: https://doi.org/10.1103/physrevb.103.014402.
Lu, Xiaobo et al. (2021) ‘Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle’, Proceedings of the National Academy of Sciences of the United States of America, 118(30), p. e2100006118. Available at: https://doi.org/10.1073/pnas.2100006118.
Lu, Xiaobo et al. (2021) ‘Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle’, Proceedings of the National Academy of Sciences of the United States of America, 118(30), p. e2100006118. Available at: https://doi.org/10.1073/pnas.2100006118.
Philipp, S. et al. (2021) ‘Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps’, Applied Physics Letters, 119(22), p. 222406. Available at: https://doi.org/10.1063/5.0076116.
Philipp, S. et al. (2021) ‘Magnetic hysteresis of individual Janus particles with hemispherical exchange biased caps’, Applied Physics Letters, 119(22), p. 222406. Available at: https://doi.org/10.1063/5.0076116.
Ruelle, Thibaud (2021) Towards Hybrid Optomechanics in a Fiber-Based Fabry-Perot Cavity. . Translated by Poggio Martino. Dissertation. Universität Basel.
Ruelle, Thibaud (2021) Towards Hybrid Optomechanics in a Fiber-Based Fabry-Perot Cavity. . Translated by Poggio Martino. Dissertation. Universität Basel.
Ceccarelli, Lorenzo (2020) Scanning probe microsopy with SQUID-on-tip sensor. . Translated by Poggio Martino. Dissertation. Universität Basel.
Ceccarelli, Lorenzo (2020) Scanning probe microsopy with SQUID-on-tip sensor. . Translated by Poggio Martino. Dissertation. Universität Basel.
Geirhos, Korbinian et al. (2020) ‘Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host’, npj Quantum Materials, 5(1), p. 44. Available at: https://doi.org/10.1038/s41535-020-0247-z.
Geirhos, Korbinian et al. (2020) ‘Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Neel-type skyrmion host’, npj Quantum Materials, 5(1), p. 44. Available at: https://doi.org/10.1038/s41535-020-0247-z.
Gross, B. et al. (2020) ‘Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8’, Physical Review B, 102(10), p. 104407. Available at: https://doi.org/10.1103/physrevb.102.104407.
Gross, B. et al. (2020) ‘Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV4S8 and GaV4Se8’, Physical Review B, 102(10), p. 104407. Available at: https://doi.org/10.1103/physrevb.102.104407.
Mattiat, H. et al. (2020) ‘Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition’, Physical review applied, 13(4), p. 044043. Available at: https://doi.org/10.1103/physrevapplied.13.044043.
Mattiat, H. et al. (2020) ‘Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition’, Physical review applied, 13(4), p. 044043. Available at: https://doi.org/10.1103/physrevapplied.13.044043.
Poggio, Martino and Rossi, Nicola (2020) ‘Currents cool and drive’, Nature Physics, 1 January, pp. 10–11. Available at: https://doi.org/10.1038/s41567-019-0723-1.
Poggio, Martino and Rossi, Nicola (2020) ‘Currents cool and drive’, Nature Physics, 1 January, pp. 10–11. Available at: https://doi.org/10.1038/s41567-019-0723-1.
Roesner, Benedikt et al. (2020) ‘Soft x-ray microscopy with 7 nm resolution’, Optica, 7(11), pp. 1602–1608. Available at: https://doi.org/10.1364/optica.399885.
Roesner, Benedikt et al. (2020) ‘Soft x-ray microscopy with 7 nm resolution’, Optica, 7(11), pp. 1602–1608. Available at: https://doi.org/10.1364/optica.399885.
Poggio, Martino (2020) ‘Determining magnetization configurations and reversal of individual magnetic nanotubes’, in Vázquez, Mauel (ed.) Magnetic Nano- and Microwires. Duxford: Elsivier (Woodhead Publishing Series in Electronic and Optical Materials), pp. 491–517. Available at: https://doi.org/10.1016/b978-0-08-102832-2.00017-7.
Poggio, Martino (2020) ‘Determining magnetization configurations and reversal of individual magnetic nanotubes’, in Vázquez, Mauel (ed.) Magnetic Nano- and Microwires. Duxford: Elsivier (Woodhead Publishing Series in Electronic and Optical Materials), pp. 491–517. Available at: https://doi.org/10.1016/b978-0-08-102832-2.00017-7.
Braakman, F. R. and Poggio, M. (2019) ‘Force sensing with nanowire cantilevers’, Nanotechnology, 30(33), p. 332001. Available at: https://doi.org/10.1088/1361-6528/ab19cf.
Braakman, F. R. and Poggio, M. (2019) ‘Force sensing with nanowire cantilevers’, Nanotechnology, 30(33), p. 332001. Available at: https://doi.org/10.1088/1361-6528/ab19cf.
Ceccarelli, L. et al. (2019) ‘Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films’, Physical Review B, 100(10), p. 104504. Available at: https://doi.org/10.1103/physrevb.100.104504.
Ceccarelli, L. et al. (2019) ‘Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films’, Physical Review B, 100(10), p. 104504. Available at: https://doi.org/10.1103/physrevb.100.104504.
Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.
Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.
Rossi, Nicola (2019) Force sensing with nanowires. . Translated by Poggio Martino. Dissertation. Universität Basel.
Rossi, Nicola (2019) Force sensing with nanowires. . Translated by Poggio Martino. Dissertation. Universität Basel.
Rossi, Nicola et al. (2019) ‘Magnetic force sensing using a self-assembled nanowire’, Nano Letters, 19(2), pp. 930–936. Available at: https://doi.org/10.1021/acs.nanolett.8b04174.
Rossi, Nicola et al. (2019) ‘Magnetic force sensing using a self-assembled nanowire’, Nano Letters, 19(2), pp. 930–936. Available at: https://doi.org/10.1021/acs.nanolett.8b04174.
Ruelle, Thibaud, Poggio, Martino and Braakman, Floris (2019) ‘Optimized single-shot laser ablation of concave mirror templates on optical fibers’, Applied optics, 58(14), pp. 3784–3789. Available at: https://doi.org/10.1364/ao.58.003784.
Ruelle, Thibaud, Poggio, Martino and Braakman, Floris (2019) ‘Optimized single-shot laser ablation of concave mirror templates on optical fibers’, Applied optics, 58(14), pp. 3784–3789. Available at: https://doi.org/10.1364/ao.58.003784.
Wyss, Marcus et al. (2019) ‘Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal’, ACS Nano, 13(12), pp. 13910–13916. Available at: https://doi.org/10.1021/acsnano.9b05428.
Wyss, Marcus et al. (2019) ‘Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal’, ACS Nano, 13(12), pp. 13910–13916. Available at: https://doi.org/10.1021/acsnano.9b05428.
Braakman, F. et al. (2018) ‘Coherent Dynamics of Nanowire Force Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/CPEM.2018.8501011.
Braakman, F. et al. (2018) ‘Coherent Dynamics of Nanowire Force Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/CPEM.2018.8501011.
Braakman, Floris R. et al. (2018) ‘Coherent two-mode dynamics of a nanowire force sensor’, Physical Review Applied, 9(5), p. 054045. Available at: https://doi.org/10.1103/physrevapplied.9.054045.
Braakman, Floris R. et al. (2018) ‘Coherent two-mode dynamics of a nanowire force sensor’, Physical Review Applied, 9(5), p. 054045. Available at: https://doi.org/10.1103/physrevapplied.9.054045.
Cadeddu, Davide (2018) Nanomechanics and scanning probe microscopy with nanowires. . Translated by Poggio Martino; Warburton Richard. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058191.
Cadeddu, Davide (2018) Nanomechanics and scanning probe microscopy with nanowires. . Translated by Poggio Martino; Warburton Richard. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058191.
Mehlin, A. et al. (2018) ‘Observation of end-vortex nucleation in individual ferromagnetic nanotubes’, Physical Review B, 97(13), p. 134422. Available at: https://doi.org/10.1103/physrevb.97.134422.
Mehlin, A. et al. (2018) ‘Observation of end-vortex nucleation in individual ferromagnetic nanotubes’, Physical Review B, 97(13), p. 134422. Available at: https://doi.org/10.1103/physrevb.97.134422.
Mehlin, Andrea (2018) Dynamic Cantilever Magnetometry of Reversal Processes and Phase Transitions in Individual Nanomagnets. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006756814.
Mehlin, Andrea (2018) Dynamic Cantilever Magnetometry of Reversal Processes and Phase Transitions in Individual Nanomagnets. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006756814.
Vasyukov, Denis et al. (2018) ‘Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes’, Nano Letters, 18(2), pp. 964–970. Available at: https://doi.org/10.1021/acs.nanolett.7b04386.
Vasyukov, Denis et al. (2018) ‘Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes’, Nano Letters, 18(2), pp. 964–970. Available at: https://doi.org/10.1021/acs.nanolett.7b04386.
Wyss, Marcus (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058176.
Wyss, Marcus (2018) Nanoscale magnetic imaging of ferromagnetic nanostructures. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-007058176.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force-detected nuclear magnetic resonance’, in Anders, Jens; Korvink, Jan (ed.) Micro and Nano Scale NMR: Technologies and Systems. Weinheim, Germany: Wiley (Micro and Nano Scale NMR: Technologies and Systems), pp. 381–420. Available at: https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force-detected nuclear magnetic resonance’, in Anders, Jens; Korvink, Jan (ed.) Micro and Nano Scale NMR: Technologies and Systems. Weinheim, Germany: Wiley (Micro and Nano Scale NMR: Technologies and Systems), pp. 381–420. Available at: https://www.wiley.com/en-us/Micro+and+Nano+Scale+NMR%3A+Technologies+and+Systems-p-9783527340569.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force‐Detected Nuclear Magnetic Resonance’, in Anders, Jens;Korvink, Jan G. (ed.) Micro and Nano Scale NMR: Technologies and Systems. 1 edn. Wiley‐VCH Verlag (Advanced Micro and Nanosystems), pp. 381–420. Available at: https://doi.org/10.1002/9783527697281.ch13.
Poggio, Martino and Herzog, Benedikt E. (2018) ‘Force‐Detected Nuclear Magnetic Resonance’, in Anders, Jens;Korvink, Jan G. (ed.) Micro and Nano Scale NMR: Technologies and Systems. 1 edn. Wiley‐VCH Verlag (Advanced Micro and Nanosystems), pp. 381–420. Available at: https://doi.org/10.1002/9783527697281.ch13.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Herzog, Benedikt E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006822959.
Herzog, Benedikt E. (2017) Nuclear spin noise examined by magnetic resonance force microscopy. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006822959.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Wyss, M. et al. (2017) ‘Imaging magnetic vortex configurations in ferromagnetic nanotubes’, Physical Review B, 96(2), p. 024423. Available at: https://doi.org/10.1103/physrevb.96.024423.
Wyss, M. et al. (2017) ‘Imaging magnetic vortex configurations in ferromagnetic nanotubes’, Physical Review B, 96(2), p. 024423. Available at: https://doi.org/10.1103/physrevb.96.024423.
Cadeddu, D. et al. (2016) ‘Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire’, Nano Letters, 16(2), pp. 926–31. Available at: https://doi.org/10.1021/acs.nanolett.5b03822.
Cadeddu, D. et al. (2016) ‘Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire’, Nano Letters, 16(2), pp. 926–31. Available at: https://doi.org/10.1021/acs.nanolett.5b03822.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B. 05.02.2016, 93(6). Available at: https://doi.org/10.1103/PhysRevB.93.064409.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B. 05.02.2016, 93(6). Available at: https://doi.org/10.1103/PhysRevB.93.064409.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B, 93(6), p. 064409. Available at: https://doi.org/10.1103/physrevb.93.064409.
Gross, B. et al. (2016) ‘Dynamic cantilever magnetometry of individual CoFeB nanotubes’, Physical Review B, 93(6), p. 064409. Available at: https://doi.org/10.1103/physrevb.93.064409.
Rossi, Nicola et al. (2016) ‘Vectorial scanning force microscopy using a nanowire sensor’, Nature Nanotechnology, 12(2), pp. 150–155. Available at: https://doi.org/10.1038/nnano.2016.189.
Rossi, Nicola et al. (2016) ‘Vectorial scanning force microscopy using a nanowire sensor’, Nature Nanotechnology, 12(2), pp. 150–155. Available at: https://doi.org/10.1038/nnano.2016.189.
Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.
Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.
Buchter, Arne (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006483670.
Buchter, Arne (2015) Hybrid torque and SQUID magnetometry of individual magnetic nanotubes. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: http://dx.doi.org/10.5451/unibas-006483670.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B. 22.12.2015, 92(21). Available at: https://doi.org/10.1103/PhysRevB.92.214432.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B. 22.12.2015, 92(21). Available at: https://doi.org/10.1103/PhysRevB.92.214432.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B, 92(21), p. 214432. Available at: https://doi.org/10.1103/physrevb.92.214432.
Buchter, A. et al. (2015) ‘Magnetization reversal of an individual exchange-biased permalloy nanotube’, Physical Review B, 92(21), p. 214432. Available at: https://doi.org/10.1103/physrevb.92.214432.
Mehlin, A. et al. (2015) ‘Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry’, Nano Letters, 15(7), pp. 4839–4844. Available at: https://doi.org/10.1021/acs.nanolett.5b02232.
Mehlin, A. et al. (2015) ‘Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry’, Nano Letters, 15(7), pp. 4839–4844. Available at: https://doi.org/10.1021/acs.nanolett.5b02232.
Tao, Ye et al. (2015) ‘Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection’, Nanotechnology, 26(46), p. 465501. Available at: https://doi.org/10.1088/0957-4484/26/46/465501.
Tao, Ye et al. (2015) ‘Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection’, Nanotechnology, 26(46), p. 465501. Available at: https://doi.org/10.1088/0957-4484/26/46/465501.
Bossoni, Lucia, Carretta, Pietro and Poggio, Martino (2014) ‘Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry’, Applied Physics Letters, 104(18), p. 182601. Available at: https://doi.org/10.1063/1.4874979.
Bossoni, Lucia, Carretta, Pietro and Poggio, Martino (2014) ‘Vortex lattice melting of a NbSe2 single grain probed by ultrasensitive cantilever magnetometry’, Applied Physics Letters, 104(18), p. 182601. Available at: https://doi.org/10.1063/1.4874979.
Braakman, F. R. et al. (2014) ‘Nonlinear motion and mechanical mixing in as-grown GaAs nanowires’, Applied Physics Letters, 105(17), p. 173111. Available at: https://doi.org/10.1063/1.4900928.
Braakman, F. R. et al. (2014) ‘Nonlinear motion and mechanical mixing in as-grown GaAs nanowires’, Applied Physics Letters, 105(17), p. 173111. Available at: https://doi.org/10.1063/1.4900928.
Herzog, B. E. et al. (2014) ‘Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble’, Applied Physics Letters, 105(4), p. 043112. Available at: https://doi.org/10.1063/1.4892361.
Herzog, B. E. et al. (2014) ‘Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble’, Applied Physics Letters, 105(4), p. 043112. Available at: https://doi.org/10.1063/1.4892361.
Montinaro, Michele (2014) Coupling of nanomechanical resonators to controllable quantum systems. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006327932.
Montinaro, Michele (2014) Coupling of nanomechanical resonators to controllable quantum systems. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006327932.
Montinaro, Michele et al. (2014) ‘Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire’, Nano Letters, 14(8), pp. 4454–4460. Available at: https://doi.org/10.1021/nl501413t.
Montinaro, Michele et al. (2014) ‘Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire’, Nano Letters, 14(8), pp. 4454–4460. Available at: https://doi.org/10.1021/nl501413t.
Munsch, Mathieu et al. (2014) ‘Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses’, Nature Nanotechnology, 9(9), pp. 671–675. Available at: https://doi.org/10.1038/nnano.2014.175.
Munsch, Mathieu et al. (2014) ‘Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses’, Nature Nanotechnology, 9(9), pp. 671–675. Available at: https://doi.org/10.1038/nnano.2014.175.
Munsch, M. et al. (2014) ‘Erratum: Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses (Nature Nanotechnology (2014) 9 (671-675))’, Nature Nanotechnology, 9(10). Available at: https://doi.org/10.1038/nnano.2014.212.
Munsch, M. et al. (2014) ‘Erratum: Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses (Nature Nanotechnology (2014) 9 (671-675))’, Nature Nanotechnology, 9(10). Available at: https://doi.org/10.1038/nnano.2014.212.
Weber, Dennis (2014) Dynamic cantilever magnetometry of individual ferromagnetic nanotubes. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: http://edoc.unibas.ch/diss/DissB_11065.
Weber, Dennis (2014) Dynamic cantilever magnetometry of individual ferromagnetic nanotubes. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: http://edoc.unibas.ch/diss/DissB_11065.
Treutlein, Philipp et al. (2014) ‘Hybrid mechanical systems’, in Cavity optomechanics : nano- and micromechanical resonators interacting with light. Berlin: Springer (Cavity optomechanics : nano- and micromechanical resonators interacting with light), pp. 327–351. Available at: https://doi.org/10.1007/978-3-642-55312-7_14.
Treutlein, Philipp et al. (2014) ‘Hybrid mechanical systems’, in Cavity optomechanics : nano- and micromechanical resonators interacting with light. Berlin: Springer (Cavity optomechanics : nano- and micromechanical resonators interacting with light), pp. 327–351. Available at: https://doi.org/10.1007/978-3-642-55312-7_14.
Buchter, A. et al. (2013) ‘Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry’, Physical Review Letters, 111(6), p. 067202. Available at: https://doi.org/10.1103/physrevlett.111.067202.
Buchter, A. et al. (2013) ‘Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry’, Physical Review Letters, 111(6), p. 067202. Available at: https://doi.org/10.1103/physrevlett.111.067202.
Kuhlmann, Andreas V. et al. (2013) ‘Charge noise and spin noise in a semiconductor quantum device’, Nature Physics, 9(9), pp. 570–575. Available at: https://doi.org/10.1038/nphys2688.
Kuhlmann, Andreas V. et al. (2013) ‘Charge noise and spin noise in a semiconductor quantum device’, Nature Physics, 9(9), pp. 570–575. Available at: https://doi.org/10.1038/nphys2688.
Nagel, J. et al. (2013) ‘Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID’, Physical Review B, 88(6), p. 064425. Available at: https://doi.org/10.1103/physrevb.88.064425.
Nagel, J. et al. (2013) ‘Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID’, Physical Review B, 88(6), p. 064425. Available at: https://doi.org/10.1103/physrevb.88.064425.
Peddbhotla, P. et al. (2013) ‘Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire’, Nature Physics, 9(10), pp. 630–634. Available at: https://doi.org/10.1038/nphys2731.
Peddbhotla, P. et al. (2013) ‘Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire’, Nature Physics, 9(10), pp. 630–634. Available at: https://doi.org/10.1038/nphys2731.
Peddibhotla, Phani (2013) Magnetic resonance force microscopy : harnessing nuclear spin fluctuations. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006145451.
Peddibhotla, Phani (2013) Magnetic resonance force microscopy : harnessing nuclear spin fluctuations. . Translated by Poggio Martino. Dissertation. Universität Basel. Available at: https://doi.org/10.5451/unibas-006145451.
Poggio, Martino (2013) ‘Sensing from the bottom up’, Nature Nanotechnology, 8(7), pp. 482–483. Available at: https://doi.org/10.1038/nnano.2013.124.
Poggio, Martino (2013) ‘Sensing from the bottom up’, Nature Nanotechnology, 8(7), pp. 482–483. Available at: https://doi.org/10.1038/nnano.2013.124.
Houel, J. et al. (2012) ‘Erratum: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot (Physical Review Letters (2012) 108 (107401))’, Physical Review Letters, 108(11). Available at: https://doi.org/10.1103/PhysRevLett.108.119902.
Houel, J. et al. (2012) ‘Erratum: Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot (Physical Review Letters (2012) 108 (107401))’, Physical Review Letters, 108(11). Available at: https://doi.org/10.1103/PhysRevLett.108.119902.
Houel, J. et al. (2012) ‘Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot’, Physical review letters, 108(10), p. 107401. Available at: https://doi.org/10.1103/physrevlett.108.107401.
Houel, J. et al. (2012) ‘Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot’, Physical review letters, 108(10), p. 107401. Available at: https://doi.org/10.1103/physrevlett.108.107401.
Montinaro, M. et al. (2012) ‘Feedback cooling of cantilever motion using a quantum point contact transducer’, Applied Physics Letters, 101(13), p. 133104. Available at: https://doi.org/10.1063/1.4754606.
Montinaro, M. et al. (2012) ‘Feedback cooling of cantilever motion using a quantum point contact transducer’, Applied Physics Letters, 101(13), p. 133104. Available at: https://doi.org/10.1063/1.4754606.
Weber, D. P. et al. (2012) ‘Cantilever magnetometry of individual Ni nanotubes’, Nano Letters, 12(12), pp. 6139–6144. Available at: https://doi.org/10.1021/nl302950u.
Weber, D. P. et al. (2012) ‘Cantilever magnetometry of individual Ni nanotubes’, Nano Letters, 12(12), pp. 6139–6144. Available at: https://doi.org/10.1021/nl302950u.
Poggio, Martino and Degen, Christian L. (2012) ‘Magnetic resonance force microscopy’, in Encyclopedia of Nanotechnology. Berlin: Springer (Encyclopedia of Nanotechnology), pp. 1256–1264. Available at: https://doi.org/10.1007/978-90-481-9751-4_40.
Poggio, Martino and Degen, Christian L. (2012) ‘Magnetic resonance force microscopy’, in Encyclopedia of Nanotechnology. Berlin: Springer (Encyclopedia of Nanotechnology), pp. 1256–1264. Available at: https://doi.org/10.1007/978-90-481-9751-4_40.
Xue, F. et al. (2011) ‘A geometry for optimizing nanoscale magnetic resonance force microscopy’, Applied Physics Letters, 98(16), p. 163103. Available at: https://doi.org/10.1063/1.3579521.
Xue, F. et al. (2011) ‘A geometry for optimizing nanoscale magnetic resonance force microscopy’, Applied Physics Letters, 98(16), p. 163103. Available at: https://doi.org/10.1063/1.3579521.
Xue, F. et al. (2011) ‘Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample’, Physical Review B (Condensed Matter), 84(20), p. 205328. Available at: https://doi.org/10.1103/physrevb.84.205328.
Xue, F. et al. (2011) ‘Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample’, Physical Review B (Condensed Matter), 84(20), p. 205328. Available at: https://doi.org/10.1103/physrevb.84.205328.
Oosterkamp, T. H. et al. (2010) ‘Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy’, Applied Physics Letters, 96(8), p. 083107. Available at: https://doi.org/10.1063/1.3304788.
Oosterkamp, T. H. et al. (2010) ‘Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy’, Applied Physics Letters, 96(8), p. 083107. Available at: https://doi.org/10.1063/1.3304788.
Poggio, M. (2010) ‘Taking MRI to the nanoscale by force’, nanotechweb.org, 1 January, p. 1. Available at: http://nanotechweb.org/cws/article/lab/43632.
Poggio, M. (2010) ‘Taking MRI to the nanoscale by force’, nanotechweb.org, 1 January, p. 1. Available at: http://nanotechweb.org/cws/article/lab/43632.
Poggio, M. and Degen, C. L. (2010) ‘Force-detected nuclear magnetic resonance : recent advances and future challenges’, Nanotechnology, 21(34), p. 342001. Available at: https://doi.org/10.1088/0957-4484/21/34/342001.
Poggio, M. and Degen, C. L. (2010) ‘Force-detected nuclear magnetic resonance : recent advances and future challenges’, Nanotechnology, 21(34), p. 342001. Available at: https://doi.org/10.1088/0957-4484/21/34/342001.
Degen, C L et al. (2009) ‘Nanoscale magnetic resonance imaging’, Proceedings of the National Academy of Sciences, 106(5), pp. 1313–7. Available at: https://doi.org/10.1073/pnas.0812068106.
Degen, C L et al. (2009) ‘Nanoscale magnetic resonance imaging’, Proceedings of the National Academy of Sciences, 106(5), pp. 1313–7. Available at: https://doi.org/10.1073/pnas.0812068106.
Mamin, H J et al. (2009) ‘Isotope-Selective Detection and Imaging of Organic Nanolayers’, Nano Letters, 9(8), pp. 3020–4. Available at: https://doi.org/10.1021/nl901466p.
Mamin, H J et al. (2009) ‘Isotope-Selective Detection and Imaging of Organic Nanolayers’, Nano Letters, 9(8), pp. 3020–4. Available at: https://doi.org/10.1021/nl901466p.
Poggio, M et al. (2009) ‘Nuclear Double Resonance between Statistical Spin Polarizations’, Physical Review Letters, 102(8), p. 087604. Available at: https://doi.org/10.1103/physrevlett.102.087604.
Poggio, M et al. (2009) ‘Nuclear Double Resonance between Statistical Spin Polarizations’, Physical Review Letters, 102(8), p. 087604. Available at: https://doi.org/10.1103/physrevlett.102.087604.