UNIverse - Public Research Portal

Experimentalphysik Quantenphysik (Zumbühl)

Publications

76 found
Show per page

Eggli, Rafael S. et al. (2025) ‘Coupling a high-Q resonator to a spin qubit with all-electrical control’, Physical Review Research. 24.02.2025, 7(1). Available at: https://doi.org/10.1103/physrevresearch.7.013197.

URLs
URLs

Ranni, Antti et al. (2024) ‘Decoherence in a crystal-phase defined double quantum dot charge qubit strongly coupled to a high-impedance resonator’, Physical Review Research. 14.11.2024, 6(4). Available at: https://doi.org/10.1103/physrevresearch.6.043134.

URLs
URLs

Cheung, L.Y. et al. (2024) ‘Photon-mediated long-range coupling of two Andreev pair qubits’, Nature Physics, 20(11), pp. 1793–1797. Available at: https://doi.org/10.1038/s41567-024-02630-w.

URLs
URLs

Apostolidis, P. et al. (2024) ‘Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures’, Nature Electronics. 05.08.2024, 7, pp. 760–767. Available at: https://doi.org/10.1038/s41928-024-01214-z.

URLs
URLs

Zheng, H. et al. (2024) ‘Coherent Control of a Few-Channel Hole Type Gatemon Qubit’, Nano Letters, 24(24), pp. 7173–7179. Available at: https://doi.org/10.1021/acs.nanolett.4c00770.

URLs
URLs

Carballido, Miguel J. et al. (2024) ‘Compromise-Free Scaling of Qubit Speed and Coherence’, arXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2402.07313.

URLs
URLs

Candid, Denis R. et al. (2023) ‘Beating-free quantum oscillations in two-dimensional electron gases with strong spin-orbit and Zeeman interactions’, Physical Review Research. 27.12.2023, 5. Available at: https://doi.org/10.1103/PhysRevResearch.5.043297.

URLs
URLs

Cerveny, Kristopher William (2022) Quantum Transport Characterizations in Selective-Area Grown InGaAs Nanowire Networks. Dissertation. Universität Basel.

Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.

URLs
URLs

Camenzind, Timothy N. et al. (2021) ‘High mobility SiMOSFETs fabricated in a full 300mm CMOS process’, Materials for Quantum Technology, 1(4), p. 041001. Available at: https://doi.org/10.1088/2633-4356/ac40f4.

URLs
URLs

Camenzind, Timothy Nigel (2021) Graphene and Silicon Materials for Quantum Computing. Dissertation. Universität Basel.

Carballido, Miguel J. et al. (2021) ‘Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction’, Physical Review B, 103(19), p. 195444. Available at: https://doi.org/10.1103/physrevb.102.195401.

URLs
URLs

Craig, D. L. et al. (2021) ‘Bridging the reality gap in quantum devices with physics-aware machine learning’, Arxiv [Preprint]. Cornell University (arxiv). Available at: https://doi.org/10.48550/arxiv.2111.11285.

URLs
URLs

Froning, Florian N. M. et al. (2021) ‘Ultrafast hole spin qubit with gate-tunable spin-orbit switch functionality’, Nature Nanotechnology, 16(3), pp. 308–312. Available at: https://doi.org/10.1038/s41565-020-00828-6.

URLs
URLs

Froning, F. N. M. et al. (2021) ‘Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots’, Physical Review Research, 3(1), p. 013081. Available at: https://doi.org/10.1103/physrevresearch.3.013081.

URLs
URLs

Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.

URLs
URLs

Haley, Richard, Prance, Jonathan and Zumbühl, Dominik (2021) ‘Breaking the millikelvin barrier in nanoelectronics’, Europhysics News, 52(4), pp. 26–29. Available at: https://doi.org/10.1051/epn/2021406.

URLs
URLs

Nguyen, V. et al. (2021) ‘Deep reinforcement learning for efficient measurement of quantum devices’, npj Quantum Information, 7(1), pp. 100–0. Available at: https://doi.org/10.1038/s41534-021-00434-x.

URLs
URLs

Samani, Mohammad et al. (2021) ‘Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2110.06293.

URLs
URLs

Severin, B. et al. (2021) ‘Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2107.12975.

URLs
URLs

Sifrig, Dominik et al. (2021) ‘Reducing the hydrogen content in liquid helium’, Cryogenics, 114, p. 103239. Available at: https://doi.org/10.1016/j.cryogenics.2020.103239.

URLs
URLs

Camenzind, Leon C. et al. (2020) ‘Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots’, Physical Review Letters, 127(5), p. 057701. Available at: https://doi.org/10.1103/physrevlett.127.057701.

URLs
URLs

Ferguson, Michael S. et al. (2020) ‘Quantum measurement induces a many-body transition’, arXiv, 2010, p. 04635. Available at: https://arxiv.org/abs/2010.04635.

URLs
URLs

Friedl, Martin et al. (2020) ‘Remote Doping of Scalable Nanowire Branches’, Nano Letters, 20(5), pp. 3577–3584. Available at: https://doi.org/10.1021/acs.nanolett.0c00517.

URLs
URLs

Froning, Florian (2020) Hole Spin Qubits in Ge/Si Core/Shell Nanowires. Dissertation. Universität Basel.

Jones, A. T. et al. (2020) ‘Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures’, Journal of Low Temperature Physics, 201(5), pp. 772–802. Available at: https://doi.org/10.1007/s10909-020-02472-9.

URLs
URLs

Moon, H. et al. (2020) ‘Machine learning enables completely automatic tuning of a quantum device faster than human experts’, Nature Communications, 11(1), p. 4161. Available at: https://doi.org/10.1038/s41467-020-17835-9.

URLs
URLs

Patlatiuk, T. et al. (2020) ‘Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy’, Physical Review Letters, 125(8), p. 087701. Available at: https://doi.org/10.1103/physrevlett.125.087701.

URLs
URLs

Schupp, F. J. et al. (2020) ‘Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier’, Journal of Applied Physics, 127(24), p. 244503. Available at: https://doi.org/10.1063/5.0005886.

URLs
URLs

van Esbroeck, N. M. et al. (2020) ‘Quantum device fine-tuning using unsupervised embedding learning’, New Journal of Physics, 22(9), p. 095003. Available at: https://doi.org/10.1088/1367-2630/abb64c.

URLs
URLs

Weigele, Pirmin J. et al. (2020) ‘Symmetry breaking of the persistent spin helix in quantum transport’, Physical Review B, 101, p. 035414. Available at: https://doi.org/10.1103/physrevb.101.035414.

URLs
URLs

Camenzind, Leon (2019) Spin and Orbits in Semiconductor Quantum Dots. Dissertation. Universität Basel.

Camenzind, Leon C. et al. (2019) ‘Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields’, Physical Review Letters, 122(20), p. 207701. Available at: https://doi.org/10.1103/physrevlett.122.207701.

URLs
URLs

Lennon, D. T. et al. (2019) ‘Efficiently measuring a quantum device using machine learning’, npj Quantum Information, 5, p. 79. Available at: https://doi.org/10.1038/s41534-019-0193-4.

URLs
URLs

Marinescu, D. C. et al. (2019) ‘Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions’, Physical Review Letters, 122(15), p. 156601. Available at: https://doi.org/10.1103/physrevlett.122.156601.

URLs
URLs

Patlatiuk, Taras (2019) Tunneling Spectroscopy of the Quantum Hall edge states using GaAs Quantum Wires. Dissertation. Universität Basel.

Rehmann, Mirko (2019) Hydrogen Plasma Defined Graphene Edges. Dissertation. Universität Basel.

Rehmann, Mirko K. et al. (2019) ‘Characterization of hydrogen plasma defined graphene edges’, Carbon, 150, pp. 417–424. Available at: https://doi.org/10.1016/j.carbon.2019.05.015.

URLs
URLs

Stano, Peter et al. (2019) ‘Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot’, Physical Review B, 99(8), p. 085308. Available at: https://doi.org/10.1103/physrevb.99.085308.

URLs
URLs

Camenzind, Leon C. et al. (2018) ‘Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot’, Nature communications, 9(1), p. 3454. Available at: https://doi.org/10.1038/s41467-018-05879-x.

URLs
URLs

Friedl, Martin et al. (2018) ‘Template-Assisted Scalable Nanowire Networks’, Nano Letters. 26.03.2018, 18(4), pp. 2666–2671. Available at: https://doi.org/10.1021/acs.nanolett.8b00554.

URLs
URLs

Froning, F. N. M. et al. (2018) ‘Single, double, and triple quantum dots in Ge/Si nanowires’, Applied Physics Letters. 15.08.2018, 113. Available at: https://doi.org/10.1063/1.5042501.

URLs
URLs

Kalyoncu and Yemliha (2018) Hydrogen Plasma Etched Graphene Nanoribbons. Dissertation. Universität Basel.

Kuhlmann, Andreas V. et al. (2018) ‘Ambipolar quantum dots in undoped silicon fin field-effect transistors’, Applied Physics Letters. 21.09.2018, 113(12). Available at: https://doi.org/10.1063/1.5048097.

URLs
URLs

Patlatiuk, T. et al. (2018) ‘Evolution of the quantum Hall bulk spectrum into chiral edge states’, Nature Communications. 12.09.2018, 9. Available at: https://doi.org/10.1038/s41467-018-06025-3.

URLs
URLs

Stano, Peter et al. (2018) ‘g-factor of electrons in gate-defined quantum dots in a strong in-plane magnetic field’, Physical Review B, 98(19). Available at: https://doi.org/10.1103/physrevb.98.195314.

URLs
URLs

Dettwiler, Florian et al. (2017) ‘Stretchable Persistent Spin Helices in GaAs Quantum Wells’, Physical Review X, 7(3), p. 031010. Available at: https://doi.org/10.1103/physrevx.7.031010.

URLs
URLs

Hug, Dorothee et al. (2017) ‘Anisotropic etching of graphite and graphene in a remote hydrogen plasma’, npj 2D Materials and Applications, 1, p. 21. Available at: https://doi.org/10.1038/s41699-017-0021-7.

URLs
URLs

Palma, Mario et al. (2017) ‘Magnetic cooling for microkelvin nanoelectronics on a cryofree platform’, Review of Scientific Instruments, 88(4), p. 043902. Available at: https://doi.org/10.1063/1.4979929.

URLs
URLs

Palma, Mario et al. (2017) ‘On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK’, Applied Physics Letters, 111, p. 253105. Available at: https://doi.org/10.1063/1.5002565.

URLs
URLs

Biesinger, D E F et al. (2015) ‘Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot’, Physical review letters, 115(10), p. 106804. Available at: https://doi.org/10.1103/physrevlett.115.106804.

URLs
URLs

Dario Maradan (2015) Magnetic Refrigeration for Nanoelectronics on a Cryogen-Free Platform. Dissertation. Universität Basel.

Feshchenko, A. V. et al. (2015) ‘Tunnel junction thermometry down to millikelvin temperatures’, Physical review applied, 4(3), p. 034001. Available at: https://doi.org/10.1103/physrevapplied.4.034001.

URLs
URLs

Dettwiler, F. et al. (2014) ‘Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics’, arxiv.org [cond-mat.mes-hall], p. 1403.7775. Available at: http://arxiv.org/abs/1403.7775.

URLs
URLs

Dettwiler, F. et al. (2014) ‘Electrical spin protection and manipulation via gate-locked spin-orbit fields’, arxiv.org [cond-mat.mes-hall] [Preprint]. Available at: http://arxiv.org/abs/1403.3518.

URLs
URLs

Maradan, D. et al. (2014) ‘GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing’, Journal of low temperature physics, 175(5-6), pp. 784–798. Available at: https://doi.org/10.1007/s10909-014-1169-6.

URLs
URLs

Scheller, Christian P. et al. (2014) ‘Silver-Epoxy Microwave Filters and Thermalizers for Millikelvin Experiments’, Applied physics letters, 104(21), p. 211106. Available at: https://doi.org/10.1063/1.4880099.

URLs
URLs

Scheller, C. P. et al. (2014) ‘Spontaneous Helical Order of Electron and Nuclear Spins in a Luttinger Liquid’, SPG Mitteilungen, 44, p. 23. Available at: http://www.sps.ch/uploads/media/Mitteilungen_Progress_44.pdf.

URLs
URLs

Scheller, C P et al. (2014) ‘Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires’, Physical review letters, 112(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.112.066801.

URLs
URLs

Casparis, L. et al. (2013) ‘Evidence for Disorder Induced Delocalization in Graphite’, arxiv.org [cond-mat.mes-hall] [Preprint]. Available at: http://arxiv.org/abs/1301.2727.

URLs
URLs

Casparis, L et al. (2012) ‘Metallic Coulomb Blockade Thermometry down to 10 mK and below’, Review of scientific instruments, 83(8), p. 083903. Available at: https://doi.org/10.1063/1.4744944.

URLs
URLs

Eren, B. et al. (2012) ‘Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?’, Beilstein journal of nanotechnology, 3, pp. 852–9. Available at: https://doi.org/10.3762/bjnano.3.96.

URLs
URLs

Kölbl, Dominikus et al. (2012) ‘Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs’, Physical review letters, 109(8), p. 086601. Available at: https://doi.org/10.1103/physrevlett.109.086601.

URLs
URLs

Kölbl, D. and Zumbühl, D. M. (2012) ‘Transport spectroscopy of disordered graphene quantum dots etched into a single graphene flake’, arxiv.org [cond-mat.mes-hall], p. 6. Available at: https://doi.org/arxiv:1307.8163.

URLs
URLs

Clark, A C et al. (2010) ‘Method for Cooling Nanostructures to Microkelvin Temperatures’, Review of scientific instruments, 81(10), p. 103904. Available at: https://doi.org/10.1063/1.3489892.

URLs
URLs

Amasha, S. et al. (2008) ‘Spin-dependent tunneling of single electrons into an empty quantum dot’, Physical Review B, 78(4), p. 041306R. Available at: https://doi.org/10.1103/physrevb.78.041306.

URLs
URLs

Amasha, S et al. (2008) ‘Electrical control of spin relaxation in a quantum dot’, Physical review letters, 100(4), p. 046803. Available at: https://doi.org/10.1103/physrevlett.100.046803.

URLs
URLs

MacLean, K et al. (2007) ‘Energy dependent tunneling in a quantum dot’, Physical review letters, 98(3), p. 036802. Available at: https://doi.org/10.1103/physrevlett.98.036802.

URLs
URLs

Gelfand, Ian J. et al. (2006) ‘Suface-gated quantum Hall effect in an InAs heterostructure’, Applied physics letters, 88(25), p. 252105. Available at: https://doi.org/10.1063/1.2210289.

URLs
URLs

Zumbühl, D M et al. (2006) ‘Asymmetry of nonlinear transport and electron interactions in quantum dots’, Physical review letters, 96(20), p. 206802. Available at: https://doi.org/10.1103/physrevlett.96.206802.

URLs
URLs

Zumbuhl, DM et al. (2005) ‘Conductance Fluctuations and partially broken Spin Symmetries in Quantum Dots’, Physical Review B, 72(8), p. 081305. Available at: https://doi.org/10.1103/physrevb.72.081305.

URLs
URLs

Zumbühl, D M et al. (2004) ‘Cotunneling spectroscopy in few-electron quantum dots’, Physical review letters, 93(25), p. 256801. Available at: https://doi.org/10.1103/physrevlett.93.256801.

URLs
URLs

Zumbuhl, DM et al. (2004) ‘Orbital effects of in-plane magnetic fields probed by mesoscopic conductance fluctuations’, Physical Review B, 69(12), p. 121305. Available at: https://doi.org/10.1103/physrevb.69.121305.

URLs
URLs

Miller, J B et al. (2003) ‘Gate-controlled spin-orbit quantum interference effects in lateral transport’, Physical review letters, 90(7), p. 076807. Available at: https://doi.org/10.1103/physrevlett.90.076807.

URLs
URLs

Zumbühl, D M et al. (2002) ‘Spin-orbit coupling, antilocalization and parallel magnetic fields in quantum dots’, Physical review letters, 89(27), p. 276803. Available at: https://doi.org/10.1103/physrevlett.89.276803.

URLs
URLs

Kartner, FX, Zumbuhl, DM and Matuschek, N (1999) ‘Turbulence in mode-locked lasers’, Physical review letters, 82(22), pp. 4428–4431. Available at: https://doi.org/10.1103/physrevlett.82.4428.

URLs
URLs