Experimentalphysik Quantenphysik (Zumbühl)
Publications
76 found
Show per page
Eggli, Rafael S. et al. (2025) ‘Coupling a high-Q resonator to a spin qubit with all-electrical control’, Physical Review Research. 24.02.2025, 7(1). Available at: https://doi.org/10.1103/physrevresearch.7.013197.
Eggli, Rafael S. et al. (2025) ‘Coupling a high-Q resonator to a spin qubit with all-electrical control’, Physical Review Research. 24.02.2025, 7(1). Available at: https://doi.org/10.1103/physrevresearch.7.013197.
Ranni, Antti et al. (2024) ‘Decoherence in a crystal-phase defined double quantum dot charge qubit strongly coupled to a high-impedance resonator’, Physical Review Research. 14.11.2024, 6(4). Available at: https://doi.org/10.1103/physrevresearch.6.043134.
Ranni, Antti et al. (2024) ‘Decoherence in a crystal-phase defined double quantum dot charge qubit strongly coupled to a high-impedance resonator’, Physical Review Research. 14.11.2024, 6(4). Available at: https://doi.org/10.1103/physrevresearch.6.043134.
Cheung, L.Y. et al. (2024) ‘Photon-mediated long-range coupling of two Andreev pair qubits’, Nature Physics, 20(11), pp. 1793–1797. Available at: https://doi.org/10.1038/s41567-024-02630-w.
Cheung, L.Y. et al. (2024) ‘Photon-mediated long-range coupling of two Andreev pair qubits’, Nature Physics, 20(11), pp. 1793–1797. Available at: https://doi.org/10.1038/s41567-024-02630-w.
Apostolidis, P. et al. (2024) ‘Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures’, Nature Electronics. 05.08.2024, 7, pp. 760–767. Available at: https://doi.org/10.1038/s41928-024-01214-z.
Apostolidis, P. et al. (2024) ‘Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures’, Nature Electronics. 05.08.2024, 7, pp. 760–767. Available at: https://doi.org/10.1038/s41928-024-01214-z.
Zheng, H. et al. (2024) ‘Coherent Control of a Few-Channel Hole Type Gatemon Qubit’, Nano Letters, 24(24), pp. 7173–7179. Available at: https://doi.org/10.1021/acs.nanolett.4c00770.
Zheng, H. et al. (2024) ‘Coherent Control of a Few-Channel Hole Type Gatemon Qubit’, Nano Letters, 24(24), pp. 7173–7179. Available at: https://doi.org/10.1021/acs.nanolett.4c00770.
Carballido, Miguel J. et al. (2024) ‘Compromise-Free Scaling of Qubit Speed and Coherence’, arXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2402.07313.
Carballido, Miguel J. et al. (2024) ‘Compromise-Free Scaling of Qubit Speed and Coherence’, arXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2402.07313.
Candid, Denis R. et al. (2023) ‘Beating-free quantum oscillations in two-dimensional electron gases with strong spin-orbit and Zeeman interactions’, Physical Review Research. 27.12.2023, 5. Available at: https://doi.org/10.1103/PhysRevResearch.5.043297.
Candid, Denis R. et al. (2023) ‘Beating-free quantum oscillations in two-dimensional electron gases with strong spin-orbit and Zeeman interactions’, Physical Review Research. 27.12.2023, 5. Available at: https://doi.org/10.1103/PhysRevResearch.5.043297.
Cerveny, Kristopher William (2022) Quantum Transport Characterizations in Selective-Area Grown InGaAs Nanowire Networks. Dissertation. Universität Basel.
Cerveny, Kristopher William (2022) Quantum Transport Characterizations in Selective-Area Grown InGaAs Nanowire Networks. Dissertation. Universität Basel.
Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.
Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.
Camenzind, Timothy N. et al. (2021) ‘High mobility SiMOSFETs fabricated in a full 300mm CMOS process’, Materials for Quantum Technology, 1(4), p. 041001. Available at: https://doi.org/10.1088/2633-4356/ac40f4.
Camenzind, Timothy N. et al. (2021) ‘High mobility SiMOSFETs fabricated in a full 300mm CMOS process’, Materials for Quantum Technology, 1(4), p. 041001. Available at: https://doi.org/10.1088/2633-4356/ac40f4.
Camenzind, Timothy Nigel (2021) Graphene and Silicon Materials for Quantum Computing. Dissertation. Universität Basel.
Camenzind, Timothy Nigel (2021) Graphene and Silicon Materials for Quantum Computing. Dissertation. Universität Basel.
Carballido, Miguel J. et al. (2021) ‘Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction’, Physical Review B, 103(19), p. 195444. Available at: https://doi.org/10.1103/physrevb.102.195401.
Carballido, Miguel J. et al. (2021) ‘Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction’, Physical Review B, 103(19), p. 195444. Available at: https://doi.org/10.1103/physrevb.102.195401.
Craig, D. L. et al. (2021) ‘Bridging the reality gap in quantum devices with physics-aware machine learning’, Arxiv [Preprint]. Cornell University (arxiv). Available at: https://doi.org/10.48550/arxiv.2111.11285.
Craig, D. L. et al. (2021) ‘Bridging the reality gap in quantum devices with physics-aware machine learning’, Arxiv [Preprint]. Cornell University (arxiv). Available at: https://doi.org/10.48550/arxiv.2111.11285.
Froning, Florian N. M. et al. (2021) ‘Ultrafast hole spin qubit with gate-tunable spin-orbit switch functionality’, Nature Nanotechnology, 16(3), pp. 308–312. Available at: https://doi.org/10.1038/s41565-020-00828-6.
Froning, Florian N. M. et al. (2021) ‘Ultrafast hole spin qubit with gate-tunable spin-orbit switch functionality’, Nature Nanotechnology, 16(3), pp. 308–312. Available at: https://doi.org/10.1038/s41565-020-00828-6.
Froning, F. N. M. et al. (2021) ‘Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots’, Physical Review Research, 3(1), p. 013081. Available at: https://doi.org/10.1103/physrevresearch.3.013081.
Froning, F. N. M. et al. (2021) ‘Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots’, Physical Review Research, 3(1), p. 013081. Available at: https://doi.org/10.1103/physrevresearch.3.013081.
Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.
Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.
Haley, Richard, Prance, Jonathan and Zumbühl, Dominik (2021) ‘Breaking the millikelvin barrier in nanoelectronics’, Europhysics News, 52(4), pp. 26–29. Available at: https://doi.org/10.1051/epn/2021406.
Haley, Richard, Prance, Jonathan and Zumbühl, Dominik (2021) ‘Breaking the millikelvin barrier in nanoelectronics’, Europhysics News, 52(4), pp. 26–29. Available at: https://doi.org/10.1051/epn/2021406.
Nguyen, V. et al. (2021) ‘Deep reinforcement learning for efficient measurement of quantum devices’, npj Quantum Information, 7(1), pp. 100–0. Available at: https://doi.org/10.1038/s41534-021-00434-x.
Nguyen, V. et al. (2021) ‘Deep reinforcement learning for efficient measurement of quantum devices’, npj Quantum Information, 7(1), pp. 100–0. Available at: https://doi.org/10.1038/s41534-021-00434-x.
Samani, Mohammad et al. (2021) ‘Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2110.06293.
Samani, Mohammad et al. (2021) ‘Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2110.06293.
Severin, B. et al. (2021) ‘Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2107.12975.
Severin, B. et al. (2021) ‘Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2107.12975.
Sifrig, Dominik et al. (2021) ‘Reducing the hydrogen content in liquid helium’, Cryogenics, 114, p. 103239. Available at: https://doi.org/10.1016/j.cryogenics.2020.103239.
Sifrig, Dominik et al. (2021) ‘Reducing the hydrogen content in liquid helium’, Cryogenics, 114, p. 103239. Available at: https://doi.org/10.1016/j.cryogenics.2020.103239.
Camenzind, Leon C. et al. (2020) ‘Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots’, Physical Review Letters, 127(5), p. 057701. Available at: https://doi.org/10.1103/physrevlett.127.057701.
Camenzind, Leon C. et al. (2020) ‘Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots’, Physical Review Letters, 127(5), p. 057701. Available at: https://doi.org/10.1103/physrevlett.127.057701.
Ferguson, Michael S. et al. (2020) ‘Quantum measurement induces a many-body transition’, arXiv, 2010, p. 04635. Available at: https://arxiv.org/abs/2010.04635.
Ferguson, Michael S. et al. (2020) ‘Quantum measurement induces a many-body transition’, arXiv, 2010, p. 04635. Available at: https://arxiv.org/abs/2010.04635.
Friedl, Martin et al. (2020) ‘Remote Doping of Scalable Nanowire Branches’, Nano Letters, 20(5), pp. 3577–3584. Available at: https://doi.org/10.1021/acs.nanolett.0c00517.
Friedl, Martin et al. (2020) ‘Remote Doping of Scalable Nanowire Branches’, Nano Letters, 20(5), pp. 3577–3584. Available at: https://doi.org/10.1021/acs.nanolett.0c00517.
Froning, Florian (2020) Hole Spin Qubits in Ge/Si Core/Shell Nanowires. Dissertation. Universität Basel.
Froning, Florian (2020) Hole Spin Qubits in Ge/Si Core/Shell Nanowires. Dissertation. Universität Basel.
Jones, A. T. et al. (2020) ‘Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures’, Journal of Low Temperature Physics, 201(5), pp. 772–802. Available at: https://doi.org/10.1007/s10909-020-02472-9.
Jones, A. T. et al. (2020) ‘Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures’, Journal of Low Temperature Physics, 201(5), pp. 772–802. Available at: https://doi.org/10.1007/s10909-020-02472-9.
Moon, H. et al. (2020) ‘Machine learning enables completely automatic tuning of a quantum device faster than human experts’, Nature Communications, 11(1), p. 4161. Available at: https://doi.org/10.1038/s41467-020-17835-9.
Moon, H. et al. (2020) ‘Machine learning enables completely automatic tuning of a quantum device faster than human experts’, Nature Communications, 11(1), p. 4161. Available at: https://doi.org/10.1038/s41467-020-17835-9.
Patlatiuk, T. et al. (2020) ‘Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy’, Physical Review Letters, 125(8), p. 087701. Available at: https://doi.org/10.1103/physrevlett.125.087701.
Patlatiuk, T. et al. (2020) ‘Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy’, Physical Review Letters, 125(8), p. 087701. Available at: https://doi.org/10.1103/physrevlett.125.087701.
Schupp, F. J. et al. (2020) ‘Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier’, Journal of Applied Physics, 127(24), p. 244503. Available at: https://doi.org/10.1063/5.0005886.
Schupp, F. J. et al. (2020) ‘Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier’, Journal of Applied Physics, 127(24), p. 244503. Available at: https://doi.org/10.1063/5.0005886.
van Esbroeck, N. M. et al. (2020) ‘Quantum device fine-tuning using unsupervised embedding learning’, New Journal of Physics, 22(9), p. 095003. Available at: https://doi.org/10.1088/1367-2630/abb64c.
van Esbroeck, N. M. et al. (2020) ‘Quantum device fine-tuning using unsupervised embedding learning’, New Journal of Physics, 22(9), p. 095003. Available at: https://doi.org/10.1088/1367-2630/abb64c.
Weigele, Pirmin J. et al. (2020) ‘Symmetry breaking of the persistent spin helix in quantum transport’, Physical Review B, 101, p. 035414. Available at: https://doi.org/10.1103/physrevb.101.035414.
Weigele, Pirmin J. et al. (2020) ‘Symmetry breaking of the persistent spin helix in quantum transport’, Physical Review B, 101, p. 035414. Available at: https://doi.org/10.1103/physrevb.101.035414.
Camenzind, Leon (2019) Spin and Orbits in Semiconductor Quantum Dots. Dissertation. Universität Basel.
Camenzind, Leon (2019) Spin and Orbits in Semiconductor Quantum Dots. Dissertation. Universität Basel.
Camenzind, Leon C. et al. (2019) ‘Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields’, Physical Review Letters, 122(20), p. 207701. Available at: https://doi.org/10.1103/physrevlett.122.207701.
Camenzind, Leon C. et al. (2019) ‘Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields’, Physical Review Letters, 122(20), p. 207701. Available at: https://doi.org/10.1103/physrevlett.122.207701.
Lennon, D. T. et al. (2019) ‘Efficiently measuring a quantum device using machine learning’, npj Quantum Information, 5, p. 79. Available at: https://doi.org/10.1038/s41534-019-0193-4.
Lennon, D. T. et al. (2019) ‘Efficiently measuring a quantum device using machine learning’, npj Quantum Information, 5, p. 79. Available at: https://doi.org/10.1038/s41534-019-0193-4.
Marinescu, D. C. et al. (2019) ‘Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions’, Physical Review Letters, 122(15), p. 156601. Available at: https://doi.org/10.1103/physrevlett.122.156601.
Marinescu, D. C. et al. (2019) ‘Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions’, Physical Review Letters, 122(15), p. 156601. Available at: https://doi.org/10.1103/physrevlett.122.156601.
Patlatiuk, Taras (2019) Tunneling Spectroscopy of the Quantum Hall edge states using GaAs Quantum Wires. Dissertation. Universität Basel.
Patlatiuk, Taras (2019) Tunneling Spectroscopy of the Quantum Hall edge states using GaAs Quantum Wires. Dissertation. Universität Basel.
Rehmann, Mirko (2019) Hydrogen Plasma Defined Graphene Edges. Dissertation. Universität Basel.
Rehmann, Mirko (2019) Hydrogen Plasma Defined Graphene Edges. Dissertation. Universität Basel.
Rehmann, Mirko K. et al. (2019) ‘Characterization of hydrogen plasma defined graphene edges’, Carbon, 150, pp. 417–424. Available at: https://doi.org/10.1016/j.carbon.2019.05.015.
Rehmann, Mirko K. et al. (2019) ‘Characterization of hydrogen plasma defined graphene edges’, Carbon, 150, pp. 417–424. Available at: https://doi.org/10.1016/j.carbon.2019.05.015.
Stano, Peter et al. (2019) ‘Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot’, Physical Review B, 99(8), p. 085308. Available at: https://doi.org/10.1103/physrevb.99.085308.
Stano, Peter et al. (2019) ‘Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot’, Physical Review B, 99(8), p. 085308. Available at: https://doi.org/10.1103/physrevb.99.085308.
Camenzind, Leon C. et al. (2018) ‘Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot’, Nature communications, 9(1), p. 3454. Available at: https://doi.org/10.1038/s41467-018-05879-x.
Camenzind, Leon C. et al. (2018) ‘Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot’, Nature communications, 9(1), p. 3454. Available at: https://doi.org/10.1038/s41467-018-05879-x.
Friedl, Martin et al. (2018) ‘Template-Assisted Scalable Nanowire Networks’, Nano Letters. 26.03.2018, 18(4), pp. 2666–2671. Available at: https://doi.org/10.1021/acs.nanolett.8b00554.
Friedl, Martin et al. (2018) ‘Template-Assisted Scalable Nanowire Networks’, Nano Letters. 26.03.2018, 18(4), pp. 2666–2671. Available at: https://doi.org/10.1021/acs.nanolett.8b00554.
Froning, F. N. M. et al. (2018) ‘Single, double, and triple quantum dots in Ge/Si nanowires’, Applied Physics Letters. 15.08.2018, 113. Available at: https://doi.org/10.1063/1.5042501.
Froning, F. N. M. et al. (2018) ‘Single, double, and triple quantum dots in Ge/Si nanowires’, Applied Physics Letters. 15.08.2018, 113. Available at: https://doi.org/10.1063/1.5042501.
Kalyoncu and Yemliha (2018) Hydrogen Plasma Etched Graphene Nanoribbons. Dissertation. Universität Basel.
Kalyoncu and Yemliha (2018) Hydrogen Plasma Etched Graphene Nanoribbons. Dissertation. Universität Basel.
Kuhlmann, Andreas V. et al. (2018) ‘Ambipolar quantum dots in undoped silicon fin field-effect transistors’, Applied Physics Letters. 21.09.2018, 113(12). Available at: https://doi.org/10.1063/1.5048097.
Kuhlmann, Andreas V. et al. (2018) ‘Ambipolar quantum dots in undoped silicon fin field-effect transistors’, Applied Physics Letters. 21.09.2018, 113(12). Available at: https://doi.org/10.1063/1.5048097.
Patlatiuk, T. et al. (2018) ‘Evolution of the quantum Hall bulk spectrum into chiral edge states’, Nature Communications. 12.09.2018, 9. Available at: https://doi.org/10.1038/s41467-018-06025-3.
Patlatiuk, T. et al. (2018) ‘Evolution of the quantum Hall bulk spectrum into chiral edge states’, Nature Communications. 12.09.2018, 9. Available at: https://doi.org/10.1038/s41467-018-06025-3.
Stano, Peter et al. (2018) ‘g-factor of electrons in gate-defined quantum dots in a strong in-plane magnetic field’, Physical Review B, 98(19). Available at: https://doi.org/10.1103/physrevb.98.195314.
Stano, Peter et al. (2018) ‘g-factor of electrons in gate-defined quantum dots in a strong in-plane magnetic field’, Physical Review B, 98(19). Available at: https://doi.org/10.1103/physrevb.98.195314.
Dettwiler, Florian et al. (2017) ‘Stretchable Persistent Spin Helices in GaAs Quantum Wells’, Physical Review X, 7(3), p. 031010. Available at: https://doi.org/10.1103/physrevx.7.031010.
Dettwiler, Florian et al. (2017) ‘Stretchable Persistent Spin Helices in GaAs Quantum Wells’, Physical Review X, 7(3), p. 031010. Available at: https://doi.org/10.1103/physrevx.7.031010.
Hug, Dorothee et al. (2017) ‘Anisotropic etching of graphite and graphene in a remote hydrogen plasma’, npj 2D Materials and Applications, 1, p. 21. Available at: https://doi.org/10.1038/s41699-017-0021-7.
Hug, Dorothee et al. (2017) ‘Anisotropic etching of graphite and graphene in a remote hydrogen plasma’, npj 2D Materials and Applications, 1, p. 21. Available at: https://doi.org/10.1038/s41699-017-0021-7.
Palma, Mario et al. (2017) ‘Magnetic cooling for microkelvin nanoelectronics on a cryofree platform’, Review of Scientific Instruments, 88(4), p. 043902. Available at: https://doi.org/10.1063/1.4979929.
Palma, Mario et al. (2017) ‘Magnetic cooling for microkelvin nanoelectronics on a cryofree platform’, Review of Scientific Instruments, 88(4), p. 043902. Available at: https://doi.org/10.1063/1.4979929.
Palma, Mario et al. (2017) ‘On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK’, Applied Physics Letters, 111, p. 253105. Available at: https://doi.org/10.1063/1.5002565.
Palma, Mario et al. (2017) ‘On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK’, Applied Physics Letters, 111, p. 253105. Available at: https://doi.org/10.1063/1.5002565.
Biesinger, D E F et al. (2015) ‘Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot’, Physical review letters, 115(10), p. 106804. Available at: https://doi.org/10.1103/physrevlett.115.106804.
Biesinger, D E F et al. (2015) ‘Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot’, Physical review letters, 115(10), p. 106804. Available at: https://doi.org/10.1103/physrevlett.115.106804.
Dario Maradan (2015) Magnetic Refrigeration for Nanoelectronics on a Cryogen-Free Platform. Dissertation. Universität Basel.
Dario Maradan (2015) Magnetic Refrigeration for Nanoelectronics on a Cryogen-Free Platform. Dissertation. Universität Basel.
Feshchenko, A. V. et al. (2015) ‘Tunnel junction thermometry down to millikelvin temperatures’, Physical review applied, 4(3), p. 034001. Available at: https://doi.org/10.1103/physrevapplied.4.034001.
Feshchenko, A. V. et al. (2015) ‘Tunnel junction thermometry down to millikelvin temperatures’, Physical review applied, 4(3), p. 034001. Available at: https://doi.org/10.1103/physrevapplied.4.034001.
Dettwiler, F. et al. (2014) ‘Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics’, arxiv.org [cond-mat.mes-hall], p. 1403.7775. Available at: http://arxiv.org/abs/1403.7775.
Dettwiler, F. et al. (2014) ‘Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics’, arxiv.org [cond-mat.mes-hall], p. 1403.7775. Available at: http://arxiv.org/abs/1403.7775.
Dettwiler, F. et al. (2014) ‘Electrical spin protection and manipulation via gate-locked spin-orbit fields’, arxiv.org [cond-mat.mes-hall] [Preprint]. Available at: http://arxiv.org/abs/1403.3518.
Dettwiler, F. et al. (2014) ‘Electrical spin protection and manipulation via gate-locked spin-orbit fields’, arxiv.org [cond-mat.mes-hall] [Preprint]. Available at: http://arxiv.org/abs/1403.3518.
Maradan, D. et al. (2014) ‘GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing’, Journal of low temperature physics, 175(5-6), pp. 784–798. Available at: https://doi.org/10.1007/s10909-014-1169-6.
Maradan, D. et al. (2014) ‘GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing’, Journal of low temperature physics, 175(5-6), pp. 784–798. Available at: https://doi.org/10.1007/s10909-014-1169-6.
Scheller, Christian P. et al. (2014) ‘Silver-Epoxy Microwave Filters and Thermalizers for Millikelvin Experiments’, Applied physics letters, 104(21), p. 211106. Available at: https://doi.org/10.1063/1.4880099.
Scheller, Christian P. et al. (2014) ‘Silver-Epoxy Microwave Filters and Thermalizers for Millikelvin Experiments’, Applied physics letters, 104(21), p. 211106. Available at: https://doi.org/10.1063/1.4880099.
Scheller, C. P. et al. (2014) ‘Spontaneous Helical Order of Electron and Nuclear Spins in a Luttinger Liquid’, SPG Mitteilungen, 44, p. 23. Available at: http://www.sps.ch/uploads/media/Mitteilungen_Progress_44.pdf.
Scheller, C. P. et al. (2014) ‘Spontaneous Helical Order of Electron and Nuclear Spins in a Luttinger Liquid’, SPG Mitteilungen, 44, p. 23. Available at: http://www.sps.ch/uploads/media/Mitteilungen_Progress_44.pdf.
Scheller, C P et al. (2014) ‘Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires’, Physical review letters, 112(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.112.066801.
Scheller, C P et al. (2014) ‘Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires’, Physical review letters, 112(6), p. 066801. Available at: https://doi.org/10.1103/physrevlett.112.066801.
Casparis, L. et al. (2013) ‘Evidence for Disorder Induced Delocalization in Graphite’, arxiv.org [cond-mat.mes-hall] [Preprint]. Available at: http://arxiv.org/abs/1301.2727.
Casparis, L. et al. (2013) ‘Evidence for Disorder Induced Delocalization in Graphite’, arxiv.org [cond-mat.mes-hall] [Preprint]. Available at: http://arxiv.org/abs/1301.2727.
Casparis, L et al. (2012) ‘Metallic Coulomb Blockade Thermometry down to 10 mK and below’, Review of scientific instruments, 83(8), p. 083903. Available at: https://doi.org/10.1063/1.4744944.
Casparis, L et al. (2012) ‘Metallic Coulomb Blockade Thermometry down to 10 mK and below’, Review of scientific instruments, 83(8), p. 083903. Available at: https://doi.org/10.1063/1.4744944.
Eren, B. et al. (2012) ‘Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?’, Beilstein journal of nanotechnology, 3, pp. 852–9. Available at: https://doi.org/10.3762/bjnano.3.96.
Eren, B. et al. (2012) ‘Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?’, Beilstein journal of nanotechnology, 3, pp. 852–9. Available at: https://doi.org/10.3762/bjnano.3.96.
Kölbl, Dominikus et al. (2012) ‘Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs’, Physical review letters, 109(8), p. 086601. Available at: https://doi.org/10.1103/physrevlett.109.086601.
Kölbl, Dominikus et al. (2012) ‘Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs’, Physical review letters, 109(8), p. 086601. Available at: https://doi.org/10.1103/physrevlett.109.086601.
Kölbl, D. and Zumbühl, D. M. (2012) ‘Transport spectroscopy of disordered graphene quantum dots etched into a single graphene flake’, arxiv.org [cond-mat.mes-hall], p. 6. Available at: https://doi.org/arxiv:1307.8163.
Kölbl, D. and Zumbühl, D. M. (2012) ‘Transport spectroscopy of disordered graphene quantum dots etched into a single graphene flake’, arxiv.org [cond-mat.mes-hall], p. 6. Available at: https://doi.org/arxiv:1307.8163.
Clark, A C et al. (2010) ‘Method for Cooling Nanostructures to Microkelvin Temperatures’, Review of scientific instruments, 81(10), p. 103904. Available at: https://doi.org/10.1063/1.3489892.
Clark, A C et al. (2010) ‘Method for Cooling Nanostructures to Microkelvin Temperatures’, Review of scientific instruments, 81(10), p. 103904. Available at: https://doi.org/10.1063/1.3489892.
Amasha, S. et al. (2008) ‘Spin-dependent tunneling of single electrons into an empty quantum dot’, Physical Review B, 78(4), p. 041306R. Available at: https://doi.org/10.1103/physrevb.78.041306.
Amasha, S. et al. (2008) ‘Spin-dependent tunneling of single electrons into an empty quantum dot’, Physical Review B, 78(4), p. 041306R. Available at: https://doi.org/10.1103/physrevb.78.041306.
Amasha, S et al. (2008) ‘Electrical control of spin relaxation in a quantum dot’, Physical review letters, 100(4), p. 046803. Available at: https://doi.org/10.1103/physrevlett.100.046803.
Amasha, S et al. (2008) ‘Electrical control of spin relaxation in a quantum dot’, Physical review letters, 100(4), p. 046803. Available at: https://doi.org/10.1103/physrevlett.100.046803.
MacLean, K et al. (2007) ‘Energy dependent tunneling in a quantum dot’, Physical review letters, 98(3), p. 036802. Available at: https://doi.org/10.1103/physrevlett.98.036802.
MacLean, K et al. (2007) ‘Energy dependent tunneling in a quantum dot’, Physical review letters, 98(3), p. 036802. Available at: https://doi.org/10.1103/physrevlett.98.036802.
Gelfand, Ian J. et al. (2006) ‘Suface-gated quantum Hall effect in an InAs heterostructure’, Applied physics letters, 88(25), p. 252105. Available at: https://doi.org/10.1063/1.2210289.
Gelfand, Ian J. et al. (2006) ‘Suface-gated quantum Hall effect in an InAs heterostructure’, Applied physics letters, 88(25), p. 252105. Available at: https://doi.org/10.1063/1.2210289.
Zumbühl, D M et al. (2006) ‘Asymmetry of nonlinear transport and electron interactions in quantum dots’, Physical review letters, 96(20), p. 206802. Available at: https://doi.org/10.1103/physrevlett.96.206802.
Zumbühl, D M et al. (2006) ‘Asymmetry of nonlinear transport and electron interactions in quantum dots’, Physical review letters, 96(20), p. 206802. Available at: https://doi.org/10.1103/physrevlett.96.206802.
Zumbuhl, DM et al. (2005) ‘Conductance Fluctuations and partially broken Spin Symmetries in Quantum Dots’, Physical Review B, 72(8), p. 081305. Available at: https://doi.org/10.1103/physrevb.72.081305.
Zumbuhl, DM et al. (2005) ‘Conductance Fluctuations and partially broken Spin Symmetries in Quantum Dots’, Physical Review B, 72(8), p. 081305. Available at: https://doi.org/10.1103/physrevb.72.081305.
Zumbühl, D M et al. (2004) ‘Cotunneling spectroscopy in few-electron quantum dots’, Physical review letters, 93(25), p. 256801. Available at: https://doi.org/10.1103/physrevlett.93.256801.
Zumbühl, D M et al. (2004) ‘Cotunneling spectroscopy in few-electron quantum dots’, Physical review letters, 93(25), p. 256801. Available at: https://doi.org/10.1103/physrevlett.93.256801.
Zumbuhl, DM et al. (2004) ‘Orbital effects of in-plane magnetic fields probed by mesoscopic conductance fluctuations’, Physical Review B, 69(12), p. 121305. Available at: https://doi.org/10.1103/physrevb.69.121305.
Zumbuhl, DM et al. (2004) ‘Orbital effects of in-plane magnetic fields probed by mesoscopic conductance fluctuations’, Physical Review B, 69(12), p. 121305. Available at: https://doi.org/10.1103/physrevb.69.121305.
Miller, J B et al. (2003) ‘Gate-controlled spin-orbit quantum interference effects in lateral transport’, Physical review letters, 90(7), p. 076807. Available at: https://doi.org/10.1103/physrevlett.90.076807.
Miller, J B et al. (2003) ‘Gate-controlled spin-orbit quantum interference effects in lateral transport’, Physical review letters, 90(7), p. 076807. Available at: https://doi.org/10.1103/physrevlett.90.076807.
Zumbühl, D M et al. (2002) ‘Spin-orbit coupling, antilocalization and parallel magnetic fields in quantum dots’, Physical review letters, 89(27), p. 276803. Available at: https://doi.org/10.1103/physrevlett.89.276803.
Zumbühl, D M et al. (2002) ‘Spin-orbit coupling, antilocalization and parallel magnetic fields in quantum dots’, Physical review letters, 89(27), p. 276803. Available at: https://doi.org/10.1103/physrevlett.89.276803.
Kartner, FX, Zumbuhl, DM and Matuschek, N (1999) ‘Turbulence in mode-locked lasers’, Physical review letters, 82(22), pp. 4428–4431. Available at: https://doi.org/10.1103/physrevlett.82.4428.
Kartner, FX, Zumbuhl, DM and Matuschek, N (1999) ‘Turbulence in mode-locked lasers’, Physical review letters, 82(22), pp. 4428–4431. Available at: https://doi.org/10.1103/physrevlett.82.4428.