Faculty of Science
Faculty of Science
UNIverse - Public Research Portal

Computational Pharmacy (Lill)

Publications

90 found
Show per page

Eberhardt, J. et al. (2024) ‘Combining Bayesian optimization with sequence- or structure-based strategies for optimization of peptide-binding protein’, ChemRxiv [Preprint]. American Chemical Society (ACS). Available at: https://doi.org/10.26434/chemrxiv-2023-b7l81-v2.

URLs
URLs

Diamond, Justin and Lill, Markus A. (2024) ‘Neural SHAKE: Geometric Constraints in Graph Generative Models’, pp. 43–57. Available at: https://doi.org/10.1007/978-3-031-72359-9_4.

URLs
URLs

Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.

URLs
URLs

Kędzierski, Jacek et al. (2024) ‘In silico and in vitro assessment of drugs potentially causing adverse effects by inhibiting CYP17A1’, Toxicology and Applied Pharmacology, 486. Available at: https://doi.org/10.1016/j.taap.2024.116945.

URLs
URLs

Reinhardt, Jakob K. et al. (2024) ‘Vitex agnus castus Extract Ze 440: Diterpene and Triterpene’s Interactions with Dopamine D2 Receptor’, International Journal of Molecular Sciences, 25. Available at: https://doi.org/10.3390/ijms252111456.

URLs
URLs

Schäfer, Anima M. et al. (2024) ‘St. John’s Wort Formulations Induce Rat CYP3A23-3A1 Independent of Their Hyperforin Content’, Molecular Pharmacology, 105, pp. 14–22. Available at: https://doi.org/10.1124/molpharm.123.000725.

URLs
URLs

Varga, Norbert et al. (2024) ‘Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding’, Angewandte Chemie - International Edition, 63. Available at: https://doi.org/10.1002/anie.202406024.

URLs
URLs

Sellner, M.S., Lill, M.A. and Smieško, M. (2023) ‘PanScreen: A Comprehensive Approach to Off-Target Liability Assessment’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.16.567496.

URLs
URLs

Sellner, M.S., Lill, M.A. and Smieško, M. (2023) ‘Quality Matters: Deep Learning-Based Analysis of Protein-Ligand Interactions with Focus on Avoiding Bias’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.13.566916.

URLs
URLs

Eberhardt, Jérôme et al. (2023) ‘Combining Bayesian optimization with sequence- or structure-based strategies for optimization of peptide-binding protein’, ChemRxiv [Preprint]. American Chemical Society (ACS). Available at: https://doi.org/10.26434/chemrxiv-2023-b7l81.

URLs
URLs

Damilakis, Emmanouil et al. (2023) ‘Assessing prescription of antibiotics after vaccination against pneumococcal pneumonia; using prescription sequence symmetry analysis’, Clinical Microbiology and Infection, null. Available at: https://doi.org/10.1016/j.cmi.2023.10.003.

URLs
URLs

Hinz, Florian B, Mahmoud, Amr H and Lill, Markus A (2023) ‘Prediction of molecular field points using SE(3)-transformer model’, Machine Learning: Science and Technology, 4. Available at: https://doi.org/10.1088/2632-2153/ace67b.

URLs
URLs

Jäger, Marie-Christin et al. (2023) ‘Virtual screening and biological evaluation to identify pharmaceuticals potentially causing hypertension and hypokalemia by inhibiting steroid 11β-hydroxylase’, Toxicology and Applied Pharmacology, 475. Available at: https://doi.org/10.1016/j.taap.2023.116638.

URLs
URLs

Kędzierski, Jacek et al. (2023) ‘Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation’, Toxicology Letters, 384, pp. 1–13. Available at: https://doi.org/10.1016/j.toxlet.2023.07.006.

URLs
URLs

Kolesnyk, Serhii et al. (2023) ‘A battery of in silico models application for pesticides exerting reproductive health effects: Assessment of performance and prioritization of mechanistic studies’, Toxicology in Vitro, 93. Available at: https://doi.org/10.1016/j.tiv.2023.105706.

URLs
URLs

Masters, Matthew R et al. (2023) ‘Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.’, Journal of chemical information and modeling, 63(6), pp. 1695–1707. Available at: https://doi.org/10.1021/acs.jcim.2c01436.

URLs
URLs

Schreier, Verena N. et al. (2023) ‘Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: A systematic evidence map’, Environment international, 176, p. 107978. Available at: https://doi.org/10.1016/j.envint.2023.107978.

URLs
URLs

Sellner, Manuel S., Mahmoud, Amr H. and Lill, Markus A. (2023) ‘Efficient virtual high-content screening using a distance-aware transformer model’, Journal of Cheminformatics, 15. Available at: https://doi.org/10.1186/s13321-023-00686-z.

URLs
URLs

Wagner, B. et al. (2023) ‘A Structural-Reporter Group to Determine the Core Conformation of Sialyl Lewis<sup>x</sup> Mimetics’, Molecules, 28. Available at: https://doi.org/10.3390/molecules28062595.

URLs
URLs

Wehrli, Lydia et al. (2023) ‘The action of physiological and synthetic steroids on the calcium channel CatSper in human sperm’, Frontiers in Cell and Developmental Biology, 11. Available at: https://doi.org/10.3389/fcell.2023.1221578.

URLs
URLs

Winker, Moritz et al. (2023) ‘Immunological evaluation of herbal extracts commonly used for treatment of mental diseases during pregnancy’, Scientific Reports, 13(1), p. 9630. Available at: https://doi.org/10.1038/s41598-023-35952-5.

URLs
URLs

Anyanwu, Robin (2022) Predicting the Solubility of Collection-11 Inhibitors with in silico ADME Predictors. . Translated by Smiesko Martin. Masterarbeit.

Dürr, L et al. (2022) ‘Dimerosesquiterpene and Sesquiterpene Lactones from Artemisia argyi Inhibiting Oncogenic PI3K/AKT Signaling in Melanoma Cells’, Journal of Natural Product, 85, pp. 2557–2569. Available at: https://doi.org/10.1021/acs.jnatprod.2c00471.

URLs
URLs

Fischer, André et al. (2022) ‘Ligand pathways in estrogen-related receptors.’, Journal of biomolecular structure & dynamics, pp. 1–10. Available at: https://doi.org/10.1080/07391102.2022.2027818.

URLs
URLs

Hinz, Florian B., Mahmoud, Amr H. and Lill, Markus A. (2022) ‘Prediction of Molecular Field Points using SE (3)-Transformer Model’. ICLR2022 Machine Learning for Drug Discovery: ICLR2022 Machine Learning for Drug Discovery.

URLs
URLs

Inderbinen, Silvia G et al. (2022) ‘Activation of retinoic acid-related orphan receptor γ(t) by parabens and benzophenone UV-filters.’, Toxicology, 471, p. 153159. Available at: https://doi.org/10.1016/j.tox.2022.153159.

URLs
URLs

Lamers, Christina et al. (2022) ‘Insight into mode-of-action and structural determinants of the compstatin family of clinical complement inhibitors.’, Nature communications, 13(1), p. 5519. Available at: https://doi.org/10.1038/s41467-022-33003-7.

URLs
URLs

Mahmoud, Amr H et al. (2022) ‘Accurate Sampling of Macromolecular Conformations Using Adaptive Deep Learning and Coarse-Grained Representation.’, Journal of chemical information and modeling, 62(7), pp. 1602–1617. Available at: https://doi.org/10.1021/acs.jcim.1c01438.

URLs
URLs

Masters, Matthew R. et al. (2022) ‘Deep learning model for flexible and efficient protein-ligand docking’. ICLR2022 Machine Learning for Drug Discovery: ICLR2022 Machine Learning for Drug Discovery.

URLs
URLs

Messmer, Livius (2022) The generation and refinement of high-quality 3D structures for various pharmaceutically &amp; toxicologically relevant targets and ligands. . Translated by Smiesko Martin. Masterarbeit.

Papaj, Katarzyna et al. (2022) ‘Evaluation of Xa inhibitors as potential inhibitors of the SARS-CoV-2 Mpro protease.’, PloS one, 17(1), p. e0262482. Available at: https://doi.org/10.1371/journal.pone.0262482.

URLs
URLs

Schreier, Verena N. et al. (2022) ‘Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: Protocol for a systematic evidence map’, Environment International, 167, p. 107387. Available at: https://doi.org/10.1016/j.envint.2022.107387.

URLs
URLs

Sellner, Manuel S., Mahmoud, Amr H. and Lill, Markus A. (2022) ‘High-Content Similarity-Based Virtual Screening Using a Distance Aware Transformer Model’. ICLR2022 Machine Learning for Drug Discovery: ICLR2022 Machine Learning for Drug Discovery.

URLs
URLs

Yao Wei (2022) DEEP LEARNING APPROACHES FOR COARSE-GRAINED PROTEIN MODELS. . Translated by Lill Markus A. Masterarbeit.

Aschwanden, Roman (2021) Computational Exploration of Ligand Tunnels and Ligand Transfer in Protein-Protein Complexes Involved int the Retinoid Pathway. . Translated by Smiesko Martin; Fischer André. Masterarbeit.

Bardakci, Ferhat (2021) Small Molecule Binding Pathways to Nuclear Receptors (Estorgen-related receptor). . Translated by Smiesko Martin; Fischer André. Masterarbeit.

Fischer, André (2021) Ligand Recognition and Specificity of&nbsp;Metabolic Enzymes and Nuclear&nbsp;Receptors. . Translated by Smiesko Martin; Ricklin Daniel. Dissertation.

Fischer, André et al. (2021) ‘Conformational Changes of Thyroid Receptors in Response to Antagonists.’, Journal of chemical information and modeling, 61(2), pp. 1010–1019. Available at: https://doi.org/10.1021/acs.jcim.0c01403.

URLs
URLs

Fischer, André et al. (2021) ‘Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds.’, Journal of chemical information and modeling, 61(2), pp. 1001–1009. Available at: https://doi.org/10.1021/acs.jcim.0c01194.

URLs
URLs

Fischer, André et al. (2021) ‘Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2.’, International journal of molecular sciences, 22(4), p. 2065. Available at: https://doi.org/10.3390/ijms22042065.

URLs
URLs

Fischer, André et al. (2021) ‘Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results.’, Journal of medicinal chemistry, 64(5), pp. 2489–2500. Available at: https://doi.org/10.1021/acs.jmedchem.0c02227.

URLs
URLs

Fischer, André and Smieško, Martin (2021) ‘A Conserved Allosteric Site on Drug-Metabolizing CYPs: A Systematic Computational Assessment’, International Journal of Molecular Sciences, 22(24), p. 13215. Available at: https://doi.org/10.3390/ijms222413215.

URLs
URLs

Inderbinen, Silvia G. et al. (2021) ‘Species-specific differences in the inhibition of 11β-hydroxysteroid dehydrogenase 2 by itraconazole and posaconazole’, Toxicology and applied pharmacology, 412, p. 115387. Available at: https://doi.org/10.1016/j.taap.2020.115387.

URLs
URLs

Papaj, Katarzyna et al. (2021) ‘Investigation of Thiocarbamates as Potential Inhibitors of the SARS-CoV-2 Mpro’, Pharmaceuticals (Basel, Switzerland), 14(11), p. 1153. Available at: https://doi.org/10.3390/ph14111153.

URLs
URLs

Ruggli, Maria (2021) In silico slectivity assessment of collectin-11 antagonists. . Translated by Smiesko Martin; Ricklin Daniel. Masterarbeit.

Sellner, Manuel et al. (2021) ‘Conformational Landscape of Cytochrome P450 Reductase Interactions’, International journal of molecular sciences, 22(3), p. 1023. Available at: https://doi.org/10.3390/ijms22031023.

URLs
URLs

Fischer, A. et al. (2020) Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds. American Chemical Society (ACS). Available at: https://doi.org/10.26434/chemrxiv.11923239.v2.

URLs
URLs

Charleen Don (2020) Pharmacogenetic modeling of human cytochrome P450 2D6 - On the force of variation in inducing toxicity. . Translated by Smiesko Martin; Ricklin Daniel. Dissertation.

Don, Charleen G. and Smieško, Martin (2020) ‘In Silico Pharmacogenetics CYP2D6 Study Focused on the Pharmacovigilance of Herbal Antidepressants’, Frontiers in Pharmacology, 11, p. 683. Available at: https://doi.org/10.3389/fphar.2020.00683.

URLs
URLs

Don, Charleen G. and Smieško, Martin (2020) ‘Deciphering Reaction Determinants of Altered-Activity CYP2D6 Variants by Well-Tempered Metadynamics Simulation and QM/MM Calculations’, Journal of Chemical Information and Modeling, 60(12), pp. 6642–6653. Available at: https://doi.org/10.1021/acs.jcim.0c01091.

URLs
URLs

Fischer, André et al. (2020) ‘Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds’, International journal of molecular sciences, 21(10), p. 3626. Available at: https://doi.org/10.3390/ijms21103626.

URLs
URLs

Fischer, André and Smieško, Martin (2020) ‘Allosteric Binding Sites On Nuclear Receptors: Focus On Drug Efficacy and Selectivity’, International journal of molecular sciences, 21(2), p. 534. Available at: https://doi.org/10.3390/ijms21020534.

URLs
URLs

Frehner, Gabriela (2020) Conformational Changes of Thyroid Receptors Due to Antagonist Binding. . Translated by Smiesko Martin. Masterarbeit.

Ghanbarpour, Ahmadreza and Lill, Markus A. (2020) ‘Seq2Mol: Automatic design of de novo molecules conditioned by the target protein sequences through deep neural networks’. arXiv (15900). Available at: https://arxiv.org/abs/2010.15900.

URLs
URLs

Ghanbarpour, Ahmadreza, Mahmoud, Amr H. and Lill, Markus A. (2020) ‘Instantaneous generation of protein hydration properties from static structures’, Communications Chemistry, 3, p. 188. Available at: https://doi.org/10.1038/s42004-020-00435-5.

URLs
URLs

Häuptli, Florian (2020) Polypharmacy at the androgen receptor-modeling drug-drug interactions. . Translated by Smiesko Martin. Masterarbeit.

Mahmoud, Amr H., Lill, Jonas F. and Lill, Markus A. (2020) ‘Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix’. arXiv (12027). Available at: https://arxiv.org/abs/2008.12027.

URLs
URLs

Mahmoud, Amr H. et al. (2020) ‘Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning’, Communications Chemistry, 3, p. 19. Available at: https://doi.org/10.1038/s42004-020-0261-x.

URLs
URLs

Mahmoud, Amr H et al. (2020) ‘Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning’, Communications Chemistry. Nature Publishing Group (Communications Chemistry, 19). Available at: https://doi.org/10.1038/s42004-020-0261-x.

URLs
URLs

Mahmoud, Amr, Lill, Jonas F. and Lill, Markus A. (2020) ‘Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix’, Quantitative Biology, Biomolecules [Preprint]. arXiv (Quantitative Biology, Biomolecules). Available at: https://doi.org/arxiv:2008.12027.

URLs
URLs

Neranjan, Santhosh (2020) Large-scale virtual screening of natural compounds in OTC preparations. . Translated by Smiesko Martin. Masterarbeit.

Reinhardt, Jakob K. et al. (2020) ‘Compounds from Toddalia asiatica: Immunosuppressant activity and absolute configurations’, Journal of Natural Products, 83(10), pp. 3012–3020. Available at: https://doi.org/10.1021/acs.jnatprod.0c00564.

URLs
URLs

Mahmoud, A., Yang, Y. and Lill, M. (2019) Improving Atom Type Diversity and Sampling in Co-Solvent Simulations Using λ-Dynamics. American Chemical Society (ACS). Available at: https://doi.org/10.26434/chemrxiv.7557224.v1.

URLs
URLs

Bartolowits, Matthew D. et al. (2019) ‘Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen’, ACS omega, 4(12), pp. 15181–15196. Available at: https://doi.org/10.1021/acsomega.9b02079.

URLs
URLs

Cassell, Robert J. et al. (2019) ‘Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides’, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 29(3), pp. 450–456. Available at: https://doi.org/10.1016/j.euroneuro.2018.12.013.

URLs
URLs

Fischer, André and Smieško, Martin (2019) ‘Spontaneous Ligand Access Events to Membrane-Bound Cytochrome P450 2D6 Sampled at Atomic Resolution’, Scientific reports, 9(1), p. 16411. Available at: https://doi.org/10.1038/s41598-019-52681-w.

URLs
URLs

Fischer, André and Smieško, Martin (2019) ‘Ligand Pathways in Nuclear Receptors’, Journal of chemical information and modeling, 59(7), pp. 3100–3109. Available at: https://doi.org/10.1021/acs.jcim.9b00360.

URLs
URLs

Joël Wahl (2019) Quantifying the Role of Water in Ligand-­Protein Binding Processes. . Translated by Vedani Angelo; Smiesko Martin. Dissertation.

Kaur, Jatinder et al. (2019) ‘Optimization of a 1,3,4-oxadiazole series for inhibition of Ca; 2+; /calmodulin-stimulated activity of adenylyl cyclases 1 and 8 for the treatment of chronic pain’, European journal of medicinal chemistry, 162, pp. 568–585. Available at: https://doi.org/10.1016/j.ejmech.2018.11.036.

URLs
URLs

Mahmoud, Amr H., Yang, Ying and Lill, Markus A. (2019) ‘Improving Atom-Type Diversity and Sampling in Cosolvent Simulations Using λ-Dynamics’, Journal of chemical theory and computation, 15(5), pp. 3272–3287. Available at: https://doi.org/10.1021/acs.jctc.8b00940.

URLs
URLs

Mahmoud, Amr et al. (2019) ‘Elucidating the Multiple Roles of Hydration in Protein-Ligand Binding via Layerwise Relevance Propagation and Big Data Analytics’, Biological and Medicinal Chemistry [Preprint]. ChemRxiv (Biological and Medicinal Chemistry). Available at: https://doi.org/10.26434/chemrxiv.7723223.v1.

URLs
URLs

Moawad, Sherif (2019) Dukkah. . Translated by Smiesko Martin. Masterarbeit.

Roel-Touris, Jorge et al. (2019) ‘Less is more: Coarse-grained integrative modeling of large biomolecular assemblies with HADDOCK’, Journal of chemical theory and computation, 15(11), pp. 6358–6367. Available at: https://doi.org/10.1021/acs.jctc.9b00310.

URLs
URLs

Sellner, Manuel (2019) Conformational Flexibility of the Cytochrome P450 Reductase and Its interplay with CYP2D6. . Translated by Smiesko Martin; Don Charleen Georgette; Fischer André. Masterarbeit.

Yang, Ying, Mahmoud, Amr H. and Lill, Markus A. (2019) ‘Modeling of Halogen-Protein Interactions in Co-Solvent Molecular Dynamics Simulations’, Journal of chemical information and modeling, 59(1), pp. 38–42. Available at: https://doi.org/10.1021/acs.jcim.8b00806.

URLs
URLs

Reinhardt, J. et al. (2017) ‘Absolute configuration of sesquiterpene lactones with potent immunosuppressive activity’. Georg Thieme Verlag KG. Available at: https://doi.org/10.1055/s-0037-1608281.

URLs
URLs

Guccione, Clizia et al. (2017) ‘Corrigendum to “Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line” (Eur. J. Pharm. Biopharm. (2017) 119 (253–263) (S0939641117301613) (10.1016/j.ejpb.2017.06.018))’, European Journal of Pharmaceutics and Biopharmaceutics, 120, p. 146. Available at: https://doi.org/10.1016/j.ejpb.2017.09.010.

URLs
URLs

Pang, Lijuan et al. (2017) ‘FimH antagonists - Solubility: Vs. permeability’, Carbohydrate Chemistry, 42, pp. 248–273. Available at: https://doi.org/10.1039/9781782626657-00248.

URLs
URLs

Hamburger, M. et al. (2015) ‘Pharmacokinetic, in vitro and in silico assessment of anti-inflammatory alkaloids from Isatis tinctoria L.’, Planta Medica, 81(11). Available at: https://doi.org/10.1055/s-0035-1556303.

URLs
URLs

Kleeb, S. et al. (2015) ‘Crystal structure of FimH in complex with 3′-Chloro-4′-(alpha-D-mannopyranosyloxy)-biphenyl-4-carbonitrile’. Worldwide Protein Data Bank. Available at: https://doi.org/10.2210/pdb4cst/pdb.

URLs
URLs

Kleeb, S. et al. (2015) ‘Crystal structure of FimH in complex with a sulfonamide biphenyl alpha D-mannoside’. Worldwide Protein Data Bank. Available at: https://doi.org/10.2210/pdb4css/pdb.

URLs
URLs

Vedani, A. and Smiesko, M. (2013) ‘VirtualToxLab – insilico prediction if the toxic potential of drugs and chemicals’, Toxicology Letters, 221, p. S52. Available at: https://doi.org/10.1016/j.toxlet.2013.06.225.

URLs
URLs

Ebrahimi, S. et al. (2012) ‘Bisabololoxide derivatives from Artemisia persica, and determination of their absolute configurations by ECD’, Planta Medica, 78(11). Available at: https://doi.org/10.1055/s-0032-1321289.

URLs
URLs

Vedani, Angelo and Smiesko, Martin (2009) ‘In silico toxicology in drug discovery - Concepts based on three-dimensional models’, Alternatives to Laboratory Animals, 37, pp. 477–496. Available at: https://doi.org/10.1177/026119290903700506.

URLs
URLs

Vedani, Angelo et al. (2009) ‘VirtualToxLab™ - In silico prediction of the toxic (endocrine-disrupting) potential of drugs, chemicals and natural products. Two years and 2,000 compounds of experience: A progress report’, Altex, 26, pp. 167–176. Available at: https://doi.org/10.14573/altex.2009.3.167.

URLs
URLs

Sramko, M., Smiesko, M. and Remko, M. (2008) ‘Accurate aqueous proton dissociation constants calculations for selected angiotensin-converting enzyme inhibitors’, Journal of Biomolecular Structure and Dynamics, 25(6), pp. 599–608. Available at: https://doi.org/10.1080/07391102.2008.10507206.

URLs
URLs

Vedani, A. et al. (2008) ‘VirtualToxLab - In silico prediction of the endocrine-disrupting potential of drugs and chemicals’, Chimia, 62(5), pp. 322–328. Available at: https://doi.org/10.2533/chimia.2008.322.

URLs
URLs

Vedani, Angelo and Smiesko, Martin (2008) ‘Structure-Based computational pharmacology and toxicology’, pp. 549–572. Available at: https://doi.org/10.1142/9789812778789_0020.

URLs
URLs

Gao, Ganpan et al. (2007) ‘Mimetics of the tri- and tetrasaccharide epitope of GQ1bα as myelin-associated glycoprotein (MAG) ligands’, Bioorganic and Medicinal Chemistry, 15, pp. 7459–7469. Available at: https://doi.org/10.1016/j.bmc.2007.07.033.

URLs
URLs

Vedani, Angelo et al. (2007) ‘VirtualToxLab - In silico prediction of the toxic potential of drugs and environmental chemicals: Evaluation status and internet access protocol’, Altex, 24, pp. 153–161.