Pharmaceutical Biology (Teufel)
Publications
48 found
Show per page
Teufel, R. and Müller, M. (2025) ‘Giant Polyketide Synthases Biosynthesize a Marine Polyether Biotoxin’, Angewandte Chemie - International Edition, 64(4). Available at: https://doi.org/10.1002/anie.202419620.
Teufel, R. and Müller, M. (2025) ‘Giant Polyketide Synthases Biosynthesize a Marine Polyether Biotoxin’, Angewandte Chemie - International Edition, 64(4). Available at: https://doi.org/10.1002/anie.202419620.
Teufel, R. and Müller, M. (2025) ‘Giant Polyketide Synthases Biosynthesize a Marine Polyether Biotoxin’, Angewandte Chemie, 137(4). Available at: https://doi.org/10.1002/ange.202419620.
Teufel, R. and Müller, M. (2025) ‘Giant Polyketide Synthases Biosynthesize a Marine Polyether Biotoxin’, Angewandte Chemie, 137(4). Available at: https://doi.org/10.1002/ange.202419620.
Zdouc, M. et al. (2025) ‘MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration’, Nucleic Acids Research, 53(D1), pp. D678–D690. Available at: https://doi.org/10.1093/nar/gkae1115.
Zdouc, M. et al. (2025) ‘MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration’, Nucleic Acids Research, 53(D1), pp. D678–D690. Available at: https://doi.org/10.1093/nar/gkae1115.
Happi, G.M. et al. (2025) ‘Highly oxygenated antiplasmodial and non-hemolytic Δ7,9(11) stigmastane-type steroids from the twigs of Vernonia amygdalina Delile’, Phytochemistry, 229, p. 114286. Available at: https://doi.org/10.1016/j.phytochem.2024.114286.
Happi, G.M. et al. (2025) ‘Highly oxygenated antiplasmodial and non-hemolytic Δ7,9(11) stigmastane-type steroids from the twigs of Vernonia amygdalina Delile’, Phytochemistry, 229, p. 114286. Available at: https://doi.org/10.1016/j.phytochem.2024.114286.
Potterat, Olivier et al. (2025) ‘Bufadienolides from Helleborus foetidus and their cytotoxic properties on MCF-7 breast cancer cells’, Phytochemistry, 230. Available at: https://doi.org/10.1016/j.phytochem.2024.114329.
Potterat, Olivier et al. (2025) ‘Bufadienolides from Helleborus foetidus and their cytotoxic properties on MCF-7 breast cancer cells’, Phytochemistry, 230. Available at: https://doi.org/10.1016/j.phytochem.2024.114329.
Reinhardt, Jakob K. et al. (2024) ‘Vitex agnus castus Extract Ze 440: Diterpene and Triterpene’s Interactions with Dopamine D2 Receptor’, International Journal of Molecular Sciences, 25(21). Available at: https://doi.org/10.3390/ijms252111456.
Reinhardt, Jakob K. et al. (2024) ‘Vitex agnus castus Extract Ze 440: Diterpene and Triterpene’s Interactions with Dopamine D2 Receptor’, International Journal of Molecular Sciences, 25(21). Available at: https://doi.org/10.3390/ijms252111456.
Teufel, R. (2024) ‘Oxygen-transfer reactions by enzymatic flavin-N5 oxygen adducts—Oxidation is not a must’, Current Opinion in Chemical Biology, 80. Available at: https://doi.org/10.1016/j.cbpa.2024.102464.
Teufel, R. (2024) ‘Oxygen-transfer reactions by enzymatic flavin-N5 oxygen adducts—Oxidation is not a must’, Current Opinion in Chemical Biology, 80. Available at: https://doi.org/10.1016/j.cbpa.2024.102464.
Mouthé Happi, G. and Teufel, R. (2024) ‘Steroids from the Meliaceae family and their biological activities’, Phytochemistry, 221. Available at: https://doi.org/10.1016/j.phytochem.2024.114039.
Mouthé Happi, G. and Teufel, R. (2024) ‘Steroids from the Meliaceae family and their biological activities’, Phytochemistry, 221. Available at: https://doi.org/10.1016/j.phytochem.2024.114039.
Moffat, A.D. et al. (2024) ‘Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.04.03.587903.
Moffat, A.D. et al. (2024) ‘Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.04.03.587903.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Iobbi, Valeria et al. (2024) ‘Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi’, Agronomy, 14. Available at: https://doi.org/10.3390/agronomy14071444.
Iobbi, Valeria et al. (2024) ‘Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi’, Agronomy, 14. Available at: https://doi.org/10.3390/agronomy14071444.
Pol, Michal et al. (2024) ‘Rooting Patterns and Aucubin Content in Plantago lanceolata’, Agriculture (Switzerland), 14. Available at: https://doi.org/10.3390/agriculture14081352.
Pol, Michal et al. (2024) ‘Rooting Patterns and Aucubin Content in Plantago lanceolata’, Agriculture (Switzerland), 14. Available at: https://doi.org/10.3390/agriculture14081352.
Zurfluh, Leonie et al. (2024) ‘<i>Bryophyllum pinnatum</i> Inhibits Oxytocin and Vasopressin Signaling in Myometrial Cells’, Planta Medica [Preprint]. Available at: https://doi.org/10.1055/a-2303-9608.
Zurfluh, Leonie et al. (2024) ‘<i>Bryophyllum pinnatum</i> Inhibits Oxytocin and Vasopressin Signaling in Myometrial Cells’, Planta Medica [Preprint]. Available at: https://doi.org/10.1055/a-2303-9608.
Benka, M. et al. (2023) ‘Mass Spectrometric Analysis of Cucurbitacins and Dihydrocucurbitacins from the Tuber of Citrullus naudinianus’, Biomolecules, 13(8). Available at: https://doi.org/10.3390/biom13081168.
Benka, M. et al. (2023) ‘Mass Spectrometric Analysis of Cucurbitacins and Dihydrocucurbitacins from the Tuber of Citrullus naudinianus’, Biomolecules, 13(8). Available at: https://doi.org/10.3390/biom13081168.
Areesanan, Alexander et al. (2023) ‘Potential benefits of Malva sylvestris in dry-eye disease pathology in vitro based on antioxidant, wound-healing and anti-inflammatory properties’, Biomedicine and Pharmacotherapy, 168. Available at: https://doi.org/10.1016/j.biopha.2023.115782.
Areesanan, Alexander et al. (2023) ‘Potential benefits of Malva sylvestris in dry-eye disease pathology in vitro based on antioxidant, wound-healing and anti-inflammatory properties’, Biomedicine and Pharmacotherapy, 168. Available at: https://doi.org/10.1016/j.biopha.2023.115782.
Chauveau, Antoine et al. (2023) ‘Alkaloids in commercial preparations of California poppy – Quantification, intestinal permeability and microbiota interactions’, Biomedicine and Pharmacotherapy, 166. Available at: https://doi.org/10.1016/j.biopha.2023.115420.
Chauveau, Antoine et al. (2023) ‘Alkaloids in commercial preparations of California poppy – Quantification, intestinal permeability and microbiota interactions’, Biomedicine and Pharmacotherapy, 166. Available at: https://doi.org/10.1016/j.biopha.2023.115420.
Heng, Ming Y. et al. (2023) ‘Qualitative and Quantitative Secondary Metabolite Profiles in a Large Set of Sumatra Benzoin Samples’, Journal of Agricultural and Food Chemistry, 71, p. 8. Available at: https://doi.org/10.1021/acs.jafc.3c01861.
Heng, Ming Y. et al. (2023) ‘Qualitative and Quantitative Secondary Metabolite Profiles in a Large Set of Sumatra Benzoin Samples’, Journal of Agricultural and Food Chemistry, 71, p. 8. Available at: https://doi.org/10.1021/acs.jafc.3c01861.
Winker, Moritz et al. (2023) ‘Immunological evaluation of herbal extracts commonly used for treatment of mental diseases during pregnancy’, Scientific Reports, 13(1), p. 9630. Available at: https://doi.org/10.1038/s41598-023-35952-5.
Winker, Moritz et al. (2023) ‘Immunological evaluation of herbal extracts commonly used for treatment of mental diseases during pregnancy’, Scientific Reports, 13(1), p. 9630. Available at: https://doi.org/10.1038/s41598-023-35952-5.
Zhang L et al. (2022) ‘Antibacterial Synnepyrroles from Human-Associated Nocardiopsis sp. Show Protonophore Activity and Disrupt the Bacterial Cytoplasmic Membrane’, ACS Chemical Biology, 17(10), pp. 2836–2848. Available at: https://doi.org/10.1021/acschembio.2c00460.
Zhang L et al. (2022) ‘Antibacterial Synnepyrroles from Human-Associated Nocardiopsis sp. Show Protonophore Activity and Disrupt the Bacterial Cytoplasmic Membrane’, ACS Chemical Biology, 17(10), pp. 2836–2848. Available at: https://doi.org/10.1021/acschembio.2c00460.
Toplak, M., Höing, L. and Teufel, R. (2022) ‘Unusual flavoenzymes control the formation of tropones in bacteria Ungewöhnliche Flavoenzyme steuern die Bildung von Troponen in Bakterien’, BioSpektrum, 28(4), pp. 394–396. Available at: https://doi.org/10.1007/s12268-022-1770-1.
Toplak, M., Höing, L. and Teufel, R. (2022) ‘Unusual flavoenzymes control the formation of tropones in bacteria Ungewöhnliche Flavoenzyme steuern die Bildung von Troponen in Bakterien’, BioSpektrum, 28(4), pp. 394–396. Available at: https://doi.org/10.1007/s12268-022-1770-1.
Toplak M et al. (2022) ‘An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes’, Chemical Science, 13(24), pp. 7157–7164. Available at: https://doi.org/10.1039/d2sc01952c.
Toplak M et al. (2022) ‘An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes’, Chemical Science, 13(24), pp. 7157–7164. Available at: https://doi.org/10.1039/d2sc01952c.
Matthews A et al. (2022) ‘Bacterial flavoprotein monooxygenase YxeK salvages toxic S-(2-succino)-adducts via oxygenolytic C–S bond cleavage’, FEBS Journal, 289(3), pp. 787–807. Available at: https://doi.org/10.1111/febs.16193.
Matthews A et al. (2022) ‘Bacterial flavoprotein monooxygenase YxeK salvages toxic S-(2-succino)-adducts via oxygenolytic C–S bond cleavage’, FEBS Journal, 289(3), pp. 787–807. Available at: https://doi.org/10.1111/febs.16193.
Toplak, Marina and Teufel, Robin (2022) ‘Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products’, Biochemistry, 61(2), pp. 47–56. Available at: https://doi.org/10.1021/acs.biochem.1c00763.
Toplak, Marina and Teufel, Robin (2022) ‘Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products’, Biochemistry, 61(2), pp. 47–56. Available at: https://doi.org/10.1021/acs.biochem.1c00763.
Zhang, Lei et al. (2022) ‘Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol’, ChemBioChem, 24(2), p. e202200632. Available at: https://doi.org/10.1002/cbic.202200632.
Zhang, Lei et al. (2022) ‘Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol’, ChemBioChem, 24(2), p. e202200632. Available at: https://doi.org/10.1002/cbic.202200632.
Frensch B et al. (2021) ‘Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides’, Nature Communications, 12(1), p. 1431. Available at: https://doi.org/10.1038/s41467-021-21432-9.
Frensch B et al. (2021) ‘Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides’, Nature Communications, 12(1), p. 1431. Available at: https://doi.org/10.1038/s41467-021-21432-9.
Duan Y et al. (2021) ‘A Flavoprotein Dioxygenase Steers Bacterial Tropone Biosynthesis via Coenzyme A-Ester Oxygenolysis and Ring Epoxidation’, Journal of the American Chemical Society, 143(27), pp. 10413–10421. Available at: https://doi.org/10.1021/jacs.1c04996.
Duan Y et al. (2021) ‘A Flavoprotein Dioxygenase Steers Bacterial Tropone Biosynthesis via Coenzyme A-Ester Oxygenolysis and Ring Epoxidation’, Journal of the American Chemical Society, 143(27), pp. 10413–10421. Available at: https://doi.org/10.1021/jacs.1c04996.
Toplak, Marina, Matthews, Arne and Teufel, Robin (2021) ‘The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases’, Archives of Biochemistry and Biophysics, 698, p. 108732. Available at: https://doi.org/10.1016/j.abb.2020.108732.
Toplak, Marina, Matthews, Arne and Teufel, Robin (2021) ‘The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases’, Archives of Biochemistry and Biophysics, 698, p. 108732. Available at: https://doi.org/10.1016/j.abb.2020.108732.
Duan, Ying et al. (2020) ‘Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential’, ChemBioChem, 21(17), pp. 2384–2407. Available at: https://doi.org/10.1002/cbic.201900786.
Duan, Ying et al. (2020) ‘Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential’, ChemBioChem, 21(17), pp. 2384–2407. Available at: https://doi.org/10.1002/cbic.201900786.
Tsypik, Olga et al. (2020) ‘Oxidative Carbon Backbone Rearrangement in Rishirilide Biosynthesis’, Journal of the American Chemical Society, 142(13), pp. 5913–5917. Available at: https://doi.org/10.1021/jacs.9b12736.
Tsypik, Olga et al. (2020) ‘Oxidative Carbon Backbone Rearrangement in Rishirilide Biosynthesis’, Journal of the American Chemical Society, 142(13), pp. 5913–5917. Available at: https://doi.org/10.1021/jacs.9b12736.
Lawrence, J.A. et al. (2020) ‘Optimized plant compound with potent anti-biofilm activity across gram-negative species’, Bioorganic and Medicinal Chemistry, 28(5). Available at: https://doi.org/10.1016/j.bmc.2019.115229.
Lawrence, J.A. et al. (2020) ‘Optimized plant compound with potent anti-biofilm activity across gram-negative species’, Bioorganic and Medicinal Chemistry, 28(5). Available at: https://doi.org/10.1016/j.bmc.2019.115229.
Matthews A et al. (2020) ‘Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases’, Nat. Chem. Biol., 16, pp. 556–563.
Matthews A et al. (2020) ‘Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases’, Nat. Chem. Biol., 16, pp. 556–563.
Saleem-Batcha, Raspudin and Teufel, Robin (2019) ‘Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates.’, Methods in enzymology, 620, pp. 349–363. Available at: https://doi.org/10.1016/bs.mie.2019.03.016.
Saleem-Batcha, Raspudin and Teufel, Robin (2019) ‘Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates.’, Methods in enzymology, 620, pp. 349–363. Available at: https://doi.org/10.1016/bs.mie.2019.03.016.
Spieker, Melanie, Saleem-Batcha, Raspudin and Teufel, Robin (2019) ‘Structural and Mechanistic Basis of an Oxepin-CoA Forming Isomerase in Bacterial Primary and Secondary Metabolism.’, ACS chemical biology, 14(12), pp. 2876–2886. Available at: https://doi.org/10.1021/acschembio.9b00742.
Spieker, Melanie, Saleem-Batcha, Raspudin and Teufel, Robin (2019) ‘Structural and Mechanistic Basis of an Oxepin-CoA Forming Isomerase in Bacterial Primary and Secondary Metabolism.’, ACS chemical biology, 14(12), pp. 2876–2886. Available at: https://doi.org/10.1021/acschembio.9b00742.
Saleem-Batcha, Raspudin et al. (2018) ‘Enzymatic control of dioxygen binding and functionalization of the flavin cofactor.’, Proceedings of the National Academy of Sciences of the United States of America, 115(19), pp. 4909–4914. Available at: https://doi.org/10.1073/pnas.1801189115.
Saleem-Batcha, Raspudin et al. (2018) ‘Enzymatic control of dioxygen binding and functionalization of the flavin cofactor.’, Proceedings of the National Academy of Sciences of the United States of America, 115(19), pp. 4909–4914. Available at: https://doi.org/10.1073/pnas.1801189115.
Saleem-Batcha, Raspudin and Teufel, Robin (2018) ‘Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.’, Current opinion in chemical biology, 47, pp. 47–53. Available at: https://doi.org/10.1016/j.cbpa.2018.08.003.
Saleem-Batcha, Raspudin and Teufel, Robin (2018) ‘Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.’, Current opinion in chemical biology, 47, pp. 47–53. Available at: https://doi.org/10.1016/j.cbpa.2018.08.003.
Teufel, Robin (2018) ‘Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor.’, Methods in enzymology, 604, pp. 523–540. Available at: https://doi.org/10.1016/bs.mie.2018.01.036.
Teufel, Robin (2018) ‘Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor.’, Methods in enzymology, 604, pp. 523–540. Available at: https://doi.org/10.1016/bs.mie.2018.01.036.
Teufel, Robin (2018) ‘Unusual ‘Head-to-Torso’ Coupling of Terpene Precursors as a New Strategy for the Structural Diversification of Natural Products.’, Methods in enzymology, 604, pp. 425–439. Available at: https://doi.org/10.1016/bs.mie.2018.01.037.
Teufel, Robin (2018) ‘Unusual ‘Head-to-Torso’ Coupling of Terpene Precursors as a New Strategy for the Structural Diversification of Natural Products.’, Methods in enzymology, 604, pp. 425–439. Available at: https://doi.org/10.1016/bs.mie.2018.01.037.
Teufel, Robin (2017) ‘Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.’, Archives of biochemistry and biophysics, 632, pp. 20–27. Available at: https://doi.org/10.1016/j.abb.2017.06.008.
Teufel, Robin (2017) ‘Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.’, Archives of biochemistry and biophysics, 632, pp. 20–27. Available at: https://doi.org/10.1016/j.abb.2017.06.008.
Teufel, Robin, Agarwal, Vinayak and Moore, Bradley S (2016) ‘Unusual flavoenzyme catalysis in marine bacteria.’, Current opinion in chemical biology, 31, pp. 31–9. Available at: https://doi.org/10.1016/j.cbpa.2016.01.001.
Teufel, Robin, Agarwal, Vinayak and Moore, Bradley S (2016) ‘Unusual flavoenzyme catalysis in marine bacteria.’, Current opinion in chemical biology, 31, pp. 31–9. Available at: https://doi.org/10.1016/j.cbpa.2016.01.001.
Bonet, Bailey et al. (2015) ‘Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.’, Journal of natural products, 78(3), pp. 539–42. Available at: https://doi.org/10.1021/np500664q.
Bonet, Bailey et al. (2015) ‘Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.’, Journal of natural products, 78(3), pp. 539–42. Available at: https://doi.org/10.1021/np500664q.
Teufel, Robin et al. (2015) ‘Biochemical Establishment and Characterization of EncM’s Flavin-N5-oxide Cofactor.’, Journal of the American Chemical Society, 137(25), pp. 8078–85. Available at: https://doi.org/10.1021/jacs.5b03983.
Teufel, Robin et al. (2015) ‘Biochemical Establishment and Characterization of EncM’s Flavin-N5-oxide Cofactor.’, Journal of the American Chemical Society, 137(25), pp. 8078–85. Available at: https://doi.org/10.1021/jacs.5b03983.
Diethelm, Stefan et al. (2014) ‘A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins.’, Angewandte Chemie (International ed. in English), 53(41), pp. 11023–6. Available at: https://doi.org/10.1002/anie.201405696.
Diethelm, Stefan et al. (2014) ‘A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins.’, Angewandte Chemie (International ed. in English), 53(41), pp. 11023–6. Available at: https://doi.org/10.1002/anie.201405696.
Teufel, Robin et al. (2014) ‘One-pot enzymatic synthesis of merochlorin A and B.’, Angewandte Chemie (International ed. in English), 53(41), pp. 11019–22. Available at: https://doi.org/10.1002/anie.201405694.
Teufel, Robin et al. (2014) ‘One-pot enzymatic synthesis of merochlorin A and B.’, Angewandte Chemie (International ed. in English), 53(41), pp. 11019–22. Available at: https://doi.org/10.1002/anie.201405694.
Teufel, Robin et al. (2013) ‘Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement.’, Nature, 503(7477), pp. 552–556. Available at: https://doi.org/10.1038/nature12643.
Teufel, Robin et al. (2013) ‘Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement.’, Nature, 503(7477), pp. 552–556. Available at: https://doi.org/10.1038/nature12643.
Teufel, Robin, Friedrich, Thorsten and Fuchs, Georg (2012) ‘An oxygenase that forms and deoxygenates toxic epoxide.’, Nature, 483(7389), pp. 359–62. Available at: https://doi.org/10.1038/nature10862.
Teufel, Robin, Friedrich, Thorsten and Fuchs, Georg (2012) ‘An oxygenase that forms and deoxygenates toxic epoxide.’, Nature, 483(7389), pp. 359–62. Available at: https://doi.org/10.1038/nature10862.
Teufel, Robin et al. (2011) ‘Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point.’, The Journal of biological chemistry, 286(13), pp. 11021–34. Available at: https://doi.org/10.1074/jbc.m110.196667.
Teufel, Robin et al. (2011) ‘Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point.’, The Journal of biological chemistry, 286(13), pp. 11021–34. Available at: https://doi.org/10.1074/jbc.m110.196667.
Teufel, R et al. (2010) ‘Bacterial phenylalanine and phenylacetate catabolic pathway revealed.’, Proc Natl Acad Sci U S A, 10(107), pp. 14390–5. Available at: https://doi.org/10.1073/pnas.1005399107.
Teufel, R et al. (2010) ‘Bacterial phenylalanine and phenylacetate catabolic pathway revealed.’, Proc Natl Acad Sci U S A, 10(107), pp. 14390–5. Available at: https://doi.org/10.1073/pnas.1005399107.
Teufel, Robin et al. (2009) ‘3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.’, Journal of bacteriology, 191(14), pp. 4572–81. Available at: https://doi.org/10.1128/jb.00068-09.
Teufel, Robin et al. (2009) ‘3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.’, Journal of bacteriology, 191(14), pp. 4572–81. Available at: https://doi.org/10.1128/jb.00068-09.