Computational Mathematics
Publications
143 found
Show per page
Dölz, Jürgen, Harbrecht, Helmut and Multerer, Michael (2024) ‘Solving acoustic scattering problems by the isogeometric boundary element method’, Engineering with Computers, 40(6), pp. 3651–3661. Available at: https://doi.org/10.1007/s00366-024-02013-y.
Dölz, Jürgen, Harbrecht, Helmut and Multerer, Michael (2024) ‘Solving acoustic scattering problems by the isogeometric boundary element method’, Engineering with Computers, 40(6), pp. 3651–3661. Available at: https://doi.org/10.1007/s00366-024-02013-y.
Harbrecht, Helmut et al. (2024) ‘Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction’, Advances in Computational Mathematics, 50(5). Available at: https://doi.org/10.1007/s10444-024-10187-8.
Harbrecht, Helmut et al. (2024) ‘Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction’, Advances in Computational Mathematics, 50(5). Available at: https://doi.org/10.1007/s10444-024-10187-8.
Harbrecht, Helmut and von Rickenbach, Remo (2024) ‘Compression of boundary integral operators discretized by anisotropic wavelet bases’, Numerische Mathematik, 156(3), pp. 853–899. Available at: https://doi.org/10.1007/s00211-024-01403-0.
Harbrecht, Helmut and von Rickenbach, Remo (2024) ‘Compression of boundary integral operators discretized by anisotropic wavelet bases’, Numerische Mathematik, 156(3), pp. 853–899. Available at: https://doi.org/10.1007/s00211-024-01403-0.
Harbrecht, H. et al. (2024) ‘Multiresolution kernel matrix algebra’, Numerische Mathematik, 156(3), pp. 1085–1114. Available at: https://doi.org/10.1007/s00211-024-01409-8.
Harbrecht, H. et al. (2024) ‘Multiresolution kernel matrix algebra’, Numerische Mathematik, 156(3), pp. 1085–1114. Available at: https://doi.org/10.1007/s00211-024-01409-8.
Harbrecht, Helmut, Schmidlin, Marc and Schwab, Christoph (2024) ‘The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs’, Mathematical Models and Methods in Applied Sciences, 34(05), pp. 881–917. Available at: https://doi.org/10.1142/s0218202524500179.
Harbrecht, Helmut, Schmidlin, Marc and Schwab, Christoph (2024) ‘The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs’, Mathematical Models and Methods in Applied Sciences, 34(05), pp. 881–917. Available at: https://doi.org/10.1142/s0218202524500179.
Kamber, Lars et al. (2024) ‘Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence’, PLOS Neglected Tropical Diseases, 18(2), p. e0011362. Available at: https://doi.org/10.1371/journal.pntd.0011362.
Kamber, Lars et al. (2024) ‘Modeling the persistence of Opisthorchis viverrini worm burden after mass-drug administration and education campaigns with systematic adherence’, PLOS Neglected Tropical Diseases, 18(2), p. e0011362. Available at: https://doi.org/10.1371/journal.pntd.0011362.
Felber, Luzia N., Harbrecht, Helmut and Schmidlin, Marc (2024) ‘Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems’, SIAM Journal on Imaging Sciences, 17(1), pp. 61–90. Available at: https://doi.org/10.1137/23m1565346.
Felber, Luzia N., Harbrecht, Helmut and Schmidlin, Marc (2024) ‘Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems’, SIAM Journal on Imaging Sciences, 17(1), pp. 61–90. Available at: https://doi.org/10.1137/23m1565346.
Hakula, Harri et al. (2024) ‘Uncertainty quantification for random domains using periodic random variables’, Numerische Mathematik, 156(1), pp. 273–317. Available at: https://doi.org/10.1007/s00211-023-01392-6.
Hakula, Harri et al. (2024) ‘Uncertainty quantification for random domains using periodic random variables’, Numerische Mathematik, 156(1), pp. 273–317. Available at: https://doi.org/10.1007/s00211-023-01392-6.
Dambrine, Marc and Karnaev, Viacheslav (2024) ‘Robust obstacle reconstruction in an elastic medium’, Discrete and Continuous Dynamical Systems - B, 29(1), pp. 151–173. Available at: https://doi.org/10.3934/dcdsb.2023089.
Dambrine, Marc and Karnaev, Viacheslav (2024) ‘Robust obstacle reconstruction in an elastic medium’, Discrete and Continuous Dynamical Systems - B, 29(1), pp. 151–173. Available at: https://doi.org/10.3934/dcdsb.2023089.
Harbrecht, Helmut, Karnaev, Viacheslav and Schmidlin, Marc (2024) ‘Quantifying Domain Uncertainty in Linear Elasticity’, SIAM/ASA Journal on Uncertainty Quantification. 30.05.2024, 12(2), pp. 503–523. Available at: https://doi.org/10.1137/23m1578589.
Harbrecht, Helmut, Karnaev, Viacheslav and Schmidlin, Marc (2024) ‘Quantifying Domain Uncertainty in Linear Elasticity’, SIAM/ASA Journal on Uncertainty Quantification. 30.05.2024, 12(2), pp. 503–523. Available at: https://doi.org/10.1137/23m1578589.
Harbrecht, Helmut and Multerer, Michael (2024) ‘Samplets: Wavelet Concepts for Scattered Data’, in Ron DeVore and Angea Kunoth, (ed.) Multiscale, Nonlinear and Adaptive Approximation II. Cham: Springer Nature Switzerland (Multiscale, Nonlinear and Adaptive Approximation II), pp. 299–326. Available at: https://doi.org/10.1007/978-3-031-75802-7_14.
Harbrecht, Helmut and Multerer, Michael (2024) ‘Samplets: Wavelet Concepts for Scattered Data’, in Ron DeVore and Angea Kunoth, (ed.) Multiscale, Nonlinear and Adaptive Approximation II. Cham: Springer Nature Switzerland (Multiscale, Nonlinear and Adaptive Approximation II), pp. 299–326. Available at: https://doi.org/10.1007/978-3-031-75802-7_14.
Ben Bader, Seif et al. (2023) ‘Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology’, SIAM/ASA Journal on Uncertainty Quantification, 11(4), pp. 1329–1356. Available at: https://doi.org/10.1137/21m1418320.
Ben Bader, Seif et al. (2023) ‘Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology’, SIAM/ASA Journal on Uncertainty Quantification, 11(4), pp. 1329–1356. Available at: https://doi.org/10.1137/21m1418320.
Dambrine, Marc, Harbrecht, Helmut and Puig, Benedicte (2023) ‘Bernoulli free boundary problems under uncertainty: the convex case’, Computational Methods in Applied Mathematics, 23(2), pp. 333–352. Available at: https://doi.org/10.1515/cmam-2022-0038.
Dambrine, Marc, Harbrecht, Helmut and Puig, Benedicte (2023) ‘Bernoulli free boundary problems under uncertainty: the convex case’, Computational Methods in Applied Mathematics, 23(2), pp. 333–352. Available at: https://doi.org/10.1515/cmam-2022-0038.
Fallahpour, Merlin and Harbrecht, Helmut (2023) ‘Shape optimization for composite materials in linear elasticity’, Optimization and engineering, 24(3), pp. 2115–2143. Available at: https://doi.org/10.1007/s11081-022-09768-7.
Fallahpour, Merlin and Harbrecht, Helmut (2023) ‘Shape optimization for composite materials in linear elasticity’, Optimization and engineering, 24(3), pp. 2115–2143. Available at: https://doi.org/10.1007/s11081-022-09768-7.
Griebel, Michael and Harbrecht, Helmut (2023) ‘Analysis of tensor approximation schemes for continuous functions’, Foundations of Computational Mathematics, 23(1), pp. 219–240. Available at: https://doi.org/10.1007/s10208-021-09544-6.
Griebel, Michael and Harbrecht, Helmut (2023) ‘Analysis of tensor approximation schemes for continuous functions’, Foundations of Computational Mathematics, 23(1), pp. 219–240. Available at: https://doi.org/10.1007/s10208-021-09544-6.
Griebel, Michael, Harbrecht, Helmut and Schneider, Reinhold (2023) ‘Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness’, Mathematics of Computation, 92(342), pp. 1729–1746. Available at: https://doi.org/10.1090/mcom/3813.
Griebel, Michael, Harbrecht, Helmut and Schneider, Reinhold (2023) ‘Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness’, Mathematics of Computation, 92(342), pp. 1729–1746. Available at: https://doi.org/10.1090/mcom/3813.
Auzinger, Winfried et al. (2022) ‘A numerical continuation method for parameter-dependent boundary value problems using bvpsuite 2.0’, Journal of Numerical Analysis, Industrial and Applied Mathematics, 16(1-2), pp. 1–13.
Auzinger, Winfried et al. (2022) ‘A numerical continuation method for parameter-dependent boundary value problems using bvpsuite 2.0’, Journal of Numerical Analysis, Industrial and Applied Mathematics, 16(1-2), pp. 1–13.
Brügger, Rahel and Harbrecht, Helmut (2022) ‘On the reformulation of the Classical Stefan problem as a shape optimization problem’, SIAM Journal on Control and Optimization (SICON), 60(1), pp. 310–329. Available at: https://doi.org/10.1137/21m1411007.
Brügger, Rahel and Harbrecht, Helmut (2022) ‘On the reformulation of the Classical Stefan problem as a shape optimization problem’, SIAM Journal on Control and Optimization (SICON), 60(1), pp. 310–329. Available at: https://doi.org/10.1137/21m1411007.
Brügger, Rahel, Harbrecht, Helmut and Tausch, Johannes (2022) ‘Boundary integral operators for the heat equation’, Integral Equations and Operator Theory, 94(2), p. 10. Available at: https://doi.org/10.1007/s00020-022-02691-7.
Brügger, Rahel, Harbrecht, Helmut and Tausch, Johannes (2022) ‘Boundary integral operators for the heat equation’, Integral Equations and Operator Theory, 94(2), p. 10. Available at: https://doi.org/10.1007/s00020-022-02691-7.
Dahlke, Stephan, Harbrecht, Helmut and Surowiec, Thomas M. (2022) ‘A wavelet-based approach for the optimal control of non-local operator equations’, SIAM journal on scientific computing, 44(4), pp. A2691–A2708.
Dahlke, Stephan, Harbrecht, Helmut and Surowiec, Thomas M. (2022) ‘A wavelet-based approach for the optimal control of non-local operator equations’, SIAM journal on scientific computing, 44(4), pp. A2691–A2708.
Dölz, Jürgen et al. (2022) ‘Isogeometric multilevel quadrature for forward and inverse random acoustic scattering’, Computer Methods in Applied Mechanics and Engineering, 388, p. 114242. Available at: https://doi.org/10.1016/j.cma.2021.114242.
Dölz, Jürgen et al. (2022) ‘Isogeometric multilevel quadrature for forward and inverse random acoustic scattering’, Computer Methods in Applied Mechanics and Engineering, 388, p. 114242. Available at: https://doi.org/10.1016/j.cma.2021.114242.
Harbrecht, Helmut and Multerer, Michael (2022) Algorithmische Mathematik: Graphen, Numerik und Probabilistik. 1 edn. Berlin-Heidelberg: Springer Spektrum. Available at: https://doi.org/10.1007/978-3-642-41952-2.
Harbrecht, Helmut and Multerer, Michael (2022) Algorithmische Mathematik: Graphen, Numerik und Probabilistik. 1 edn. Berlin-Heidelberg: Springer Spektrum. Available at: https://doi.org/10.1007/978-3-642-41952-2.
Harbrecht, Helmut and Multerer, Michael (2022) ‘Samplets: Construction and scattered data compression’, Journal of computational physics, 471, p. 111616.
Harbrecht, Helmut and Multerer, Michael (2022) ‘Samplets: Construction and scattered data compression’, Journal of computational physics, 471, p. 111616.
Harbrecht, Helmut, Multerer, Michael and von Rickenbach, Remo (2022) ‘Isogeometric shape optimization of periodic structures in three dimensions’, Computer Methods in Applied Mechanics and Engineering, 391, p. 114552. Available at: https://doi.org/10.1016/j.cma.2021.114552.
Harbrecht, Helmut, Multerer, Michael and von Rickenbach, Remo (2022) ‘Isogeometric shape optimization of periodic structures in three dimensions’, Computer Methods in Applied Mechanics and Engineering, 391, p. 114552. Available at: https://doi.org/10.1016/j.cma.2021.114552.
Harbrecht, Helmut and Schmidlin, Marc (2022) ‘Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM’, Stochastics and Partial Differential Equations, 10(4), pp. 1619–1650. Available at: https://doi.org/10.1007/s40072-021-00214-w.
Harbrecht, Helmut and Schmidlin, Marc (2022) ‘Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM’, Stochastics and Partial Differential Equations, 10(4), pp. 1619–1650. Available at: https://doi.org/10.1007/s40072-021-00214-w.
Brügger, Rahel (2021) Shape optimization for time-dependent domains. . Translated by Harbrecht Helmut. Dissertation. Available at: https://doi.org/10.5451/unibas-ep87017.
Brügger, Rahel (2021) Shape optimization for time-dependent domains. . Translated by Harbrecht Helmut. Dissertation. Available at: https://doi.org/10.5451/unibas-ep87017.
Brügger, Rahel, Harbrecht, Helmut and Tausch, Johannes (2021) ‘On the numerical solution of a time-dependent shape optimization problem for the heat equation’, SIAM Journal on Control and Optimization (SICON), 59(2), pp. 931–953. Available at: https://doi.org/10.1137/19m1268628.
Brügger, Rahel, Harbrecht, Helmut and Tausch, Johannes (2021) ‘On the numerical solution of a time-dependent shape optimization problem for the heat equation’, SIAM Journal on Control and Optimization (SICON), 59(2), pp. 931–953. Available at: https://doi.org/10.1137/19m1268628.
Harbrecht, Helmut (2021) ‘Multilevel approximation of Gaussian random fields’, Oberwolfach Reports. European Mathematical Society, 18(3). Available at: https://ems.press/journals/owr.
Harbrecht, Helmut (2021) ‘Multilevel approximation of Gaussian random fields’, Oberwolfach Reports. European Mathematical Society, 18(3). Available at: https://ems.press/journals/owr.
Harbrecht, Helmut, Jakeman, John D. and Zaspel, Peter (2021) ‘Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration’, Communications in Computational Physics, 29(4), pp. 1152–1185. Available at: https://doi.org/10.4208/cicp.oa-2020-0060.
Harbrecht, Helmut, Jakeman, John D. and Zaspel, Peter (2021) ‘Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration’, Communications in Computational Physics, 29(4), pp. 1152–1185. Available at: https://doi.org/10.4208/cicp.oa-2020-0060.
Harbrecht, Helmut and Kalmykov, Ilja (2021) ‘Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control’, SIAM Journal on Control and Optimization (SICON), 59(6), pp. 4538–4562. Available at: https://doi.org/10.1137/20m1370604.
Harbrecht, Helmut and Kalmykov, Ilja (2021) ‘Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control’, SIAM Journal on Control and Optimization (SICON), 59(6), pp. 4538–4562. Available at: https://doi.org/10.1137/20m1370604.
Harbrecht, Helmut and Multerer, Michael D. (2021) ‘A fast direct solver for nonlocal operators in wavelet coordinates’, Journal of computational physics, 428, p. 110056. Available at: https://doi.org/10.1016/j.jcp.2020.110056.
Harbrecht, Helmut and Multerer, Michael D. (2021) ‘A fast direct solver for nonlocal operators in wavelet coordinates’, Journal of computational physics, 428, p. 110056. Available at: https://doi.org/10.1016/j.jcp.2020.110056.
Harbrecht, Helmut, Tröndle, Dennis and Zimmermann, Markus (2021) ‘Approximating solution spaces as a product of polygons’, Structural and multidisciplinary optimization, 64(4), pp. 2225–2242. Available at: https://doi.org/10.1007/s00158-021-02979-z.
Harbrecht, Helmut, Tröndle, Dennis and Zimmermann, Markus (2021) ‘Approximating solution spaces as a product of polygons’, Structural and multidisciplinary optimization, 64(4), pp. 2225–2242. Available at: https://doi.org/10.1007/s00158-021-02979-z.
Brügger, Rahel, Croce, Roberto and Harbrecht, Helmut (2020) ‘Solving a Bernoulli type free boundary problem with random diffusion’, ESAIM. Control, optimisation and calculus of variations, 26(56). Available at: https://doi.org/10.1051/cocv/2019030.
Brügger, Rahel, Croce, Roberto and Harbrecht, Helmut (2020) ‘Solving a Bernoulli type free boundary problem with random diffusion’, ESAIM. Control, optimisation and calculus of variations, 26(56). Available at: https://doi.org/10.1051/cocv/2019030.
Dambrine, Marc and Harbrecht, Helmut (2020) ‘Shape optimization for composite materials and scaffolds’, Multiscale Modeling and Simulation, 18(2), pp. 1136–1152. Available at: https://doi.org/10.1137/19m1274638.
Dambrine, Marc and Harbrecht, Helmut (2020) ‘Shape optimization for composite materials and scaffolds’, Multiscale Modeling and Simulation, 18(2), pp. 1136–1152. Available at: https://doi.org/10.1137/19m1274638.
Dölz, Jürgen et al. (2020) ‘Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation’, SoftwareX, 11, p. 100476. Available at: https://doi.org/10.1016/j.softx.2020.100476.
Dölz, Jürgen et al. (2020) ‘Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation’, SoftwareX, 11, p. 100476. Available at: https://doi.org/10.1016/j.softx.2020.100476.
Griebel, Michael, Harbrecht, Helmut and Multerer, Michael D. (2020) ‘Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains’, SIAM Journal on Numerical Analysis, 58(1), pp. 684–705. Available at: https://doi.org/10.1137/18m1236265.
Griebel, Michael, Harbrecht, Helmut and Multerer, Michael D. (2020) ‘Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains’, SIAM Journal on Numerical Analysis, 58(1), pp. 684–705. Available at: https://doi.org/10.1137/18m1236265.
Harbrecht, Helmut (2020) ‘A wavelet-based approach for the optimal control of nonlocal operator equations’, Oberwolfach Reports. European Mathematical Society, 17(5).
Harbrecht, Helmut (2020) ‘A wavelet-based approach for the optimal control of nonlocal operator equations’, Oberwolfach Reports. European Mathematical Society, 17(5).
Harbrecht, Helmut and Schmidlin, Marc (2020) ‘Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion’, Stochastics and Partial Differential Equations, 8(1), pp. 54–81. Available at: https://doi.org/10.1007/s40072-019-00142-w.
Harbrecht, Helmut and Schmidlin, Marc (2020) ‘Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion’, Stochastics and Partial Differential Equations, 8(1), pp. 54–81. Available at: https://doi.org/10.1007/s40072-019-00142-w.
Tröndle, Dennis (2020) Computation of generalized solution spaces. . Translated by Harbrecht Helmut. Dissertation. Available at: https://doi.org/10.5451/unibas-007213194.
Tröndle, Dennis (2020) Computation of generalized solution spaces. . Translated by Harbrecht Helmut. Dissertation. Available at: https://doi.org/10.5451/unibas-007213194.
Alassi, Sepideh et al. (2019) ‘Newton virtually meets Euler and Bernoulli’. DataverseNL: DataverseNL. Available at: https://doi.org/10411/eljh8x.
Alassi, Sepideh et al. (2019) ‘Newton virtually meets Euler and Bernoulli’. DataverseNL: DataverseNL. Available at: https://doi.org/10411/eljh8x.
Balazs, Peter and Harbrecht, Helmut (2019) ‘Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing’, Numerical Functional Analysis and Optimization, 40(1), pp. 65–84. Available at: https://doi.org/10.1080/01630563.2018.1495232.
Balazs, Peter and Harbrecht, Helmut (2019) ‘Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing’, Numerical Functional Analysis and Optimization, 40(1), pp. 65–84. Available at: https://doi.org/10.1080/01630563.2018.1495232.
Bugeanu, Monica and Harbrecht, Helmut (2019) ‘Parametric representation of molecular surfaces’, International journal of quantum chemistry, 119(1), p. e25695. Available at: https://doi.org/10.1002/qua.25695.
Bugeanu, Monica and Harbrecht, Helmut (2019) ‘Parametric representation of molecular surfaces’, International journal of quantum chemistry, 119(1), p. e25695. Available at: https://doi.org/10.1002/qua.25695.
Bürli, Christine (2019) Mathematical modelling of transmission dynamics of Opisthorchis viverrini. . Translated by Harbrecht Helmut. Dissertation.
Bürli, Christine (2019) Mathematical modelling of transmission dynamics of Opisthorchis viverrini. . Translated by Harbrecht Helmut. Dissertation.
Caubet, Fabien, Dambrine, Marc and Harbrecht, Helmut (2019) ‘A new method for the data completion problem and application to obstacle detection’, SIAM journal on applied mathematics, 79(1), pp. 415–435. Available at: https://doi.org/10.1137/18m1186071.
Caubet, Fabien, Dambrine, Marc and Harbrecht, Helmut (2019) ‘A new method for the data completion problem and application to obstacle detection’, SIAM journal on applied mathematics, 79(1), pp. 415–435. Available at: https://doi.org/10.1137/18m1186071.
Dambrine, Marc, Harbrecht, Helmut and Puig, Benedicte (2019) ‘Incorporating knowledge on the measurement noise in electrical impedance tomography’, ESAIM: Control, Optimisation and Calculus of Variations, 25, p. 84. Available at: https://doi.org/10.1051/cocv/2018010.
Dambrine, Marc, Harbrecht, Helmut and Puig, Benedicte (2019) ‘Incorporating knowledge on the measurement noise in electrical impedance tomography’, ESAIM: Control, Optimisation and Calculus of Variations, 25, p. 84. Available at: https://doi.org/10.1051/cocv/2018010.
Dölz, Jürgen et al. (2019) ‘Error-Controlled Model Approximation for Gaussian Process Morphable Models’, Journal of Mathematical Imaging and Vision, 61(4), pp. 443–457. Available at: https://doi.org/10.1007/s10851-018-0854-5.
Dölz, Jürgen et al. (2019) ‘Error-Controlled Model Approximation for Gaussian Process Morphable Models’, Journal of Mathematical Imaging and Vision, 61(4), pp. 443–457. Available at: https://doi.org/10.1007/s10851-018-0854-5.
Eppler, Karsten et al. (2019) ‘Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation’, Journal of Mathematical Study, 52(3), pp. 227–243. Available at: https://doi.org/10.4208/jms.v52n3.19.01.
Eppler, Karsten et al. (2019) ‘Computation of Shape Derivatives in Electromagnetic Shaping by Algorithmic Differentiation’, Journal of Mathematical Study, 52(3), pp. 227–243. Available at: https://doi.org/10.4208/jms.v52n3.19.01.
Griebel, Michael and Harbrecht, Helmut (2019) ‘Singular value decomposition versus sparse grids: Refined complexity estimates’, IMA journal of numerical analysis, 39(4), pp. 1652–1671. Available at: https://doi.org/10.1093/imanum/dry039.
Griebel, Michael and Harbrecht, Helmut (2019) ‘Singular value decomposition versus sparse grids: Refined complexity estimates’, IMA journal of numerical analysis, 39(4), pp. 1652–1671. Available at: https://doi.org/10.1093/imanum/dry039.
Griebel, Michael, Rieger, Christian and Zaspel, Peter (2019) ‘Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations’, International Journal for Uncertainty Quantification, 9(5), pp. 471–492. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2019029228.
Griebel, Michael, Rieger, Christian and Zaspel, Peter (2019) ‘Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations’, International Journal for Uncertainty Quantification, 9(5), pp. 471–492. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2019029228.
Harbrecht, Helmut (2019) ‘About a fast isogeometric boundary element method’, Oberwolfach Reports. European Mathematical Society, 16(33).
Harbrecht, Helmut (2019) ‘About a fast isogeometric boundary element method’, Oberwolfach Reports. European Mathematical Society, 16(33).
Harbrecht, Helmut, Dölz, Jürgen and Multerer, Michael D. (2019) ‘On the Best Approximation of the Hierarchical Matrix Product’, SIAM journal on matrix analysis and applications, 40(1), pp. 147–174. Available at: https://doi.org/10.1137/18m1189373.
Harbrecht, Helmut, Dölz, Jürgen and Multerer, Michael D. (2019) ‘On the Best Approximation of the Hierarchical Matrix Product’, SIAM journal on matrix analysis and applications, 40(1), pp. 147–174. Available at: https://doi.org/10.1137/18m1189373.
Harbrecht, Helmut, Ilić, Nikola and Multerer, Michael D. (2019) ‘Rapid computation of far-field statistics for random obstacle scattering’, Engineering analysis with boundary elements, 101, pp. 243–251. Available at: https://doi.org/10.1016/j.enganabound.2018.11.005.
Harbrecht, Helmut, Ilić, Nikola and Multerer, Michael D. (2019) ‘Rapid computation of far-field statistics for random obstacle scattering’, Engineering analysis with boundary elements, 101, pp. 243–251. Available at: https://doi.org/10.1016/j.enganabound.2018.11.005.
Harbrecht, Helmut, Tröndle, Dennis and Zimmermann, Markus (2019) ‘A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables’, Structural and multidisciplinary optimization, 60(2), pp. 501–512. Available at: https://doi.org/10.1007/s00158-019-02221-x.
Harbrecht, Helmut, Tröndle, Dennis and Zimmermann, Markus (2019) ‘A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables’, Structural and multidisciplinary optimization, 60(2), pp. 501–512. Available at: https://doi.org/10.1007/s00158-019-02221-x.
Harbrecht, Helmut and Zaspel, Peter (2019) ‘On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems’, Journal of scientific computing, 78(2), pp. 1272–1290. Available at: https://doi.org/10.1007/s10915-018-0807-6.
Harbrecht, Helmut and Zaspel, Peter (2019) ‘On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems’, Journal of scientific computing, 78(2), pp. 1272–1290. Available at: https://doi.org/10.1007/s10915-018-0807-6.
Zaspel, Peter (2019) ‘Ensemble Kalman filters for reliability estimation in perfusion inference’, International Journal for Uncertainty Quantification, 9(1), pp. 15–32. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2018024865.
Zaspel, Peter (2019) ‘Ensemble Kalman filters for reliability estimation in perfusion inference’, International Journal for Uncertainty Quantification, 9(1), pp. 15–32. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2018024865.
Zaspel, Peter (2019) ‘Algorithmic patterns for H matrices on many-core processors’, Journal of scientific computing, 78(2), pp. 1174–1206. Available at: https://doi.org/10.1007/s10915-018-0809-4.
Zaspel, Peter (2019) ‘Algorithmic patterns for H matrices on many-core processors’, Journal of scientific computing, 78(2), pp. 1174–1206. Available at: https://doi.org/10.1007/s10915-018-0809-4.
Zaspel, Peter et al. (2019) ‘Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited’, Journal of Chemical Theory and Computation, 15(3), pp. 1546–1559. Available at: https://doi.org/10.1021/acs.jctc.8b00832.
Zaspel, Peter et al. (2019) ‘Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited’, Journal of Chemical Theory and Computation, 15(3), pp. 1546–1559. Available at: https://doi.org/10.1021/acs.jctc.8b00832.
Harbrecht, Helmut and Moor, Manuela (2019) ‘Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation’, in Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.) Advanced Finite Element Methods with Applications. Switzerland: Springer Nature (Lecture Notes in Computational Science and Engineering), pp. 143–164. Available at: https://doi.org/10.1007/978-3-030-14244-5_8.
Harbrecht, Helmut and Moor, Manuela (2019) ‘Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation’, in Apel, Thomas; Langer, Ulrich; Meyer, Arnd; Steinbach, Olaf (ed.) Advanced Finite Element Methods with Applications. Switzerland: Springer Nature (Lecture Notes in Computational Science and Engineering), pp. 143–164. Available at: https://doi.org/10.1007/978-3-030-14244-5_8.
Alassi, Sepideh et al. (2018) ‘A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach’. Digital Humanities Conference 2018: Digital Humanities Conference 2018. Available at: https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/.
Alassi, Sepideh et al. (2018) ‘A Digital Edition Of Leonhard Euler’s Correspondence With Christian Goldbach’. Digital Humanities Conference 2018: Digital Humanities Conference 2018. Available at: https://dh2018.adho.org/a-digital-edition-of-leonhard-eulers-correspondence-with-christian-goldbach/.
Brügger, Rahel, Croce, Roberto and Harbrecht, Helmut (2018) ‘Solving a free boundary problem with non-constant coefficients’, Mathematical Methods in the Applied Sciences, 41(10), pp. 3653–3671. Available at: https://doi.org/10.1002/mma.4853.
Brügger, Rahel, Croce, Roberto and Harbrecht, Helmut (2018) ‘Solving a free boundary problem with non-constant coefficients’, Mathematical Methods in the Applied Sciences, 41(10), pp. 3653–3671. Available at: https://doi.org/10.1002/mma.4853.
Bürli, Christine et al. (2018) ‘Analysis of interventions against the liver fluke, Opisthorchis viverrini’, Mathematical biosciences : an international journal, 303, pp. 115–125. Available at: https://doi.org/10.1016/j.mbs.2018.06.008.
Bürli, Christine et al. (2018) ‘Analysis of interventions against the liver fluke, Opisthorchis viverrini’, Mathematical biosciences : an international journal, 303, pp. 115–125. Available at: https://doi.org/10.1016/j.mbs.2018.06.008.
Bürli, Christine et al. (2018) ‘Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini’, Journal of Theoretical Biology, 439, pp. 181–194. Available at: https://doi.org/10.1016/j.jtbi.2017.11.020.
Bürli, Christine et al. (2018) ‘Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini’, Journal of Theoretical Biology, 439, pp. 181–194. Available at: https://doi.org/10.1016/j.jtbi.2017.11.020.
Dahlke, Stephan et al. (2018) ‘Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments’, Numerical Functional Analysis and Optimization, 39(2), pp. 208–232. Available at: https://doi.org/10.1080/01630563.2017.1359623.
Dahlke, Stephan et al. (2018) ‘Adaptive Wavelet BEM for boundary integral equations. Theory and numerical experiments’, Numerical Functional Analysis and Optimization, 39(2), pp. 208–232. Available at: https://doi.org/10.1080/01630563.2017.1359623.
Dölz, Jürgen and Harbrecht, Helmut (2018) ‘Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains’, Journal of Computational Physics, 371, pp. 506–527. Available at: https://doi.org/10.1016/j.jcp.2018.05.040.
Dölz, Jürgen and Harbrecht, Helmut (2018) ‘Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains’, Journal of Computational Physics, 371, pp. 506–527. Available at: https://doi.org/10.1016/j.jcp.2018.05.040.
Dölz, Jürgen et al. (2018) ‘A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems’, Computer Methods in Applied Mechanics and Engineering, 330, pp. 83–101. Available at: https://doi.org/10.1016/j.cma.2017.10.020.
Dölz, Jürgen et al. (2018) ‘A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems’, Computer Methods in Applied Mechanics and Engineering, 330, pp. 83–101. Available at: https://doi.org/10.1016/j.cma.2017.10.020.
Gantner, Robert N. and Peters, Michael D. (2018) ‘Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion’, SIAM/ASA Journal on Uncertainty Quantification, 6(2), pp. 707–736. Available at: https://doi.org/10.1137/16m1096116.
Gantner, Robert N. and Peters, Michael D. (2018) ‘Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion’, SIAM/ASA Journal on Uncertainty Quantification, 6(2), pp. 707–736. Available at: https://doi.org/10.1137/16m1096116.
Haji-Ali, Abdul-Lateef et al. (2018) ‘Novel results for the anisotropic sparse grid quadrature’, Journal of complexity, 47, pp. 62–85. Available at: https://doi.org/10.1016/j.jco.2018.02.003.
Haji-Ali, Abdul-Lateef et al. (2018) ‘Novel results for the anisotropic sparse grid quadrature’, Journal of complexity, 47, pp. 62–85. Available at: https://doi.org/10.1016/j.jco.2018.02.003.
Harbrecht, Helmut (2018) ‘Shape optimization under uncertainty’, Oberwolfach Reports. European Mathematical Society, 15(3). Available at: https://doi.org/10.4171/owr/2018/38.
Harbrecht, Helmut (2018) ‘Shape optimization under uncertainty’, Oberwolfach Reports. European Mathematical Society, 15(3). Available at: https://doi.org/10.4171/owr/2018/38.
Harbrecht, Helmut and Peters, Michael D. (2018) ‘The second order perturbation approach for elliptic partial differential equations on random domains’, Applied Numerical Mathematics, 125, pp. 159–171. Available at: https://doi.org/10.1016/j.apnum.2017.11.002.
Harbrecht, Helmut and Peters, Michael D. (2018) ‘The second order perturbation approach for elliptic partial differential equations on random domains’, Applied Numerical Mathematics, 125, pp. 159–171. Available at: https://doi.org/10.1016/j.apnum.2017.11.002.
Harbrecht, Helmut and Tausch, Johannes (2018) ‘A fast sparse grid based space-time boundary element method for the nonstationary heat equation’, Numerische Mathematik, 140(1), pp. 239–264. Available at: https://doi.org/10.1007/s00211-018-0963-5.
Harbrecht, Helmut and Tausch, Johannes (2018) ‘A fast sparse grid based space-time boundary element method for the nonstationary heat equation’, Numerische Mathematik, 140(1), pp. 239–264. Available at: https://doi.org/10.1007/s00211-018-0963-5.
Harbrecht, Helmut and Utzinger, Manuela (2018) ‘On adaptive wavelet boundary element methods’, Journal of Computational Mathematics, 36(1), pp. 90–109. Available at: https://doi.org/10.4208/jcm.1610-m2016-0496.
Harbrecht, Helmut and Utzinger, Manuela (2018) ‘On adaptive wavelet boundary element methods’, Journal of Computational Mathematics, 36(1), pp. 90–109. Available at: https://doi.org/10.4208/jcm.1610-m2016-0496.
Harbrecht, Helmut, Wendland, Wolfgang L. and Zorii, Natalia (2018) ‘Minimal energy problems for strongly singular Riesz kernels’, Mathematical News / Mathematische Nachrichten, 291(1), pp. 55–85. Available at: https://doi.org/10.1002/mana.201600024.
Harbrecht, Helmut, Wendland, Wolfgang L. and Zorii, Natalia (2018) ‘Minimal energy problems for strongly singular Riesz kernels’, Mathematical News / Mathematische Nachrichten, 291(1), pp. 55–85. Available at: https://doi.org/10.1002/mana.201600024.
Vogt, Marc Eric et al. (2018) ‘Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm’, Proceedings in applied mathematics and mechanics, 18(1), p. e201800103 (2 pp.). Available at: https://doi.org/10.1002/pamm.201800103.
Vogt, Marc Eric et al. (2018) ‘Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm’, Proceedings in applied mathematics and mechanics, 18(1), p. e201800103 (2 pp.). Available at: https://doi.org/10.1002/pamm.201800103.
Garcke, Jochen and Kalmykov, Ilja (2018) ‘Efficient Higher Order Time Discretization Schemes For Hamilton-Jacobi-Bellman Equations Based On Diagonally Implicit Symplectic Runge-Kutta Methods’, in Kalise, Dante; Kunisch, Karl; Rao, Zhipin (ed.) Hamilton-Jacobi-Bellman Equations. Numerical Methods and Applications in Optimal Control. Berlin-Bosten: De Gruyter (Radon Series on Computational and Applied Mathematics), pp. 97–128. Available at: https://doi.org/10.1515/9783110543599-005.
Garcke, Jochen and Kalmykov, Ilja (2018) ‘Efficient Higher Order Time Discretization Schemes For Hamilton-Jacobi-Bellman Equations Based On Diagonally Implicit Symplectic Runge-Kutta Methods’, in Kalise, Dante; Kunisch, Karl; Rao, Zhipin (ed.) Hamilton-Jacobi-Bellman Equations. Numerical Methods and Applications in Optimal Control. Berlin-Bosten: De Gruyter (Radon Series on Computational and Applied Mathematics), pp. 97–128. Available at: https://doi.org/10.1515/9783110543599-005.
Ballani, Jonas, Kressner, Daniel and Peters, Michael D. (2017) ‘Multilevel tensor approximation of PDEs with random data’, Stochastics and Partial Differential Equations, 5(3), pp. 400–427. Available at: https://doi.org/10.1007/s40072-017-0092-7.
Ballani, Jonas, Kressner, Daniel and Peters, Michael D. (2017) ‘Multilevel tensor approximation of PDEs with random data’, Stochastics and Partial Differential Equations, 5(3), pp. 400–427. Available at: https://doi.org/10.1007/s40072-017-0092-7.
Bugeanu, Monica (2017) The Wavelet Galerkin Method for the Polarizable Continuum Model in Quantum Chemistry. . Translated by Harbrecht Helmut. Dissertation. Available at: https://edoc.unibas.ch/57920/.
Bugeanu, Monica (2017) The Wavelet Galerkin Method for the Polarizable Continuum Model in Quantum Chemistry. . Translated by Harbrecht Helmut. Dissertation. Available at: https://edoc.unibas.ch/57920/.
Dambrine, Marc et al. (2017) ‘Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness’, Journal of Computational Physics, 330, pp. 943–959. Available at: https://doi.org/10.1016/j.jcp.2016.10.044.
Dambrine, Marc et al. (2017) ‘Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness’, Journal of Computational Physics, 330, pp. 943–959. Available at: https://doi.org/10.1016/j.jcp.2016.10.044.
Dambrine, Marc et al. (2017) ‘On Bernoulli’s free boundary problem with a random boundary’, International Journal for Uncertainty Quantification, 7(4), pp. 335–353. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550.
Dambrine, Marc et al. (2017) ‘On Bernoulli’s free boundary problem with a random boundary’, International Journal for Uncertainty Quantification, 7(4), pp. 335–353. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550.
Dölz, Jürgen (2017) Hierarchical Matrix Techniques for Partial Differential Equations with Random Input Data. . Translated by Harbrecht Helmut. Dissertation.
Dölz, Jürgen (2017) Hierarchical Matrix Techniques for Partial Differential Equations with Random Input Data. . Translated by Harbrecht Helmut. Dissertation.
Dölz, Jürgen, Harbrecht, Helmut and Peters, Michael (2017) ‘H-matrix based second moment analysis for rough random fields and finite element discretizations’, SIAM Journal on Scientific Computing, 39(4), pp. B618–B639. Available at: https://doi.org/10.1137/16m1074813.
Dölz, Jürgen, Harbrecht, Helmut and Peters, Michael (2017) ‘H-matrix based second moment analysis for rough random fields and finite element discretizations’, SIAM Journal on Scientific Computing, 39(4), pp. B618–B639. Available at: https://doi.org/10.1137/16m1074813.
Dölz, Jürgen, Harbrecht, Helmut and Schwab, Christoph (2017) ‘Covariance regularity and H-matrix approximation for rough random fields’, Numerische Mathematik, 135(4), pp. 1045–1071. Available at: https://doi.org/10.1007/s00211-016-0825-y.
Dölz, Jürgen, Harbrecht, Helmut and Schwab, Christoph (2017) ‘Covariance regularity and H-matrix approximation for rough random fields’, Numerische Mathematik, 135(4), pp. 1045–1071. Available at: https://doi.org/10.1007/s00211-016-0825-y.
Harbrecht, Helmut (2017) ‘On shape optimization with parabolic state equation’, Oberwolfach Reports. European Mathematical Society, 2017(4).
Harbrecht, Helmut (2017) ‘On shape optimization with parabolic state equation’, Oberwolfach Reports. European Mathematical Society, 2017(4).
Harbrecht, Helmut (2017) ‘Novel results for the anisotropic sparse grid quadrature’, Oberwolfach Reports. European Mathematical Society, 2017(17). Available at: https://doi.org/10.4171/owr/2017/17.
Harbrecht, Helmut (2017) ‘Novel results for the anisotropic sparse grid quadrature’, Oberwolfach Reports. European Mathematical Society, 2017(17). Available at: https://doi.org/10.4171/owr/2017/17.
Harbrecht, Helmut, Peters, Michael and Schmidlin, Marc (2017) ‘Uncertainty quantification for PDEs with anisotropic random diffusion’, SIAM Journal on Numerical Analysis, 55(2), pp. 1002–1023. Available at: https://doi.org/10.1137/16m1085760.
Harbrecht, Helmut, Peters, Michael and Schmidlin, Marc (2017) ‘Uncertainty quantification for PDEs with anisotropic random diffusion’, SIAM Journal on Numerical Analysis, 55(2), pp. 1002–1023. Available at: https://doi.org/10.1137/16m1085760.
Harbrecht, Helmut, Peters, Michael and Siebenmorgen, Markus (2017) ‘On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion’, Mathematics of Computation, 86, pp. 771–797. Available at: https://doi.org/10.1090/mcom/3107.
Harbrecht, Helmut, Peters, Michael and Siebenmorgen, Markus (2017) ‘On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion’, Mathematics of Computation, 86, pp. 771–797. Available at: https://doi.org/10.1090/mcom/3107.
Harbrecht, Helmut and Peters, Michael (2017) ‘Solution of free boundary problems in the presence of geometric uncertainties’, in Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.) Topological Optimization and Optimal Transport In the Applied Sciences. Berlin-Bosten: De Gruyter (Radon Series on Computational and Applied Mathematics), pp. 20–39. Available at: https://doi.org/10.1515/9783110430417-002.
Harbrecht, Helmut and Peters, Michael (2017) ‘Solution of free boundary problems in the presence of geometric uncertainties’, in Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.) Topological Optimization and Optimal Transport In the Applied Sciences. Berlin-Bosten: De Gruyter (Radon Series on Computational and Applied Mathematics), pp. 20–39. Available at: https://doi.org/10.1515/9783110430417-002.
Dambrine, M. et al. (2016) ‘Numerical solution of the Poisson equation on domains with a thin layer of random thickness’, SIAM journal on numerical analysis, 54(2), pp. 921–941. Available at: https://doi.org/10.1137/140998652.
Dambrine, M. et al. (2016) ‘Numerical solution of the Poisson equation on domains with a thin layer of random thickness’, SIAM journal on numerical analysis, 54(2), pp. 921–941. Available at: https://doi.org/10.1137/140998652.
Dölz, Jürgen, Harbrecht, Helmut and Peters, Michael (2016) ‘An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces’, International Journal for Numerical Methods in Engineering, 108(13), pp. 1705–1728. Available at: https://doi.org/10.1002/nme.5274.
Dölz, Jürgen, Harbrecht, Helmut and Peters, Michael (2016) ‘An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces’, International Journal for Numerical Methods in Engineering, 108(13), pp. 1705–1728. Available at: https://doi.org/10.1002/nme.5274.
Graff, Lavinia, Harbrecht, Helmut and Zimmermann, Markus (2016) ‘On the computation of solution spaces in high dimensions’, Structural and Multidisciplinary Optimization, 54(4), pp. 811–829. Available at: https://doi.org/10.1007/s00158-016-1454-x.
Graff, Lavinia, Harbrecht, Helmut and Zimmermann, Markus (2016) ‘On the computation of solution spaces in high dimensions’, Structural and Multidisciplinary Optimization, 54(4), pp. 811–829. Available at: https://doi.org/10.1007/s00158-016-1454-x.
Harbrecht, Helmut (2016) ‘On fast boundary element methods for parametric surfaces’, Oberwolfach Reports. European Mathematical Society, 13(1).
Harbrecht, Helmut (2016) ‘On fast boundary element methods for parametric surfaces’, Oberwolfach Reports. European Mathematical Society, 13(1).
Harbrecht, Helmut and Loos, Florian (2016) ‘Optimization of current carrying multicables’, Computational optimization and applications, 63(1), pp. 237–271. Available at: https://doi.org/10.1007/s10589-015-9764-2.
Harbrecht, Helmut and Loos, Florian (2016) ‘Optimization of current carrying multicables’, Computational optimization and applications, 63(1), pp. 237–271. Available at: https://doi.org/10.1007/s10589-015-9764-2.
Harbrecht, Helmut, Peters, Michael and Siebenmorgen, Markus (2016) ‘Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient’, SIAM/ASA Journal on Uncertainty Quantification, 4(1), pp. 520–551. Available at: https://doi.org/10.1137/130931953.
Harbrecht, Helmut, Peters, Michael and Siebenmorgen, Markus (2016) ‘Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient’, SIAM/ASA Journal on Uncertainty Quantification, 4(1), pp. 520–551. Available at: https://doi.org/10.1137/130931953.
Harbrecht, Helmut and Schneider, Reinhold (2016) ‘A Note on Multilevel Based Error Estimation’, Computational Methods in Applied Mathematics, 16(3), pp. 447–458. Available at: https://doi.org/10.1515/cmam-2016-0013.
Harbrecht, Helmut and Schneider, Reinhold (2016) ‘A Note on Multilevel Based Error Estimation’, Computational Methods in Applied Mathematics, 16(3), pp. 447–458. Available at: https://doi.org/10.1515/cmam-2016-0013.
Harbrecht, Helmut, Wendland, Wolfgang L. and Zorii, Natalia (2016) ‘Rapid Solution of Minimal Riesz Energy Problems’, Numerical Methods for Partial Differential Equations, 32(6), pp. 1535–1552. Available at: https://doi.org/10.1002/num.22060.
Harbrecht, Helmut, Wendland, Wolfgang L. and Zorii, Natalia (2016) ‘Rapid Solution of Minimal Riesz Energy Problems’, Numerical Methods for Partial Differential Equations, 32(6), pp. 1535–1552. Available at: https://doi.org/10.1002/num.22060.
Harbrecht, H., Peters, M. and Siebenmorgen, M. (2016) ‘Analysis of the domain mapping method for elliptic diffusion problems on random domains’, Numerische Mathematik, 134(4), pp. 823–856. Available at: https://doi.org/10.1007/s00211-016-0791-4.
Harbrecht, H., Peters, M. and Siebenmorgen, M. (2016) ‘Analysis of the domain mapping method for elliptic diffusion problems on random domains’, Numerische Mathematik, 134(4), pp. 823–856. Available at: https://doi.org/10.1007/s00211-016-0791-4.
Zaspel, Peter (2016) ‘Subspace correction methods in algebraic multi-level frames’, Linear Algebra and its Applications, 488, pp. 505–521. Available at: https://doi.org/10.1016/j.laa.2015.09.026.
Zaspel, Peter (2016) ‘Subspace correction methods in algebraic multi-level frames’, Linear Algebra and its Applications, 488, pp. 505–521. Available at: https://doi.org/10.1016/j.laa.2015.09.026.
Harbrecht, Helmut and Peters, Michael (2016) ‘Combination technique based second moment analysis for elliptic PDEs on random domains’, in Garcke, Jochen; Pflüger, Dirk (ed.) Sparse grids and applications - Stuttgart 2014. Switzerland: Springer International Publishing (Lecture notes in computational science and engineering), pp. 51–77. Available at: https://doi.org/10.1007/978-3-319-28262-6_3.
Harbrecht, Helmut and Peters, Michael (2016) ‘Combination technique based second moment analysis for elliptic PDEs on random domains’, in Garcke, Jochen; Pflüger, Dirk (ed.) Sparse grids and applications - Stuttgart 2014. Switzerland: Springer International Publishing (Lecture notes in computational science and engineering), pp. 51–77. Available at: https://doi.org/10.1007/978-3-319-28262-6_3.
Bugeanu, Monica et al. (2015) ‘Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements’, Physical Chemistry, Chemical Physics, 17(47), pp. 31566–81. Available at: https://doi.org/10.1039/c5cp03410h.
Bugeanu, Monica et al. (2015) ‘Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements’, Physical Chemistry, Chemical Physics, 17(47), pp. 31566–81. Available at: https://doi.org/10.1039/c5cp03410h.
Bugeanu, Monica and Harbrecht, Helmut (2015) ‘A second order convergent trial method for a free boundary problem in three dimensions’, Interfaces and free boundaries, 17(4), pp. 517–537. Available at: https://doi.org/10.4171/ifb/352.
Bugeanu, Monica and Harbrecht, Helmut (2015) ‘A second order convergent trial method for a free boundary problem in three dimensions’, Interfaces and free boundaries, 17(4), pp. 517–537. Available at: https://doi.org/10.4171/ifb/352.
Dambrine, Marc, Dapogny, Charles and Harbrecht, Helmut (2015) ‘Shape optimization for quadratic functionals and states with random right-hand sides’, SIAM journal on control and optimization, 53(5), pp. 3081–3103. Available at: https://doi.org/10.1137/15m1017041.
Dambrine, Marc, Dapogny, Charles and Harbrecht, Helmut (2015) ‘Shape optimization for quadratic functionals and states with random right-hand sides’, SIAM journal on control and optimization, 53(5), pp. 3081–3103. Available at: https://doi.org/10.1137/15m1017041.