Faculty of Science
Faculty of Science
UNIverse - Public Research Portal
Publications
31 found
Show per page
Götz, M. et al. (2024) ‘Reply to: On the statistical foundation of a recent single molecule FRET benchmark’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-47734-2.
URLs
URLs
Wen, Chenyu, Schmid, Sonja and Dekker, Cees (2024) ‘Understanding Electrophoresis and Electroosmosis in Nanopore Sensing with the Help of the Nanopore Electro-Osmotic Trap’, ACS Nano. 25.07.2024, 18(31), pp. 20449–20458. Available at: https://doi.org/10.1021/acsnano.4c04788.
URLs
URLs
Fuentenebro Navas, David et al. (2024) ‘Nanopores Reveal the Stoichiometry of Single Oligoadenylates Produced by Type III CRISPR-Cas’, ACS Nano. 14.06.2024, 18(26), pp. 16325–17360. Available at: https://doi.org/10.1021/acsnano.3c11769.
URLs
URLs
Ghosh, Srijayee and Schmid, Sonja (2024) ‘The potential of fluorogenicity for single molecule FRET and DyeCycling’, QRB Discovery. 03.12.2024, 5. Available at: https://doi.org/10.1017/qrd.2024.11.
URLs
URLs
Ha, Taekjip et al. (2024) ‘Fluorescence resonance energy transfer at the single-molecule level’, Nature Reviews Methods Primers, 4. Available at: https://doi.org/10.1038/s43586-024-00298-3.
URLs
URLs
Vermeer, B., van Ossenbruggen, J. and Schmid, S. (2024) ‘Single-Molecule FRET-Resolved Protein Dynamics – from Plasmid to Data in Six Steps’. Humana Press Inc., pp. 267–291. Available at: https://doi.org/10.1007/978-1-0716-3377-9_13.
URLs
URLs
Schmid, S. (2023) ‘An external speed control for nanopore reads’, Nature Nanotechnology, 18(11), pp. 1261–1262. Available at: https://doi.org/10.1038/s41565-023-01477-1.
URLs
URLs
Fuentenebro-Navas, D. et al. (2023) ‘Nanopores reveal the stoichiometry of single oligo-adenylates produced by type III CRISPR-Cas’, Biorxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.18.553839.
URLs
URLs
Wen, C. et al. (2023) ‘Orientation-Locked DNA Origami for Stable Trapping of Small Proteins in the Nanopore Electro-Osmotic Trap’, Nano Letters, 23(3), pp. 788–794. Available at: https://doi.org/10.1021/acs.nanolett.2c03569.
URLs
URLs
Silbermann, Laura-Marie et al. (2023) ‘The known unknowns of the Hsp90 chaperone’, arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2308.16629.
URLs
URLs
Götz, M. et al. (2022) ‘A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-33023-3.
URLs
URLs
Wen, C. et al. (2022) ‘Orientation-locked DNA origami for stable trapping of small proteins in the NEOtrap’, Biorxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.09.09.507286.
URLs
URLs
Vermeer, B. and Schmid, S. (2022) ‘Can DyeCycling break the photobleaching limit in single-molecule FRET?’, Biorxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.02.08.479542.
URLs
URLs
Schmid, Sonja (2022) The NanoBioPhysX Club. Available at: https://www.nanobiophysx.club/home.
URLs
URLs
Götz, M. et al. (2021) ‘Inferring kinetic rate constants from single-molecule FRET trajectories – a blind benchmark of kinetic analysis tools’, Biorxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.11.23.469671.
URLs
URLs
Schmid, S. et al. (2021) ‘Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations’, Nature Nanotechnology, 16(11), pp. 1244–1250. Available at: https://doi.org/10.1038/s41565-021-00958-5.
URLs
URLs
Schmid, S. and Dekker, C. (2021) ‘The NEOtrap – en route with a new single-molecule technique’, iScience, 24(10). Available at: https://doi.org/10.1016/j.isci.2021.103007.
URLs
URLs
Alfaro, J.A. et al. (2021) ‘The emerging landscape of single-molecule protein sequencing technologies’, Nature Methods, 18(6), pp. 604–617. Available at: https://doi.org/10.1038/s41592-021-01143-1.
URLs
URLs
Schmid, S. and Dekker, C. (2021) ‘Nanopores: A versatile tool to study protein Dynamics’, Essays in Biochemistry, 65(1), pp. 93–107. Available at: https://doi.org/10.1042/ebc20200020.
URLs
URLs
Schmid, S. and Hugel, T. (2020) ‘Controlling protein function by fine-tuning conformational flexibility’, eLife, 9, pp. 1–14. Available at: https://doi.org/10.7554/elife.57180.
URLs
URLs
Fragasso, A., Schmid, S. and Dekker, C. (2020) ‘Comparing Current Noise in Biological and Solid-State Nanopores’, ACS Nano, 14(2), pp. 1338–1349. Available at: https://doi.org/10.1021/acsnano.9b09353.
URLs
URLs
Fragasso, A., Schmid, S. and Dekker, C. (2019) ‘Comparing current noise in biological and solid-state nanopores’, Biorxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/866384.
URLs
URLs
Schmid, S. and Hugel, T. (2019) Same Equilibrium. Different Kinetics. Protein Functional Consequences. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/838938.
URLs
URLs
Hellenkamp, B. et al. (2018) ‘Erratum to: Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study (Nature Methods, (2018), 15, 9, (669-676), 10.1038/s41592-018-0085-0)’, Nature Methods, 15(11). Available at: https://doi.org/10.1038/s41592-018-0193-x.
URLs
URLs
Hellenkamp, B. et al. (2018) ‘Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study’, Nature Methods, 15(9), pp. 669–676. Available at: https://doi.org/10.1038/s41592-018-0085-0.
URLs
URLs
Schmid, S., Götz, M. and Hugel, T. (2018) ‘Effects of Inhibitors on Hsp90′s Conformational Dynamics, Cochaperone and Client Interactions’, ChemPhysChem, 19(14), pp. 1716–1721. Available at: https://doi.org/10.1002/cphc.201800342.
URLs
URLs
Schmid, S. and Hugel, T. (2018) ‘Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties’, Journal of Chemical Physics, 148(12). Available at: https://doi.org/10.1063/1.5006604.
URLs
URLs
Schmid, S., Götz, M. and Hugel, T. (2016) ‘Single-Molecule Analysis beyond Dwell Times: Demonstration and Assessment in and out of Equilibrium’, Biophysical Journal, 111(7), pp. 1375–1384. Available at: https://doi.org/10.1016/j.bpj.2016.08.023.
URLs
URLs
Schmid, S., Goetz, M. and Hugel, T. (2016) ‘Quantitative Protein Kinetics from sm-FRET Time Traces’, Biophysical Journal. 16.02.2016, 110(3, Supplement 1), p. 194a. Available at: https://doi.org/10.1016/j.bpj.2015.11.1082.
URLs
URLs
Götz, M. et al. (2016) ‘A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously’. Academic Press Inc.apjcs@harcourt.com, pp. 487–516. Available at: https://doi.org/10.1016/bs.mie.2016.08.024.
URLs
URLs
Schmid, S. and Hugel, T. (2011) ‘Regulatory Posttranslational Modifications in Hsp90 Can Be Compensated by Cochaperone Aha1’, Molecular Cell, 41(6), pp. 619–620. Available at: https://doi.org/10.1016/j.molcel.2011.02.028.
URLs
URLs