Nanomaterials (De Roo)
Publications
46 found
Show per page
Goossens, Eline et al. (2025) ‘Contrast-enhanced imaging of carbon fiber composites using hafnium oxide nanocrystals’, Nanoscale. 28.03.2025, p. Online ahead of print. Available at: https://doi.org/10.1039/d4nr04561k.
Goossens, Eline et al. (2025) ‘Contrast-enhanced imaging of carbon fiber composites using hafnium oxide nanocrystals’, Nanoscale. 28.03.2025, p. Online ahead of print. Available at: https://doi.org/10.1039/d4nr04561k.
Pulparayil Mathew, Jikson et al. (2025) ‘Determination of the experimental minimal formula of metal-organic frameworks’, Chemrxiv [Preprint]. American Chemical Society (ACS) (Chemrxiv). Available at: https://doi.org/10.26434/chemrxiv-2024-lrh78-v2.
Pulparayil Mathew, Jikson et al. (2025) ‘Determination of the experimental minimal formula of metal-organic frameworks’, Chemrxiv [Preprint]. American Chemical Society (ACS) (Chemrxiv). Available at: https://doi.org/10.26434/chemrxiv-2024-lrh78-v2.
Pokratath, Rohan et al. (2025) ‘Local orthorhombic phase in zirconium oxide nanocrystals: insights from X-ray pair distribution function analysis’, Journal of Applied Crystallography, p. Online ahead of print. Available at: https://doi.org/10.1107/S1600576725001761.
Pokratath, Rohan et al. (2025) ‘Local orthorhombic phase in zirconium oxide nanocrystals: insights from X-ray pair distribution function analysis’, Journal of Applied Crystallography, p. Online ahead of print. Available at: https://doi.org/10.1107/S1600576725001761.
Maksimova, Elizaveta, Salazar Marcano, David E. and De Roo, Jonathan (2025) ‘Quantification of azides on the surface of nanoparticles: towards precise bioconjugation’, Zenodo. 1 edn. (Zenodo). Available at: https://doi.org/10.5281/zenodo.14844350.
Maksimova, Elizaveta, Salazar Marcano, David E. and De Roo, Jonathan (2025) ‘Quantification of azides on the surface of nanoparticles: towards precise bioconjugation’, Zenodo. 1 edn. (Zenodo). Available at: https://doi.org/10.5281/zenodo.14844350.
Peng, J. (2025) Bionic alkyltransferases for biocatalysis. Doctoral Thesis.
Peng, J. (2025) Bionic alkyltransferases for biocatalysis. Doctoral Thesis.
Parvizian, M. et al. (2024) ‘Molten Salt-Assisted Synthesis of Titanium Nitride’, Small Methods, 8(12). Available at: https://doi.org/10.1002/smtd.202400228.
Parvizian, M. et al. (2024) ‘Molten Salt-Assisted Synthesis of Titanium Nitride’, Small Methods, 8(12). Available at: https://doi.org/10.1002/smtd.202400228.
Goossens, E. et al. (2024) ‘From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals’, Small Methods, 8(10). Available at: https://doi.org/10.1002/smtd.202301499.
Goossens, E. et al. (2024) ‘From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals’, Small Methods, 8(10). Available at: https://doi.org/10.1002/smtd.202301499.
Tao, Songsheng et al. (2024) ‘Rapid Modeling of the Local Structure of Metal Oxide Nanoparticles from PDF Data: A Case Study Using TiO 2 Nanoparticles’, Chemistry of Materials. 18.10.2024, 36(21), pp. 10912–10921. Available at: https://doi.org/10.1021/acs.chemmater.3c03002.
Tao, Songsheng et al. (2024) ‘Rapid Modeling of the Local Structure of Metal Oxide Nanoparticles from PDF Data: A Case Study Using TiO 2 Nanoparticles’, Chemistry of Materials. 18.10.2024, 36(21), pp. 10912–10921. Available at: https://doi.org/10.1021/acs.chemmater.3c03002.
Pulparayil Mathew, Jikson et al. (2024) ‘The central role of oxo clusters in zirconium-based esterification catalysis’, Small Science. 1 edn. Edited by Pulparayil Mathew, Jikson;Seno, Carlotta;Jaiswal, Mohit;Simms, Charlotte;Reichholf, Nico;Van den Eynden, Dietger;Parac-Vogt, Tatjana;De Roo, Jonathan. (Small Science). Available at: https://doi.org/10.5281/zenodo.13782982.
Pulparayil Mathew, Jikson et al. (2024) ‘The central role of oxo clusters in zirconium-based esterification catalysis’, Small Science. 1 edn. Edited by Pulparayil Mathew, Jikson;Seno, Carlotta;Jaiswal, Mohit;Simms, Charlotte;Reichholf, Nico;Van den Eynden, Dietger;Parac-Vogt, Tatjana;De Roo, Jonathan. (Small Science). Available at: https://doi.org/10.5281/zenodo.13782982.
Pulparayil Mathew, Jikson et al. (2024) ‘The Central Role of Oxo Clusters in Zirconium-Based Esterification Catalysis’, Small Science, 5(1). Available at: https://doi.org/10.1002/smsc.202400369.
Pulparayil Mathew, Jikson et al. (2024) ‘The Central Role of Oxo Clusters in Zirconium-Based Esterification Catalysis’, Small Science, 5(1). Available at: https://doi.org/10.1002/smsc.202400369.
Seno, Carlotta et al. (2024) ‘Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia’, Journal of the American Chemical Society, 146, pp. 20550–20555. Available at: https://doi.org/10.1021/jacs.4c05037.
Seno, Carlotta et al. (2024) ‘Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia’, Journal of the American Chemical Society, 146, pp. 20550–20555. Available at: https://doi.org/10.1021/jacs.4c05037.
Seno, Carlotta et al. (2024) ‘Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia’. Edited by De Roo, Jonathan. Available at: https://doi.org/10.5281/zenodo.12684072.
Seno, Carlotta et al. (2024) ‘Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia’. Edited by De Roo, Jonathan. Available at: https://doi.org/10.5281/zenodo.12684072.
Seno, Carlotta et al. (2024) ‘Complexation and disproportionation of group 4 metal (alkoxy) halides with phosphine oxides’, Dalton Transactions. 28.05.2024, 53(23), pp. 9862–9873. Available at: https://doi.org/10.1039/d4dt01299b.
Seno, Carlotta et al. (2024) ‘Complexation and disproportionation of group 4 metal (alkoxy) halides with phosphine oxides’, Dalton Transactions. 28.05.2024, 53(23), pp. 9862–9873. Available at: https://doi.org/10.1039/d4dt01299b.
Evert Dhaene et al. (2024) ‘Data for ‘Binding Affinity of Monoalkyl Phosphinic Acid Ligands toward Nanocrystal Surfaces’.’, Chemistry of Materials. Edited by De Roo, Jonathan. (Chemistry of Materials). Available at: https://doi.org/10.5281/zenodo.11198128.
Evert Dhaene et al. (2024) ‘Data for ‘Binding Affinity of Monoalkyl Phosphinic Acid Ligands toward Nanocrystal Surfaces’.’, Chemistry of Materials. Edited by De Roo, Jonathan. (Chemistry of Materials). Available at: https://doi.org/10.5281/zenodo.11198128.
Pulparayil Mathew, Jikson et al. (2024) ‘The central role of oxo clusters in zirconium- and hafnium-based esterification catalysis’, Chemrxiv [Preprint]. Cambridge University Press (Chemrxiv). Available at: https://doi.org/10.26434/chemrxiv-2024-sjwj7.
Pulparayil Mathew, Jikson et al. (2024) ‘The central role of oxo clusters in zirconium- and hafnium-based esterification catalysis’, Chemrxiv [Preprint]. Cambridge University Press (Chemrxiv). Available at: https://doi.org/10.26434/chemrxiv-2024-sjwj7.
Goossens, Eline et al. (2024) ‘From Gel to Crystal: Mechanism of HfO2 and ZrO2 Nanocrystal Synthesis in Benzyl Alcohol’, Journal of the American Chemical Society, 146(15), pp. 10723–10734. Available at: https://doi.org/10.1021/jacs.4c00678.
Goossens, Eline et al. (2024) ‘From Gel to Crystal: Mechanism of HfO2 and ZrO2 Nanocrystal Synthesis in Benzyl Alcohol’, Journal of the American Chemical Society, 146(15), pp. 10723–10734. Available at: https://doi.org/10.1021/jacs.4c00678.
Alim, Gladwin Suryatin et al. (2024) ‘PCC Christmas Symposium Basel 2023’, in Chimia. Swiss Chemical Society (Chimia), pp. 172–173. Available at: https://doi.org/10.2533/chimia.2024.172.
Alim, Gladwin Suryatin et al. (2024) ‘PCC Christmas Symposium Basel 2023’, in Chimia. Swiss Chemical Society (Chimia), pp. 172–173. Available at: https://doi.org/10.2533/chimia.2024.172.
Declerck, Kilian et al. (2024) ‘Molecular Insights into Sequence-Specific Protein Hydrolysis by a Soluble Zirconium-Oxo Cluster Catalyst’, Journal of the American Chemical Society. 15.04.2024, 146(16), pp. 11400–11410. Available at: https://doi.org/10.1021/jacs.4c01324.
Declerck, Kilian et al. (2024) ‘Molecular Insights into Sequence-Specific Protein Hydrolysis by a Soluble Zirconium-Oxo Cluster Catalyst’, Journal of the American Chemical Society. 15.04.2024, 146(16), pp. 11400–11410. Available at: https://doi.org/10.1021/jacs.4c01324.
Dhaene, Evert, Seno, Carlotta and De Roo, Jonathan (2024) ‘Synthesis of zirconium( IV ) and hafnium( IV) isopropoxide, sec -butoxide and tert -butoxide’, Dalton Transactions. 28.06.2024, 53(28), pp. 11769–11777. Available at: https://doi.org/10.1039/d4dt01280a.
Dhaene, Evert, Seno, Carlotta and De Roo, Jonathan (2024) ‘Synthesis of zirconium( IV ) and hafnium( IV) isopropoxide, sec -butoxide and tert -butoxide’, Dalton Transactions. 28.06.2024, 53(28), pp. 11769–11777. Available at: https://doi.org/10.1039/d4dt01280a.
Unniram Parambil, Ajmal Roshan et al. (2024) ‘Atomically precise surface chemistry of zirconium and hafnium metal oxo clusters beyond carboxylate ligands’, Chemical Science. 07.10.2024, 15(42), p. 17380–17396 . Available at: https://doi.org/10.1039/d4sc03859b.
Unniram Parambil, Ajmal Roshan et al. (2024) ‘Atomically precise surface chemistry of zirconium and hafnium metal oxo clusters beyond carboxylate ligands’, Chemical Science. 07.10.2024, 15(42), p. 17380–17396 . Available at: https://doi.org/10.1039/d4sc03859b.
Deblock, Loren et al. (2023) ‘Dual-Modality Hafnium Oxide Nanocrystals for in Vivo Computed Tomography and Fluorescence Imaging of Sentinel Lymph Nodes’, Chemistry of Materials. 30.10.2023, 35(21), pp. 8883–8896. Available at: https://doi.org/10.1021/acs.chemmater.3c01324.
Deblock, Loren et al. (2023) ‘Dual-Modality Hafnium Oxide Nanocrystals for in Vivo Computed Tomography and Fluorescence Imaging of Sentinel Lymph Nodes’, Chemistry of Materials. 30.10.2023, 35(21), pp. 8883–8896. Available at: https://doi.org/10.1021/acs.chemmater.3c01324.
De Roo, J. (2023) ‘The Surface Chemistry of Colloidal Nanocrystals Capped by Organic Ligands’, Chemistry of Materials, 35(10), pp. 3781–3792. Available at: https://doi.org/10.1021/acs.chemmater.3c00638.
De Roo, J. (2023) ‘The Surface Chemistry of Colloidal Nanocrystals Capped by Organic Ligands’, Chemistry of Materials, 35(10), pp. 3781–3792. Available at: https://doi.org/10.1021/acs.chemmater.3c00638.
Pokratath, R. et al. (2023) ‘An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals’, ACS Nano, 17(9), pp. 8796–8806. Available at: https://doi.org/10.1021/acsnano.3c02149.
Pokratath, R. et al. (2023) ‘An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals’, ACS Nano, 17(9), pp. 8796–8806. Available at: https://doi.org/10.1021/acsnano.3c02149.
Parvizian, M. et al. (2023) ‘An Experimental Introduction to Colloidal Nanocrystals through InP and InP/ZnS Quantum Dots’, Journal of Chemical Education, 100(4), pp. 1613–1620. Available at: https://doi.org/10.1021/acs.jchemed.2c01167.
Parvizian, M. et al. (2023) ‘An Experimental Introduction to Colloidal Nanocrystals through InP and InP/ZnS Quantum Dots’, Journal of Chemical Education, 100(4), pp. 1613–1620. Available at: https://doi.org/10.1021/acs.jchemed.2c01167.
Parvizian, M./.M. (2023) Exploring metal nitride synthesis
from precursors to structural insights. Doctoral Thesis.
Parvizian, M./.M. (2023) Exploring metal nitride synthesis
from precursors to structural insights. Doctoral Thesis.
Pokratath, R. (2023) Unraveling the synthesis, structure, and properties of nanoscale zirconia. Doctoral Thesis.
Pokratath, R. (2023) Unraveling the synthesis, structure, and properties of nanoscale zirconia. Doctoral Thesis.
Van den Eynden, D. (2023) Metal oxo clusters, from theory to innovation; Synthesis, mechanism & novel application in recyclable polymers. Doctoral Thesis.
Van den Eynden, D. (2023) Metal oxo clusters, from theory to innovation; Synthesis, mechanism & novel application in recyclable polymers. Doctoral Thesis.
Van den Eynden, Dietger et al. (2023) ‘Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes’, Chemical Science, 14(3), pp. 573–585. Available at: https://doi.org/10.1039/d2sc05037d.
Van den Eynden, Dietger et al. (2023) ‘Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes’, Chemical Science, 14(3), pp. 573–585. Available at: https://doi.org/10.1039/d2sc05037d.
Reddy, K.L. et al. (2022) ‘Mandelic acid appended chiral gels as efficient templates for multicolour circularly polarized luminescence’, Nanoscale, 14(13), pp. 4946–4956. Available at: https://doi.org/10.1039/d1nr08506a.
Reddy, K.L. et al. (2022) ‘Mandelic acid appended chiral gels as efficient templates for multicolour circularly polarized luminescence’, Nanoscale, 14(13), pp. 4946–4956. Available at: https://doi.org/10.1039/d1nr08506a.
Campos, Michael P. et al. (2022) ‘Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals’, Chemical Science, 13(16), pp. 4555–4565. Available at: https://doi.org/10.1039/d1sc06098h.
Campos, Michael P. et al. (2022) ‘Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals’, Chemical Science, 13(16), pp. 4555–4565. Available at: https://doi.org/10.1039/d1sc06098h.
Chimisso, V. (2022) Anionic microgels for colorful smart materials. Doctoral Thesis.
Chimisso, V. (2022) Anionic microgels for colorful smart materials. Doctoral Thesis.
Deblock, Loren et al. (2022) ‘Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands’, JACS Au, 2(3), pp. 711–722. Available at: https://doi.org/10.1021/jacsau.1c00565.
Deblock, Loren et al. (2022) ‘Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands’, JACS Au, 2(3), pp. 711–722. Available at: https://doi.org/10.1021/jacsau.1c00565.
De Roo, Jonathan (2022) ‘Chemical Considerations for Colloidal Nanocrystal Synthesis’, Chemistry of Materials, 34(13), pp. 5766–5779. Available at: https://doi.org/10.1021/acs.chemmater.2c01058.
De Roo, Jonathan (2022) ‘Chemical Considerations for Colloidal Nanocrystal Synthesis’, Chemistry of Materials, 34(13), pp. 5766–5779. Available at: https://doi.org/10.1021/acs.chemmater.2c01058.
Dhaene, Evert et al. (2022) ‘Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis’, ACS Nano, 16(5), pp. 7361–7372. Available at: https://doi.org/10.1021/acsnano.1c08966.
Dhaene, Evert et al. (2022) ‘Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis’, ACS Nano, 16(5), pp. 7361–7372. Available at: https://doi.org/10.1021/acsnano.1c08966.
Parvizian, Mahsa et al. (2022) ‘The Chemistry of Cu3N and Cu3PdN Nanocrystals’, Angewandte Chemie International Edition, 61(31), p. e202207013. Available at: https://doi.org/10.1002/anie.202207013.
Parvizian, Mahsa et al. (2022) ‘The Chemistry of Cu3N and Cu3PdN Nanocrystals’, Angewandte Chemie International Edition, 61(31), p. e202207013. Available at: https://doi.org/10.1002/anie.202207013.
Van den Eynden, Dietger, Pokratath, Rohan and De Roo, Jonathan (2022) ‘Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals’, Chemical Reviews, 122(11), pp. 10538–10572. Available at: https://doi.org/10.1021/acs.chemrev.1c01008.
Van den Eynden, Dietger, Pokratath, Rohan and De Roo, Jonathan (2022) ‘Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals’, Chemical Reviews, 122(11), pp. 10538–10572. Available at: https://doi.org/10.1021/acs.chemrev.1c01008.
Reddy, K.L. et al. (2021) ‘Spectral Engineering and Morphological Tuning of Amino Acid Capped Hydrophilic Upconversion Nanophosphors’, Journal of Physical Chemistry C, 125(47), pp. 26263–26273. Available at: https://doi.org/10.1021/acs.jpcc.1c08704.
Reddy, K.L. et al. (2021) ‘Spectral Engineering and Morphological Tuning of Amino Acid Capped Hydrophilic Upconversion Nanophosphors’, Journal of Physical Chemistry C, 125(47), pp. 26263–26273. Available at: https://doi.org/10.1021/acs.jpcc.1c08704.
de Roo, Jonathan, Hartrampf, Nina and Merz, Leo (2021) ‘The Young Faculty Meeting 2021 – A Focus on Group Management’, Chimia, 75, pp. 692–694. Available at: https://doi.org/10.2533/chimia.2021.692.
de Roo, Jonathan, Hartrampf, Nina and Merz, Leo (2021) ‘The Young Faculty Meeting 2021 – A Focus on Group Management’, Chimia, 75, pp. 692–694. Available at: https://doi.org/10.2533/chimia.2021.692.
Nemat, Suren J. et al. (2021) ‘Resorcin[4]arene-based multidentate phosphate ligands with superior binding affinity for nanocrystal surfaces’, Chemical Communications, 57(38), pp. 4694–4697. Available at: https://doi.org/10.1039/d1cc00223f.
Nemat, Suren J. et al. (2021) ‘Resorcin[4]arene-based multidentate phosphate ligands with superior binding affinity for nanocrystal surfaces’, Chemical Communications, 57(38), pp. 4694–4697. Available at: https://doi.org/10.1039/d1cc00223f.
Calcabrini, Mariano et al. (2021) ‘Ligand Conversion in Nanocrystal Synthesis: The Oxidation of Alkylamines to Fatty Acids by Nitrate’, JACS Au, 1(11), pp. 1898–1903. Available at: https://doi.org/10.1021/jacsau.1c00349.
Calcabrini, Mariano et al. (2021) ‘Ligand Conversion in Nanocrystal Synthesis: The Oxidation of Alkylamines to Fatty Acids by Nitrate’, JACS Au, 1(11), pp. 1898–1903. Available at: https://doi.org/10.1021/jacsau.1c00349.
Parvizian, Mahsa and De Roo, Jonathan (2021) ‘Precursor chemistry of metal nitride nanocrystals’, Nanoscale, 13(45), pp. 18865–18882. Available at: https://doi.org/10.1039/d1nr05092c.
Parvizian, Mahsa and De Roo, Jonathan (2021) ‘Precursor chemistry of metal nitride nanocrystals’, Nanoscale, 13(45), pp. 18865–18882. Available at: https://doi.org/10.1039/d1nr05092c.
De Roo, Jonathan et al. (2020) ‘Anthracene Diphosphate Ligands for CdSe Quantum Dots; Molecular Design for Efficient Upconversion’, Chemistry of Materials, 32(4), pp. 1461–1466. Available at: https://doi.org/10.1021/acs.chemmater.9b04294.
De Roo, Jonathan et al. (2020) ‘Anthracene Diphosphate Ligands for CdSe Quantum Dots; Molecular Design for Efficient Upconversion’, Chemistry of Materials, 32(4), pp. 1461–1466. Available at: https://doi.org/10.1021/acs.chemmater.9b04294.
Hens, Z. and De Roo, J. (2020) ‘Atomically Precise Nanocrystals’, Journal of the American Chemical Society, 142(37), pp. 15627–15637. Available at: https://doi.org/10.1021/jacs.0c05082.
Hens, Z. and De Roo, J. (2020) ‘Atomically Precise Nanocrystals’, Journal of the American Chemical Society, 142(37), pp. 15627–15637. Available at: https://doi.org/10.1021/jacs.0c05082.
McMurtry, Brandon M. et al. (2020) ‘Continuous Nucleation and Size Dependent Growth Kinetics of Indium Phosphide Nanocrystals’, Chemistry of Materials, 32(10), pp. 4358–4368. Available at: https://doi.org/10.1021/acs.chemmater.0c01561.
McMurtry, Brandon M. et al. (2020) ‘Continuous Nucleation and Size Dependent Growth Kinetics of Indium Phosphide Nanocrystals’, Chemistry of Materials, 32(10), pp. 4358–4368. Available at: https://doi.org/10.1021/acs.chemmater.0c01561.
Oliva-Puigdomènech, Arnau et al. (2020) ‘Scalable Approaches to Copper Nanocrystal Synthesis under Ambient Conditions for Printed Electronics’, ACS Applied Nano Materials, 3(4), pp. 3523–3531. Available at: https://doi.org/10.1021/acsanm.0c00242.
Oliva-Puigdomènech, Arnau et al. (2020) ‘Scalable Approaches to Copper Nanocrystal Synthesis under Ambient Conditions for Printed Electronics’, ACS Applied Nano Materials, 3(4), pp. 3523–3531. Available at: https://doi.org/10.1021/acsanm.0c00242.
Dhaene, Evert et al. (2019) ‘The Trouble with ODE: Polymerization during Nanocrystal Synthesis’, Nano Letters, 19(10), pp. 7411–7417. Available at: https://doi.org/10.1021/acs.nanolett.9b03088.
Dhaene, Evert et al. (2019) ‘The Trouble with ODE: Polymerization during Nanocrystal Synthesis’, Nano Letters, 19(10), pp. 7411–7417. Available at: https://doi.org/10.1021/acs.nanolett.9b03088.